
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

2094

Abstract—Recently, a model multi-agent e-commerce system

based on mobile buyer agents and transfer of strategy modules was
proposed. In this paper a different approach to code mobility is
introduced, where agent mobility is replaced by local agent creation
supplemented by similar code mobility as in the original proposal.
UML diagrams of agents involved in the new approach to mobility
and the augmented system activity diagram are presented and
discussed.

Keywords—Agent system, agent mobility, code mobility,
e-commerce, UML formalization.

I. INTRODUCTION
ECENTLY, we have proposed a model multi-agent
e-commerce system that combined adaptability, mobility

and intelligence [3, 4]. There, autonomous agents engaged in
matchmaking, price negotiations and contracting (including
actually “purchasing” products) on behalf of their “owners.”
Our proposal build on: (i) multi-agent e-commerce skeleton
[5], (ii) flexible framework that allows agents to participate in
arbitrary negotiations [1, 2], and (iii) lightweight agents
migrating to remote markets and engaging in any form of
price negotiations via dynamically loadable modules [5].
Finally, we proceed beyond the “act” of price negotiation.
While in [6] negotiations were appended to include
matchmaking, we conceptualized inside of a complete
scenario consisting of: purchase request, matchmaking, price
negotiations and completing purchase.

Our original system [5] followed proposal outlined in [7]
where negotiating agents consisted of a skeleton and three
modules: communication module – responsible for messages
exchanged between agents, protocol module – responsible for
enforcing the (FIPA) protocol that governed negotiations, and
strategy module – responsible for producing protocol-
compliant actions necessary to achieve agent goals.

Recently we have started to re-design our system to utilize a
more general and flexible agent negotiation framework
introduced in [1, 2]. Its authors analyzed FIPA auction

Manuscript received July 31, 2005.
C. Badica is with the University of Craiova, Craiova 200440, Romania,

(e-mail: c_badica@hotmail.com).
M. Ganzha is with the Elbląg University of Humanities and Economy,

82-300 Elbląg, Poland (e-mail: ganzha@op.pl).
M. Paprzycki is with the SWPS University, 03-815 Warszawa, Poland and

the Oklahoma State University, Tulsa, OK 74106, USA (e-mail:
marcin.paprzycki@swps.edu, phone: +48-606612166).

protocols and have shown that they do not provide enough
structure for the development of agent-based e-commerce
systems. They have also conceptualized negotiations in which
multiple buyers negotiated price with a host. Within the host
(which is an agent, but plays also a role of a negotiation
location), the infrastructure for negotiations was provided
through a number of sub-agents: Gatekeeper, Proposal
Validator, Protocol Enforcer, Information Updater,
Negotiation Terminator and Agreement Maker. The proposed
negotiation framework consisted of (a) a generic negotiation
protocol, (b) a negotiation template – a structure that defined
all negotiation parameters and thus its mechanisms, and (c)
taxonomy of rules applied to enforce these negotiation
mechanisms.

Obviously, the two approaches can be easily combined. (1)
In [1, 2] it was assumed that Buyer agents are mobile and
carry with them the negotiation protocol. Obviously, our
approach based on pluggable modules could have been
employed to achieve lightweight mobility. (2) The Gatekeeper
sub-agent does not participate in actual price negotiations as it
only allows buyers into the negotiation space and provides
them with the negotiation protocol and template. Thus we
have removed it from the “negotiation infrastructure” (and put
in the system) and made responsible for a number of
additional managerial functions. However, this change did not
modify the price negotiation framework itself, which was the
most important contribution of [1, 2].

When combining the two approaches we had to confront
the question: is there any reason for agents to be mobile? In
[3] we have argued that agent and code mobility is the most
optimal solution for the e-commerce model considered there.
Then we have discussed why it can be expected that in the
future e-stores will provide an infrastructure robust enough for
mobile agents to frequent them and negotiate prices. We have
followed by arguments why the proposed solution, based on
dynamically loadable modules, helps reduce auction-server
resource utilization and why Buyer agents should not be
assembled, by the Client agents, before they are send to their
destination. Finally we have discussed why there is no simple
solution to the problem of finding the optimal offer when
multiple agents negotiate prices within multiple e-stores and
thus why our solution is as optimal as any other. Our
arguments were supported through an analysis of UML
diagrams of two agents directly involved in agent mobility,
the mobile Buyer agent and the Gatekeeper agent that receives
it.

