
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

2033

Abstract—As the majority of faults are found in a few of its

modules so there is a need to investigate the modules that are
affected severely as compared to other modules and proper
maintenance need to be done in time especially for the critical
applications. As, Neural networks, which have been already applied
in software engineering applications to build reliability growth
models predict the gross change or reusability metrics. Neural
networks are non-linear sophisticated modeling techniques that are
able to model complex functions. Neural network techniques are
used when exact nature of input and outputs is not known. A key
feature is that they learn the relationship between input and output
through training. In this present work, various Neural Network Based
techniques are explored and comparative analysis is performed for
the prediction of level of need of maintenance by predicting level
severity of faults present in NASA’s public domain defect dataset.
The comparison of different algorithms is made on the basis of Mean
Absolute Error, Root Mean Square Error and Accuracy Values. It is
concluded that Generalized Regression Networks is the best
algorithm for classification of the software components into different
level of severity of impact of the faults. The algorithm can be used to
develop model that can be used for identifying modules that are
heavily affected by the faults.

Keywords—Neural Network, Software faults, Software Metric.

I. INTRODUCTION
TATISTICAL methods, machine learning and mixed
techniques are widely used in literature to predict software

faults [1-11]. Many researchers have carried out significant
work in the area of fault prediction and very less work is
performed for the software maintenance severity prediction. In
[12], the author has used various machine learning techniques
for an intelligent system for the software maintenance
prediction and proposed the logistic model Trees (LMT)
algorithms on the basis of Mean Absolute Error (MAE), Root
Mean Square Error (RMSE) and Accuracy percentage.

The Neural Network (NN) is a network consisting of
connected neurons. Information can propagate in NN by firing
electric pulses through its connections. The connection
(weights) change throughout the lifetime of a neuron and the
amount of incoming pulses needed to activate a neuron also
change. This behavior allows the NN to learn. We can train a

Roma Jaswal is working with Govt. Shivalik College, Naya Nangal,
Punjab, India.

Shailendra Singh is associated with Deptt. of Information Technology at
Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal, India.

Parvinder S. Sandhu and Sandeep Khimta are associated with Rayat Bahra
Institute of Engineering & Bio-Technology, Sahauran, Mohali (India).

neural network to perform a particular function by adjusting
the values of the connections (weights) between elements.
Commonly neural networks are adjusted, or trained, so that a
particular input leads to a specific target output.

The main aim of this work is to model the impact of faults
in object oriented software modules. The main objectives are
described as follows:

• To find the structural code and design attributes of
software systems

• Find the best algorithms that can be used to model impact
of faults in object oriented i.e. the predict the level of impact
of the faults in the software system

This paper is organized as follows: Section two describes
the Methodology part of work done, which shows the steps
used in order to reach the objectives and carry out the results.
In the section three, results of the implementation are
discussed. In the last section, on the basis of the discussion
various Conclusions are drawn and the future scope for the
present work is discussed.

II. PROPOSED METHODOLOGY
The methodology consists of the following steps:

A. Find the Structural Code and Design Attributes
The first step is to find the structural code and design

attributes of software systems i.e. software metrics. The real-
time defect data sets are taken from the NASA’s MDP (Metric
Data Program) data repository. The dataset is related to the
safety critical software systems being developed by NASA.

B. Collection of Metric Values
The suitable metrics like product module metrics out of

these data sets are considered. The term product is used
referring to module level data. The term metrics data applies
to any finite numeric values, which describe measured
qualities and characteristics of a product. The term product
refers to anything to which defect data and metrics data can be
associated. In most cases products will be synonymous with
code related items such a functions and systems/sub-systems.

The metrics are as follows:
• LOC_BLANK
• BRANCH_COUNT
• CALL_PAIRS
• LOC_CODE_AND_COMMENT
• LOC_COMMENTS
• CONDITION_COUNT

Software Maintenance Severity Prediction for
Object Oriented Systems

Parvinder S. Sandhu, Roma Jaswal, Sandeep Khimta, and Shailendra Singh

S

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

2034

• CYCLOMATIC_COMPLEXITY
• CYCLOMATIC_DENSITY
• DECISION_COUNT
• DESIGN_COMPLEXITY
• EDGE_COUNT
• ESSENTIAL_COMPLEXITY
• ESSENTIAL_DENSITY
• PARAMETER_COUNT
• LOC_EXECUTABLE
• HALSTEAD_CONTENT
• HALSTEAD_DIFFICULTY
• HALSTEAD_EFFORT
• HALSTEAD_ERROR_EST
• HALSTEAD_LENGTH
• HALSTEAD_LEVEL
• HALSTEAD_PROG_TIME
• HALSTEAD_VOLUME
• MAINTENANCE_SEVERITY
• MODIFIED_CONDITION_COUNT
• MULTIPLE_CONDITION_COUNT
• NODE_COUNT
• NORMALIZED_CYLOMATIC_COMPLEXIY
• NUM_OPERANDS
• NUM_OPERATORS
• NUM_UNIQUE_OPERANDS
• NUM_UNIQUE_OPERATORS
• NUMBER_OF_LINES
• PATHOLOGICAL_COMPLEXITY
• PERCENT_COMMENTS
• LOC_TOTAL.

