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Abstract—Much time series data is generally from continuous 
dynamic system. Firstly, this paper studies the detection of the 
nonlinearity of time series from continuous dynamics systems by 
applying the Phase-randomized surrogate algorithm. Then, the Delay 
Vector Variance (DVV) method is introduced into nonlinearity test. 
The results show that under the different sampling conditions, the 
opposite detection of nonlinearity is obtained via using traditional test 
statistics methods, which include the third-order autocovariance and 
the asymmetry due to time reversal. Whereas the DVV method can 
perform well on determining nonlinear of Lorenz signal. It indicates 
that the proposed method can describe the continuous dynamics signal 
effectively. 
 

Keywords—Nonlinearity; Time series; continuous dynamics 
system; DVV method 

I. INTRODUCTION 
ETECTING the nature of time series has received 
considerable attention in recent years. Much time series 
are generated by complicated systems for which it is 

impossible to solve or even set up the equations governing the 
dynamics, it is quite commonly assumed without further proof 
that such time series display significant nonlinearity. 
Consequently the analysis is carried out by advanced numerical 
algorithms borrowed from nonlinear dynamics, whereas the 
repertory of more traditional linear tools is largely neglected. 
While for many systems the assumption of nonlinearity may be 
correct in principle, it has for specific cases to be shown 
explicitly that employing nonlinear tools and models is justified 
and useful. If an experimental time series of limited length and 
finite precision is given, it may be impossible to distinguish 
between nonlinear dynamics and linear dynamics involving 
stochastic components. In addition, these time series data are 
commonly from continuous dynamic system. Thus, the 
sampling space can influence to determine the nature of time 
series. It is for this reason that tests for nonlinearity are 
important tools in time series analysis. Currently the technique 
of surrogate data testing [1] is one of the most popular 
approaches to nonlinearity testing.  

Being motivated by statistical hypothesis testing, this 
technique presents an indirect way of detecting nonlinearity; as 
a consequence of this a failure to detect nonlinearity does not 
disprove nonlinearity, but may also result from an 
inappropriate choice of the test statistic. Recently more weak 
points of 
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surrogate data testing were observed, first and foremost the 
effect that a rejection of the null hypothesis does not 
necessarily prove nonlinearity, but still may be a consequence 
of other properties of the time series such as non-stationary [2]. 
There are also considerable problems with artifacts occurring in 
the process of generating the surrogate data sets [3,4].  
This paper studies the nonlinearity in time series, which are 

under different sampling conditions. Then, a novel test statistic 
for detecting the linear or nonlinear nature (Delay Vector 
Variance or ‘DVV’ method) is introduced. The simulation 
results demonstrate that DVV is more excellent to analyze the 
nonlinearity in time series from continuous dynamic system 
than traditional test statistic. 

II.   SURROGATE DATA METHOD AND NONLINEAR HYPOTHESIS 
TESTING 

A. Description of Phase-randomized surrogate data testing 
There exist many methods for generating surrogates [1]. 

Three classes of surrogates are now often in use: 
random-shuffle surrogates, random-phase surrogates and 
Gaussian-scaled random-phase surrogates.  

A comprehensive account of phase-randomized surrogate 
data testing for nonlinearity can be found in [5, 6]. The method 
was originally motivated by the search for deterministic chaos 
in experimental data. Chaos cannot be proven directly in a time 
series. However, chaos requires nonlinear dynamics. So, as 
stated above, a more modest but also more realistic goal is to 
search for nonlinearity in the data. Without nonlinearity, chaos 
can be excluded. If there is nonlinearity in the data, chaos has 
not been proven, but at least one necessary condition has been 
established. The phase-randomized, surrogate data technique 
tries to establish the presence of nonlinearity by excluding a 
reasonable alternative, which is called the "null hypothesis". 
For this purpose a (usually nonlinear) discriminating statistic Q 
(for instance, correlation dimension; Lyapunov exponents, 
entropy, nonlinear predictability) is needed. The null 
hypothesis is rejected by demonstrating that the observed value 
of Q for the data is very unlikely when the null hypothesis is 
true. This requires that the distribution of Q under the null 
hypothesis (mean value and standard deviation) be known. 
These values are obtained from the surrogate data. These 
surrogate data share with the original data only those properties 
(for instance, linear structure) which are defined by the null 
hypothesis. If many realizations of the experimental data are 
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available, the distributions of Q for the experimental and 
surrogate data can be compared directly using conventional 
statistical tests such as a t-test or Mann-Whitney U-test. 
Alternatively, it is possible to generate many surrogate data 
from a single experimental time series and estimates a z-score 
(which is also referred to as "number of sigmas") [7]. 

