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Abstract—It is observed that the Weighted least-square (WLS) 
technique, including the modifications, results in equiripple error 
curve. The resultant error as a percent of the ideal value is highly 
non-uniformly distributed over the range of frequencies for which the 
differentiator is designed.  The present paper proposes a modification 
to the technique so that the optimization procedure results in lower 
maximum relative error compared to the ideal values. Simulation 
results for first order as well as higher order differentiators are given 
to illustrate the excellent performance of the proposed method. 

Keywords—Differentiator, equiripple, error distribution, relative 
error.

I. INTRODUCTION
 IGITAL differentiators (DDs) find application in many 
areas such as radar, biological signal processing, image 
processing etc. Higher order DDs find their application in 

all those areas where the calculation of geometric moments 
plays an important role, as in biological signal processing. The 
output of a digital differentiator (DD) system is a time 
derivative of the input to it. To obtain better results, the 
methods for the design of higher order DDs are being 
modified from time to time. Of the many methods available in 
the literature, the modified McClellan-Parks method by 
Rahenkamp and Vijaya kumar [1] was widely used and found 
well suited for the design of higher order FIR DDs. However, 
this method many times leads to results with large error. Pei 
and Shyu [2] extended the eigen filter method by formulating 
an error function in quadratic form, while Reddy et al [3] 
extended the Fourier series method. The method proposed by 
Reddy et al uses Fourier series in conjunction with accuracy 
constraints achieved  through imposing constraints  on 
magnitude and derivative at a particular frequency. The filter 
coefficients of DDs obtained by solving a system of linear 
equations with Choleksy decomposition technique forms the 
basis of the method proposed by Sunder and Ramachandran 
[4]. This is an extension of least-squares approach. Another 
method is due to ShianYang Tzeng et al [5] which is based on 
genetic algorithm (GA) approach. Analytical methods [6, 7] 
have been presented to simplify the optimization procedure 
using matrix properties of trigonometric function. In these 
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methods, simple closed form formulas to compute the 
eigenfilter related matrix elements are used by Pei and Shyu 
[6] while Mollova and Unbehauen [7] use simple analytic 
closed form relations for the least-square design of higher 
order DDs. Hopfield neural network [8] is successfully 
applied to solve various optimization problems by Tank and 
Hopfield, while Yue-Dar Jou [9] used  neural network to solve 
the set of linear equations obtained while using the least-
squares design of higher order DDs. 

A weighted least-squares (WLS) approach for the design of 
linear-phase nonrecursive first-order DDs and Hilbert 
transforms is described by Sunder and Ramachandran [10]. In 
[11], Sondur et al discuss different issues of relevance in the 
design of equiripple FIR DDs using WLS technique. The 
authors also discuss the issues concerning convergence of 
WLS technique. It is observed that relative error at lower 
frequencies is very high. In the present paper, the WLS 
technique is modified and a method that results in 
significantly  

II. WEIGHTED LEAST-SQUARES TECHNIQUE AND 
ITS MODIFICATION 

A typical transfer function of a FIR filter of length N can be 
represented as
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The corresponding frequency response is characterized by 
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where, )(M is the real valued amplitude response given by 

M
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)(nb is the filter coefficient, linearly related with )(nh and M 
is function of filter length. According as length of filter is odd 
or even and nature of symmetry of the filter, the amplitude 
response can be classified into four fundamental types [9] as 
shown in TABLE I. An ideal kth order DD has the following 
frequency response. 
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where kD )2/()( for p0 .         (5) 

p is the maximum pass-band frequency for which DD is 
designed. It is known that even order DD can be designed 
only by Type I and Type II filter. Further, a full-band, even 
order DD can be designed by only an odd length filter. Odd 
order DD can be designed only by Type III and Type IV filter 
and N is required to be even if the DD is full-band.  