Two Approaches to Code Mobility in an
Agent-based E-commerce System

Costin Badica, Maria Ganzha, and Marcin Paprzycki

R

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

2095

The main thrust of research initiated in [7] and extended
and summarized in [5] stems from a basic observation that it is
practically impossible for agents to be at the same time
effectively mobile and intelligent [8]. Intelligence, however
compactly represented, makes agents “heavy” and, moreover,
the more “knowledge” they carry with them, the “heavier”
they get. As a result, the more intelligent agents are the less
mobile they become. Therefore it was proposed that only
necessary modules are to be sent across the network and
loaded by agents preparing to participate in prices
negotiations. Recently we have realized that there exists
another solution to the problem of combining agent mobility
and intelligence. It is based on “proxy agents” that bid for
products on behalf of users and that are created within the
eBay auctioning system.

This paper is devoted to discussing this solution and is
organized as follows. In the next section we briefly summarize
the design of the original system as well as agents populating
it. We follow, in Section III with the description of the
modified system and the Gatekeeper as well as the Client and
the Buyer agents that have changed their roles vis-à-vis the
original system. Finally, we present an action diagram of the
“negotiation preparation” stage of the operation of the system.

II. ORIGINAL SYSTEM DESIGN
Our e-commerce model mimics a distributed marketplace

that hosts shops carrying products for sale, and clients that
visit them and attempt at purchasing these products. Clients
negotiate prices with one or more shops (through a number of
possible mechanisms selected by the shop, dynamically for
each product) and choose from which to make a purchase. In
the case when shops are approached by multiple clients and
when they use auction-type negotiation mechanisms (instead
of fixed pricing) they can choose the buyer (auction winner).
Note that we consider only situations when price negotiations
ended in success (final price was higher than the reserved
prices of the client and the shop); otherwise transaction is not
possible (however, or system can deal with such a situation).
When price negotiation ends successfully we follow the
eBay/airline transaction model, where a success in price
negotiations does not have to result in an actual purchase.
Thus, an item is put “on hold” (reserved) for a limited amount
of time. Within this time client has to issue an actual purchase
order. If such an order is not delivered to the store in time, the
reservation expires and the item is returned to the pool of
available goods. In the case of an unsuccessful purchase
attempt, client may decide to try again, or to abandon the task.

The top level conceptual architecture of the system
depicting the described above system operation, in terms of
agents existing in the system and their interactions, is shown
in Fig. 1. Let us now describe in more detail each agent
appearing in that figure and their respective functionalities.

A Client agent (CA) acts within the marketplace on behalf
of a “user” that seeks a particular product. Similarly, a Shop
agent (SA) represents “user” who plans to sell products within

the e-marketplace. After being created the CA registers with
the Client Information Center (CIC) agent and awaits orders
from its owner. The SA creates its supporting agents:
Gatekeeper (GA), Warehouse (WA) and multiple Seller agents
(one for each product to be sold) and then registers itself and
the GA with the CIC agent. Note that returning Client, Shop
and Gatekeeper agents will receive their existing IDs. In this
way we provide support for the future goal of agent behavior
adaptability as agents in the system will be be able to
recognize their counterparts and differentiate their behavior
depending if this is a “returning” or a “new” agent.

Fig. 1 The original e-commerce environment; solid arrows –

communication; dashed arrow – agent movement; rectangular boxes
surround buyer and seller systems and agents populating them.

There is only one Client Information Center (CIC) agent in

the system. It is responsible for storing, managing and
providing information about all “participants” existing in the
system. This information is stored in the Client Information
Database (CICDB). The CICDB combines the function of
registry, by storing information about and unique IDs of all
“users” and of yellow pages, by storing information about all
shops known in the marketplace and their offered products
[6].