C. Analyze and Refine Metrics the Metric Values
In the next step the metrics are analyzed, refined and

normalized and then used for modeling of fault tolerance in
software systems.

D. Explore Different Neural Network Techniques
It is very important to find the suitable algorithm for

classification of software components into different levels of
fault severity in software systems. In the implementation first
the network is created and training is performed on the training
data. Thereafter the trained network is tested by testing data in
the testing phase. The results of the different algorithms are
expressed in terms of MAE, RMSE and Accuracy values. The
details of the different criteria used are in next step. The
following steps will be followed to train a Neural Network:

• Load the data
• Divide data into Training, Validation and Test data
• Set number of hidden neurons
• Training is accomplished by sending a given set of inputs

through the network and comparing the results with a set of
target outputs.

• If there is a difference between the actual and target
outputs, the weights are adjusted to produce a set of outputs
closer to the target values.

• Network weights are determined by adding an error

correction value to the old weight.
• The amount of correction is determined
• This Training procedure is repeated until the network

performance no longer improves.
• If the network is successfully trained, it can then be given

new sets of input and generally produce correct results on its
own

E. Comparison of the Algorithms
The comparisons are made on the basis of the more

accuracy and least value of MAE and RMSE error values.
Accuracy value of the prediction model is the major criteria
used for comparison. The mean absolute error is chosen as the
standard error. The technique having lower value of mean
absolute error is chosen as the best fault prediction technique.
• Mean absolute error

Mean absolute error, MAE is the average of the difference
between predicted and actual value in all test cases; it is the
average prediction error [13]. The formula for calculating
MAE is given in equation shown below:

n
cacaca nn

−++−+− ...
2211 (1)

Assuming that the actual output is a, expected output is c.
• Root mean-squared error

RMSE is frequently used measure of differences between
values predicted by a model or estimator and the values
actually observed from the thing being modeled or estimated
[13]. It is just the square root of the mean square error as
shown in equation given below:

() () ()
n

nn cacaca −−− +++
222

...2211 (2)

The mean-squared error is one of the most commonly used

measures of success for numeric prediction. This value is
computed by taking the average of the squared differences
between each computed value and its corresponding correct
value. The root mean-squared error is simply the square root
of the mean-squared-error. The root mean-squared error gives
the error value the same dimensionality as the actual and
predicted values.

The mean absolute error and root mean squared error is
calculated for each machine learning algorithm i.e. Neural
Network.

III. RESULTS & DISCUSSION
The first step is to find the structural code and design

attributes of software systems i.e. software metrics. The real-
time defect data set used is taken from the NASA’s MDP
(Metric Data Program) data repository, the details of that
dataset contains 293 Object Oriented modules with different
values of impact of faults labeled as 1, 2, 3, 4 and 5. Details of
the Type of Modules in the Dataset are shown in Table I in
tabular form and Fig. 1 in graphical form.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

2035

TABLE I
DETAILS OF THE TYPE OF MODULES IN THE DATASET

Level Count

1 48

2 207

3 28

4 8

5 2

Severity of Impact

0

50

100

150

200

250

1 2 3 4 5

Severity Level

Nu
m

be
r

of
 M

od
ul

es

Severity of Impact

Fig. 1 Graphical Representation of Details of the Type of Modules in

the Dataset

The algorithms are evaluated on the basis of the following

criteria:
The developed software computes the mean absolute error,

root mean squared error, relative absolute error and root
relative squared error. However, the most commonly reported
error is the mean absolute error and root mean squared error.
The root mean squared error is more sensitive to outliers in
the data than the mean absolute error. In order to minimize the
effect of outliers, mean absolute error is chosen as the
standard error. The prediction technique having least value of
mean absolute error is chosen as the best prediction technique.

Mean absolute error, MAE is the average of the difference
between predicted and actual value in all test cases. The root
mean-squared error i.e. RMSE is simply the square root of the
mean-squared-error. The root mean-squared error gives the
error value as the same dimensionality as the actual and
predicted values.

The mean-squared error is one of the most commonly used
measures of success for numeric prediction. This value is
computed by taking the average of the squared differences
between each computed value and its corresponding correct
value.

The MAE and the RMSE can be used together to diagnose
the variation in the errors in a set of forecasts. The RMSE will
always be larger or equal to the MAE.
 The greater difference between them, the greater the
variance in the individual errors in the sample. If root mean
squared error is equal to mean absolute error, then all the
errors are of the same magnitude. Both root mean squared
error and mean absolute error can range from 0 to ∞.

MAE and RMSE are negatively-oriented scores and lower
values are better. So, algorithm with least value of mean
absolute error is considered as the best algorithm.