TABLE I DIFFERENT TYPES OF FIR FILTER

According to [10] and [11], the optimal coefficients are 
obtained by minimizing the weighted mean squared error. The 
weighted mean squared error is expressed as  
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where   )()()( MDaE            (7) 

)(aE  is the error function. )(W  is a frequency dependant 
weighting function and k is the number of points at which the 
error function is sampled. Minimization of the mean square 
error using the WLS technique leads to the following system 
of linear equations [10], [11].  
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The error function is not known before hand. In [10] 
Cholesky decomposition iterative method is used to solve the 
system of equations and uses the envelope of the error 
function to update the weighing function. Though this results 
in faster convergence, it is observed that the modified method 
used in [12] results in lower maximum error. This is reflected 
in the details given in TABLE II. The method in [12] has been 
used in the present paper also and is summarized in the 
following  

Modified WLS algorithm: 

 Step 1) Initialize )(0 lW ; )(0 lW =1 can be assumed  
initially. 

Step 2) Compute Q  and d and solve the system of equations  
dQb

Step 3) Valuate the error function )( laE and |)(| laE
Step 4) Carry out different iterations while updating the  

TABLE II COMPARISON OF DIFFERENT METHODS FOR 
THIRD-ORDER DD OF LENGTH 27

     Method Peak amplitude 
error

Analytical 1.021e-3 
Sunder 1.022e-3 

Eigenfilter 1.010e-3 
Minimax 2.967e-4 
Proposed 2.964e-4 

weighing function as  

)()()(1 lkWlklkW          (11) 

    where |)(|)( laElk .           (12) 
Normalize the weights by dividing all the values by the 

largest value and go to step 2. Based on a large number of 
observations, a  value of 1.88 is recommended. 
   Response of a third-order DD of length 27 is shown in 
Fig.1(a). The equiripple error variation obtained by using the 
above procedure is shown in Fig.2(b). A DD of order 3 and 
length 27 has been considered to enable comparison with the 
example of Type 3 cited in [9]. Fig. 2 shows distribution of 
modulus of error expressed as per cent of desired response. 
The distribution of modulus of error is shown in (a), (b), (c) 
and (d) of Fig. 2.   

         (a) Ideal and actual responses  

   (b) Equiripple error distribution

Fig. 1 Third-order DD of length 27, p=0.88

Type )(s M n0 Nature 

I ncos (N-1)/2 0 Symmetric 

II Cos( )21n N/2 1 Symmetric 

III nsin (N-1)/2 1 Anti-symmetric 

IV )2/1(sin n N/2 1 Anti-symmetric 
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    (a) /2 : 0 to 0.44                       (b) /2 : 0 to 0.05 

(c) /2 : 0.05 to 0.15     (d) /2 : 0.15 to 0.44 

Fig. 2 Modulus of error expressed as per cent of ideal response for 
the third-order DD of length 27, p=0.88

It is observed that the per cent error is very large for lower 
values of normalized frequencies. The large relative error at 
lower values of the normalized frequency is also expressed in 
Table III.

TABLE III
VARIATION OF MODULUS OF PER CENT ERROR IN THIRD-ORDER   DD OF 

LENGTH 27, P=0.88

       

   

III. PROPOSED TECHNIQUE TO OPTIMIZE RELATIVE ERROR

An instrument based on such design can not measure 
differentials with reasonable accuracy at lower frequencies.  
Therefore WLS algorithm needs to be modified so that the 
relative error (Per cent error) defined below is optimized. 

Percent 100
)(

)(

D

Ea
error           (13) 

The modified WLS algorithm proposed in this paper is as 
follows.
Relative error optimization algorithm: 
Step 1) Initialize )(0 lW ; )(0 lW =1 can be assumed  

initially.
Step 2)  Compute Q  and d and solve the system of 

equations
dQb

Step 3) Valuate the relative error function )( laRE and

|)(| laRE  using 

)(

)()(
)(

lD
lMlD

laRE         (14) 

Step 4) Carry out different iterations while updating the          
weighing function as

)()()(1 lkWlklkW          (15) 

               where |)(|)( laRElk .         (16)

 Normalize the weights by dividing all the values by the 
largest value and go to step 2. A  value of 1.88 is 
recommended. 