s

sd QQ
Z
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−

=                                                       (1) 

In this formula dQ is the value of Q  for the experimental 

data, sQ  is the mean of Q  for the surrogate data set and sσ  

is the standard deviation of Q  for the surrogate data. Thus the 

z-score expresses how many standard deviations (“sigmas”) Q  

of the experimental data deviates from the average Q  for the 
surrogates. Assuming that Qs has a normal distribution, the null 
hypothesis can be rejected for two sided testing at a 
significance level of p < 0.05 when z > 1.96. The proposed 
method is quite general in that it allows one to test different null 
hypotheses, and use any discriminating statistic deemed 
appropriate. In this study we will use three different statistics: 
third-order autocovariance and the asymmetry due to time 
reversal and DVV (described in Section III). The null 
hypothesis tested is that the data can be explained by a 
stationary linear Gaussian model. This implies that all the 
relevant information is contained in the power spectrum and in 
the [circular] autocorrelation function. The end result of this 
procedure is a surrogate that has exactly the same power 
spectrum as the original data, but with random phases.  

We have opted for random-phase surrogate approach, since it 
has been observed to yield more superior results compared to 
other methods. This type of surrogate time series retains the 
signal distribution and amplitude spectrum2 of the original time 
series, and takes into account a possibly nonlinear and static 
observation function due to the measurement process. The 
stages of specific procedure are: 

1. Input the experimental time series )( its , Ni ,,1=  
into a complex array: 
                  )()()( niynsnz +=                                         (2)                                   

where )(ns is the original data )( its , 0)( =ny , 

Nn ,,1=  
2. Construct the discrete Fourier Transform: 
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3. Construct a set of random phase: 
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4. Apply the randomized phases to the Fourier transformed 

data: 
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5. Construct the inverse Fourier Transform of ')(mZ and 

get the surrogates: 
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For the simulations in this article, 99 surrogates have been 
generated for each of the time series under study. 

B.  Traditional nonlinearity metrics 
To undertake the performance comparison between the 

proposed DVV method and other nonlinearity analysis 
methods, we have implemented two traditional measures of 
nonlinearity, which have also been used in [8], namely 

the third-order autocovariance (C3): 
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and a measure of the deviation due to time reversibility 
(REV): 
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Where τ is a time lag for which simplicity and convenient 
comparison is set to unity in all simulations. In combination 
with the surrogate data strategy, both measures yield two-tailed 
tests for nonlinearity. 

III. THE DELAY VECTOR VARIANCE METHOD FOR DETECTING 
NONLINEARITY IN TIME SERIES 

A.  The delay vector variance method 
We introduce a novel analysis of a time series which 

examines the predictability of a time series by virtue of the 
observation of the variability of the targets.  

For a given embedding dimension m, the mean target 
variance 2*σ is computed over all sets kΩ . A set kΩ  is 
generated by grouping those delay vectors (DVs) that are 
within a certain distance to x(k), which is varied in a manner 
standardized with respect to the distribution of pairwise 
distances between DVs. The threshold scales automatically 
with the embedding dimension m, as well as with the dynamical 
range of the time series at hand, and thus, the complete range of 
pairwise distances is examined. The proposed DVV method 
can be summarized as follows for a given embedding 
dimension m [9]:  

1. The 99 surrogates are generated by the use of 
random-phase surrogate method. Then, the reconstructed 
vector },1|)({ NkkxX ==  can be obtained. 
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2. The mean du  and standard deviation dσ  are computed 

over all pairwise distances between DVs, )()( jxix − ji ≠  

3. The sets kΩ ( Nk ,1= ) are generated such 

that kΩ ={ }dixkxix τ≤− )()()( ,  

i.e., sets which consists of all DVs that lie closer to x(k) than a 
certain distance dτ ,taken from the interval 

{ } ];,0[min dddddd nunu σσ +− ,e.g., uniformly spaced, 

where dn  is a parameter controlling the span over which to 
perform the DVV analysis. 

4. For every set kΩ , the variance of the corresponding 

targets 2
kσ  is computed. The average over all sets kΩ , 

normalized by the variance of the time series 2
xσ  yields the 

measure of unpredictability 2*σ : 
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5. The linear or nonlinear nature of the time series is 
examined by performing DVV analyses on both the original 
and a number of surrogate time series. Directly, these plots can 
be conveniently combined in a scatter diagram, where the 
horizontal axis corresponds to the DVV plot of the original 
time series, and the vertical to that of the surrogate time series. 
If the surrogate time series yield DVV plots similar to that of 
the original time series, the ‘DVV scatter diagram’ coincides 
with the bisector line, and the original time series is likely to be 
linear, vice versa. 