Upon receiving an order from its user the CA communicates
with the CIC agent to obtain list of e-stores that carry the
requested product. In the next step it creates one Buyer agent
(BA) for each such store. After BAs are released the CA awaits
messages from its BAs and sends them appropriate negotiation
strategy modules. Then the CA awaits messages about results
of price negotiations and upon reception performs
multicriterial analysis, which store to buy from (factors such
as price, history of interactions with a given shop, delivery
conditions etc. can be considered). Depending on the success
or failure of purchase the CA either informs user about success
or performs another multicriterial analysis and on the basis of
it may decide to retry purchase or abandon the task (and notify
its owner about this fact).

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

2096

Buyer agents (BA) arrive at e-stores and communicate with
the Gatekeeper agents to be admitted to the negotiations.
Upon entry, they obtain (from the GA) the negotiation
protocol and the negotiation template [1, 2]. In the next step,
they request an appropriate strategy module (that is dependent
on the negotiation template) and upon its reception inform the
GA that they are ready to participate in price negotiations.
When negotiations are complete BAs inform their CAs and
either (i) attempt at making a purchase, (ii) re-enter
negotiations, or (iii) self-destruct. The exist as long as
attempts at making purchase of a given product are repeated.

On the supply side, a single Shop agent (SA) is created for
each “merchant” in the system and is responsible for creating
Seller agents for each product sold. These agents represent the
negotiation infrastructure introduced in [1, 2]. The SA should
be understood as a “store manager” that controls the flow of
commodities, on the basis of multicriterial analysis adjusts the
negotiation templates and strategies used by Seller agents etc.

The Seller agent (SeA) embodies functions of the host (sans
the GA) introduced in [1, 2]. After being created by the SA its
only role is to facilitate price negotiations.

The Warehouse agent (WA) is created to manage the stocks
of available commodities. After being created it is informed
by the SA about available products and their quantities. When
a reservation is made (as a result of successful negotiations)
the WA keeps it available for a pre-specified time. It also
controls the quantity of available products and informs the SA
when any of the goods is sold-out. In the future, the WA may
become the interface to the product supply subsystem.

Finally, the Gatekeeper agent (GA) is the only agent that
has substantially changed its role vis-à-vis that described in
[1, 2]. It is created by the SA as a full-fledged agent of the
system. Its main role is to be an interface between BAs and
SeAs. First, it admits BAs to negotiations and provides then
with the negotiation protocol and the current negotiation
template. Second, in suitable moment it releases BAs to
appropriate SeAs. Finally, it manages updates of negotiation
templates. Note that the GS admits to negotiations only
“complete” BAs – that have all modules installed and
confirmed that are ready.

III. MODIFIED SYSTEM
When analyzing the above described system one can realize

that there is another way of attempting at balancing mobility
and intelligence. Let us consider what happens during
negotiation “preparations.” The GA communicates with
incoming BAs and after admitting them to the e-store it outfits
them with the generic negotiation protocol and the current
negotiation template. Subsequently BAs request negotiation
strategy module from their CAs. It is easy to see that only
actions that involve the CA are (1) sending the BA to the store,
and (2) sending it the negotiation strategy module. Let us
combine these observations with the notion of a user proxy
agent that is bidding on behalf of an eBay client, but is created
locally, and we can construct a different scenario. Here, the

CA communicates with the GA and requests that the GA
creates a BA that will act on its behalf. When a decision is
made that a representative of that CA can be admitted to the
negotiations (which is exactly the same admission procedure
as before), the GA creates a generic BA consisting of all the
same modules as before: the skeleton, the communication
module, the negotiation protocol and the negotiation template.
In addition this newly created BA obtains information about
its CA is and proceeds to request the negotiation strategy
module. At the end of this process we have obtained exactly
the same situation, where a BA representing a given CA
through a link to it and its negotiation strategy module is
ready to get involved in price negotiations on its behalf. Agent
communication in the modified system is depicted in Fig. 2
(compare with Fig. 1).