A simulation result obtained using the above algorithm is 
referred to in this paper as ‘Optimized’. The result of 
simulation of optimized DD of third-order and length 27 is 
shown in Fig,3. Fig. 3(a) shows the three responses – ideal, 
optimized and nonoptimized. The ideal and nonoptimized 
responses are the same as ideal and actual responses already 
shown in Fig.2(a). The optimized response is the response 
corresponding to the minimum value of the largest relative 
error obtained by the use of Relative error optimization 
algorithm. From Fig.2(b) it is noticed that the relative error 
(per cent error) has an almost equiripple distribution. The 
maximum per cent error is 1.142 where as the most part of the 
frequency-range has equiripple error distribution with 
maximum value 0.8257. Fig.3(c) shows the modulus of error 
distribution of the optimized DD. It would be noticed that the 
absolute error at higher frequencies is higher and the error at 
lower frequencies is lower. From Fig.2 it is observed that for 
normalized frequencies in the range 0 to 0.2838, the per cent 
error is 1.148 or higher. In this range of frequencies, the 
nonoptimized DD has its modulus of error significantly higher 
compared to that of the optimized DD. The optimized DD has 
a modulus of per cent error lower than 1.148 over the entire 
range of frequencies.

Normalized 
Frequency Per cent Error 

0.0022 5.117e5 
0.0066 5.43e4 
0.0264 1291 
0.0484 208.1 
0.1012 22.98 
0.1276 13.74 
0.1672 6.333 
0.2024 3.48 
0.242 2.091 

0.2772 1.389 
0.2838 1.148 
0.3124 0.9658 
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   (a) Ideal, optimized and nonoptimized responses 

        (b) Optimized modulus of per cent error  
       

(c) Optimized modulus of absolute error  
Fig. 3 Optimized Third-order DD of length 27, p=0.88

IV. ADDITIONAL EXAMPLE AND DISCUSSION
The efficacy of the Relative error optimization algorithm 

has been demonstrated through another example. In this 
example a first-order, full-band DD of length 20 has been 
considered.  Fig.4(a) shows that the ideal response, 
nonoptimized response and optimized response are almost 
coincident. Fig.4(b) gives distribution of error in the 
nonoptimized response of the DD. Fig.4(c) shows that the 
relative error is large at lower frequencies although it is very 
small for frequencies close to the band edge. Fig.5 gives 
details distribution of error in the optimized DD. Fig.5(a) 
shows the distribution of per cent error and Fig,5(b) that of the 
absolute error. The maximum per cent error of the optimized 
DD is 1.087. The variation of per cent error in the 
nonoptimized DD is given in Table IV. 

TABLE IV
VARIATION OF MODULUS OF PER CENT ERROR IN FIRST-ORDER,    

FULL-BAND DD OF LENGTH 20
Normalized 
frequency 

Per cent relative 
error

0.0025 27.76 
0.0250 18.49 
0.0500 6.056 
0.1275 3.579 
0.1800 2.548 
0.2325 1.984 
0.2850 1.629 
0.3375 1.384 
0.3875 1.205 

0.395 or higher 1.092 or lower 

It is seen that the per cent error of the optimized DD is 
lower than 1.092 for the entire range of frequencies, whereas 
it is lower than 1.092 in the nonoptimized DD for normalized 
frequencies only in the range 0.395 to 0.5. The following are 
some of the observations made with regard to the use of 
Relative error optimization algorithm and Modified WLS 
algorithm: 

(i) The WLS algorithm results in lower value of 
maximum error. But this is quite large compared to the ideal 
values at lower frequencies. Thus the estimate of the 
differential has large error. If such an algorithm is used in 
instruments to measure differentials of varying quantities, the 
measured value may be very much off the mark. The 
discrepancy is more pronounced in case of DDs used for 
higher order differentiation.

(ii) The Relative error optimization algorithm distributes 
the absolute error such that the error at lower frequencies is 
lower and that at higher frequencies is higher. The algorithm 
results in a wider range of frequencies at which the relative 
error is smaller than any prescribed value, compared to the 
range obtained from WLS algorithm. 
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   (a) Ideal, optimized and nonoptimized responses  

 (b) Equiripple error distribution

 (c) Modulus of error expressed as per cent of ideal 
response

Fig. 4 Nonoptimized First-order, full-band DD of length 20 

(a) Optimized modulus of per cent error  

(b) Optimized modulus of absolute error  
Fig. 5 Optimized First-order, full-band DD of length 20 
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