B. Simulations 
To verify the proposed method, we employ surrogate data 

method to research the nature of Lorenz chaos time series under 
different sampling conditions. Lorenz signal is produced by 
eq.(9): 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

+−=

−−=

−=

xybz
dt
dz

xzyrx
dt
dy

xy
dt
dx )(δ

                                                       (10)  

where, δ , b and r  are parameters:  

28,
3
8,10 === rbδ  

1)  Over-sampling conditions 
According Shannon sampling theorem, the over-sampling 

frequency is beyond to double main frequency maxsf  of  time 

series signal. When sampling frequency 100sf Hz= , the 
Lorenz time series time-domain wave and frequency wave is 
shown in Fig.1(a) and Fig.1(b), alternatively. 
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Fig. 1(a)  Lorenz time series time-domain wave 
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Fig. 1(b)  Lorenz time series frequency wave 

Fig.1 Under oversampling condition (1000 samples) 
 
 

2)  Under-sampling conditions 
According Shannon sampling theorem, the Under-sampling 

frequency is much less than double main frequency maxsf  of 

time series signal. When sampling frequency 1sf Hz= , the 
corresponding Lorenz time series time-domain wave and 
frequency wave is shown in Fig.2 (a) and Fig.2 (b). 

3)  Fit-sampling conditions 
   When sampling frequency don’t include above two 
conditions, it is the fit-sampling conditions.  We get the Lorenz 
time series by applying 10sf Hz=  . Its waves time-domain 
wave and frequency wave is shown in Fig.3 (a) and Fig.3 (b), 
respectively. 
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Fig. 2(a)  Lorenz time series time-domain wave 
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Fig. 2(b)  Lorenz time series frequency wave 

Fig. 2 Under under-sampling condition (1000 samples) 
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Fig. 3 (a)  Lorenz time series time-domain wave 
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 Fig. 3(b)  Lorenz time series frequency wave 

Fig. 3 Under fit-sampling condition (1000 samples) 
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Fig. 4 DVV scatter diagrams of Lorenz time series under oversampling 
condition 
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Fig. 5 DVV scatter diagrams of Lorenz time series under  
under-sampling condition 
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Fig. 6  DVV scatter diagrams of Lorenz time series under fit-sampling 
condition 

 
TABLE I 

RESULTS OF THE RANK TESTS 
 

 C3 REV DVV 

25 48 100 
1Hz linearity linearity nonlinearity 

1 39 99 
10Hz nonlinearity linearity nonlinearity 

3 53 97 100Hz 
linearity linearity nonlinearity 

Significant rejections of the null hypothesis at the level of 0.05 
 
 

The test statistics are computed for the original and 99 
surrogate time series, after the non-parametric rank-based 
(two-tailed) testing is applied. The quantitative results from the 
nonlinearity tests are summarized in Table I.  

According to the simulated test results in tab.1, the false 
detection results of continuous chaos dynamics systems are 
obtained via employing the traditional test statistics. Especially 
under no-fitted sampling condition, linearity correlation in 
Lorenz signal is beyond larger than nonlinearity component. 
Consequently, the nature of Lorenz signal is principal linearity 
component (particularly in limited length chaos time series). 
Moreover, the traditional test statistics mainly describe the 
consistency of linearity characteristic in time series. 
Accordingly, it is difficult to judge the nonlinearity in time 
series under no fitted sampling conditions. This phenomenon 
also exists in other continuous chaos dynamics systems (such 
as Rossler system and Duffer system). On the other hand, the 
DVV method can successfully describe the nonlinearity of 
Lorenz signal under the different sampling conditions. The 
corresponding DVV scatter diagrams are shown in Fig. 4~Fig.6 
(the error bars denote the upper and lower quartiles, of which 
only one in three is shown). Qualitatively, it is clear that the 
deviation from the bisector line, and thus, from the null 
hypothesis of linearity, is strongest for the Lorenz signal of 
under-sampling conditions.  

IV. CONCLUSION 
In this paper, we employ random-phase surrogate method in 

generating Lorenz surrogate sets. The proposed DVV method 
has been shown to perform well on Lorenz time series under 
different sampling spacing. A comparison has been made 
between the proposed method and several traditional 
nonlinearity analysis techniques, namely REV and C3. 
Consequently, DVV method is readily employed to detect the 
nonlinearity in continuous chaos dynamics systems. Moreover, 
this paper suggests that under no-fitted sampling conditions, it 
is best to apply nonlinear values as test statistics for detecting 
nonlinearity. It can avoid spurious detection result. 
Overall, the proposed DVV method seems to correctly detect 

the presence of nonlinearity in a wider variety of signals than 
C3 and REV.  
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