Fig. 2 The modified e-commerce environment; solid arrows –
communication; dashed arrow – strategy module migration;

rectangular boxes surround buyer and seller systems and agents
populating them.

Before we proceed, let us make a few comments. First, let

us observe that in the proposed scenario we are able to
substantially further reduce the total network utilization.
Instead of sending a complete mobile agent, we send only a
request for one to be created (independently, ability to
remotely create agents exists already in some agent
platforms). The only large data packet that is to be transferred
is the strategy module. Second, this approach provides an
extended e-store security, as the BAs are created locally and
thus can be assured that they are safe (they do not carry with
the malicious code that can attack the server). Third, the only
possible problem with the proposed approach is the question
of user trust – can the BA created within an unknown e-store
be trusted. However, since in the proposed approach all BAs
are to be generic, it can be assumed that they can be verified if
they have been tampered with.

Let us no look into details of the three agents that have been
changed to accommodate the new approach: the Client, the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

2097

Buyer and the Gatekeeper. Let us note that the remaining
agents have not been changed and thus their descriptions are

omitted (they can be found in [3, 4]).

Fig. 3 UML statechart diagram of the Client agent

A. Client Agent
The UML statechart diagram of the Client agent is

presented in Fig. 3. After creation the CA waits for an order
from the user. When such order is received the CA
communicates with the CIC agent to obtain addresses of
Gatekeeper agents representing shops that sell thought
products. In this paper we assume that all GAs can create
Buyer agents; this assumption can be relaxed and a mixed
environment consisting of GAs of two types (that can and
cannot create BAs) can be created. Upon reception of the list
of addresses of e-stores of interest the CA sends messages
(containing ID number of new Buyer agents to be created) to
all pertinent GAs. After all requests to create BAs have been
sent, the CA awaits messages: (a) rejections by the GA, (b)
requests for strategy modules, and (c) results of price
negotiation (within the “Purchase product p” state – bottom
panel in Fig. 3). During a specified time period, the CA
gathers messages send by its BAs, containing results of
negotiations. If messages from all BAs have been received or
the wait-time is over the CA analyzes the situation (the
MCDM state-box) and makes a decision about product
purchase. If not all messages were received and/or the Client
can not make a decision it comes back to the “Gathering data”
state. If all messages have been received and CA cannot make
a decision to buy on the basis of obtained “offers” and at the

same time is not ready to abandon the purchase, it orders
Buyer agents to return to negotiations.

B. Buyer Agent
Obviously, since in the proposed system the BA is created

by the Gatekeeper (instead of the CA), the statechart diagram
of the Buyer agent had to change in comparison with that
presented in [3]. The modified statechart diagram is presented
in Fig. 4. When comparing it with Fig. 4 of [3] it is easy to see
that, as expected, changes concern only initial parts of Buyer
agent operation. Since all BAs are instantiated by the GA, they
are created already “inside” of the negotiating host [1, 2] and
thus they do not need to ask for permission to enter.
Furthermore, as a part of their initialization, they receive the
generic protocol and current negotiation template. Therefore,
they just have only to request, form their CA, an appropriate
strategy module and from that moment on their actions follow
the same rules of previously conceptualized Buyer agents [3].
Note that negotiations (box “Negotiation Process”) match
these proposed and UML represented in [1, 2].

C. Gatekeeper Agent
 In [3, 4] we have moved the Gatekeeper agent from the

negotiation infrastructure, where it was a sub-agent within the
host, into the system and made it a full-fledged agent with a
number of managerial functions (see Section 4 and Fig. 2 in

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

2098

[3]). Here we proceed even further, by making the GA
responsible for creating Buyer agents (on the request of Client

agents). Complete statechart diagram of the Gatekeeper agent
can be found in Fig. 5.

Fig. 4 UML statechart diagram of the Buyer agent

A simple comparison shows that the “new” GA differs from

the previous version only in the part related to creation of
Buyer agents. After its creation, the GA awaits messages from
SAs and CAs. Messages from SAs are exactly the same as
before and may concern (i) creation of a new Seller – GA has
to get ready to support negotiations for it (state “Preparing
negotiations”), (ii) killing of a SeA (in case of product being
exhausted and the SA deciding that it will not be replenished),
and (iii) changing a negotiation template. Client agent
messages request creation of a new Buyer agent and contain
its expected ID. The GA checks if a representative of a given
CA should be admitted to negotiations – can it be trusted?
(here, trust is understood very broadly) – state “Checking
CA.” If this CA is considered worthy business relationship,
the GA creates a Buyer agent. It is assumed that BAs created
this way will be exactly the same as in the original system
(when they were created by the CA). If the CA cannot be
trusted, the GA sends a rejection message. In the case of
changing the negotiation template, the GA “suspends” the
Buyer agent creation process. If a list of agents ready to
participate in negotiations is non-empty and the Seller agent is
not busy, all BAs are send to the SeA to complete negotiations
utilizing their current templates (and the BA creation process
re-starts). If the SeA is busy, the registration list is deposited in
a Buffer and awaits for the Seller to be free while the BA
creation process re-starts. All newly created Buyers will
receive the new template and will be processed only when the

Buffer is empty. Lastly, all BAs that did not receive their
strategy module have to request a new one to match the new
negotiation template.

Finally, to combine what we have discussed thus far, we
present in Fig. 6 an activity diagram of the stage crucial for
our considerations: negotiation preparations. The remaining
two stages (system initialization and finalization of purchase)
remain practically the same as in [3, 4] and are thus omitted.

IV. CONCLUDING REMARKS
In this paper we have introduced a different approach to

resolving the conflict between agent mobility and intelligence.
By carefully analyzing the process of and agent participating
in negotiations described in [1, 2] we were able to delineate
the private and the public parts of Buyer agents and use this
information to redesign the system. As a result we were able
to further reduce network utilization. We are in the process of
implementing the proposed framework, as specified by the
UML diagrams presented here and in [3, 4]. We will report on
our progress in subsequent papers.

REFERENCES
[1] C. Bartolini, C. Preist, N. R. Jennings, “Architecting for Reuse: A

Software Framework for Automated Negotiation,” in: Proceedings of
AOSE'2002: International Workshop on Agent-Oriented Software
Engineering, Bologna, Italy, LNCS 2585, Springer Verlag, 2002, 88-100

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

2099

[2] C. Bartolini, C. Preist, N. R. Jennings, “A Software Framework for
Automated Negotiation,” in: Proceedings of SELMAS'2004, LNCS
3390, Springer Verlag, 2005, 213-235.

[3] C. Badica, M. Ganzha, M. Paprzycki, “Mobile Agents in a Multi-Agent
E-Commerce System,” submitted for publication.

[4] C. Badica, M. Ganzha, M. Paprzycki, “UML Models of Agents in a
Multi-Agent E-Commerce System” submitted for publication.

[5] M. Ganzha, M. Paprzycki, A. Pirvanescu, C. Badica, A. Abraham,
“JADE-based Multi-agent E-commerce Environment: Initial
Implementation,” Analele Universitatii din Timisoara, Seria Matematica
– Informatica, to appear.

[6] D. Trastour, C. Bartolini, C. Preist, “Semantic Web Support for the
Business-to-Business E-Commerce Lifecycle,” in: Proceedings of the
WWW’02: International World Wide Web Conference, Hawaii, USA,
ACM Press, New York, USA (2002) 89–98.

[7] M. T. Tu, F. Griffel, M. Merz, W. Lamersdorf, “A Plug-in Architecture
Providing Dynamic Negotiation Capabilities for Mobile Agents,” in:
Proceedings MA'98: Mobile Agents, Stuttgart, Germany, 1998 222-236.

[8] Wooldridge, M.:An Introduction to MultiAgent Systems}, John Wiley &
Sons, 2002.

Fig. 5 UML statechart diagram of the Gatekeeper agent

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

2100

Fig. 6 Activity diagram of negotiation preparations