In the present work the following Neural Network based
algorithms experimented in Matlab 7.4 as listed in table:

TABLE II
PERFORMANCE RESULTS OF DIFFERENT NEURAL NETWORK ALGORITHMS

Sr.
No. Algorithm MAE RMSE Accuracy

%

1
Batch Gradient Descent
without momentum

.3482 .6600 72

2
Batch Gradient Descent with
momentum

.3453 .6615 72

3
Variable Learning Rate
without momentum

.6948 .8666 33.333

4
Variable Learning Rate
training with momentum

.3872 .6896 70

5 Resilient Backpropagation
 .3667 .6658 70.666

6

Fletcher-Reeves version of
the conjugate gradient
algorithm

.9354 1.2182 52.666

7

Polak-Ribiére Update version
of the conjugate gradient
algorithm

.4808 .7132 62

8

Powell-Beale Restarts
version of the conjugate
gradient algorithm .

.3806 .6547 70

9

Scaled Conjugate Gradient
version of the conjugate
gradient algorithm

.3703 .6484 71

10
Quasi-Newton BFGS
Algorithm

.3478 .6733 72

11
Quasi-Newton One Step
Secant Algorithm

0.3484 0.6614 72

12 Levenberg-Marquardt
Algorithm .6530 1.8896 72.333

13
Generalized Regression
Networks

0.0265 0.1056 97.666

14 Self Organizing Network 1.1229 1.3386 12.969

Table II shows the results of the evaluation of different

Neural Network based machine learning algorithms for
classification and modeling of software components into
different levels of fault severity present in the software
modules. From the Results we found, the best algorithm
comes out to be Generalized Regression Algorithm with
97.6667, 0.0265 and 0.1056 as Accuracy, MAE and RMSE
values respectively.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

2036

IV. CONCLUSION AND FUTURE SCOPE
Prediction of software maintenance severity in the software

modules supports software quality engineering through
improved scheduling and project control. It is a key step
towards steering the software testing and improving the
effectiveness of the whole process. Fault severity prediction is
used to improve software process control and achieve high
software reliability. On comparing all the Neural Network
based algorithms, it is observed that the results of the
Generalized Regression Networks have outperformed all the
other algorithms in terms of MAE, RMSE and Accuracy
percentage values. The second best algorithm among the
experimented algorithms is Batch Gradient Descent without
momentum. The performance of the Batch Gradient Descent
without momentum and Batch Gradient Descent with
Momentum algorithms is almost same.

It is therefore, concluded that Generalized Regression
Networks is the best algorithm for classification of the
software components into different level of severity of impact
of the faults. The algorithm can be used to develop model that
can be used for identifying modules that are heavily affected
by the faults and those can be debugged.

REFERENCES
[1] Saida Benlarbi,Khaled El Emam, Nishith Geol (1999), “Issues in

Validating Object-Oriented Metrics for Early Risk Prediction”, by Cistel
Technology 210 Colonnade Road Suite 204 Nepean, Ontario Canada
K2E 7L5.

[2] Lanubile F., Lonigro A., and Visaggio G. (1995) “Comparing Models
for Identifying Fault-Prone Software Components”, Proceedings of
Seventh International Conference on Software Engineering and
Knowledge Engineering, June 1995, pp. 12-19.

[3] Fenton, N. E. and Neil, M. (1999), “A Critique of Software Defect
Prediction Models”, Bellini, I. Bruno, P. Nesi, D. Rogai, University of
Florence, IEEE Trans. Softw. Engineering, vol. 25, Issue no. 5, pp. 675-
689.

[4] Giovanni Denaro (2000), ”Estimating Software Fault-Proneness for
Tuning Testing Activities” Proceedings of the 22nd International
Conference on Software Engineering (ICSE2000), Limerick, Ireland,
June 2000.

[5] Manasi Deodhar (2002), “Prediction Model and the Size Factor for
Fault-proneness of Object Oriented Systems”, MS Thesis, Michigan
Tech. University, Dec. 2002.

[6] Bellini, P. (2005), “Comparing Fault-Proneness Estimation Models”,
10th IEEE International Conference on Engineering of Complex
Computer Systems (ICECCS'05), vol. 0, 2005, pp. 205-214.

[7] Khoshgoftaar, T.M., K. Gao and R. M. Szabo (2001), “An Application
of Zero-Inflated Poisson Regression for Software Fault Prediction.
Software Reliability Engineering”, ISSRE 2001. Proceedings of 12th
International Symposium on, 27-30 Nov. (2001), pp: 66 -73.

[8] Munson, J. and T. Khoshgoftaar, (1990) “Regression Modeling of
Software Quality: An Empirical Investigation”, Information and
Software Technology, 32(2): 106 - 114.

[9] Khoshgoftaar, T. M. and J. C. Munson, (1990). “Predicting Software
Development Errors using Complexity Metrics”, IEEE Journal on
Selected Areas in Communications, 8(2): 253 -261.

[10] Menzies, T., K. Ammar, A. Nikora, and S. Stefano, (2003), “How
Simple is Software Defect Prediction?”, Journal of Empirical Software
Engineering, October (2003).

[11] Eman, K., S. Benlarbi, N. Goel and S. Rai, (2001), “Comparing case-
based reasoning classifiers for predicting high risk software
components”, Journal of Systems Software, 55(3): 301 – 310.

[12] Sandhu, Parvinder Singh, Sunil Kumar and Hardeep Singh, (2007),
“Intelligence System for Software Maintenance Severity Prediction”,
Journal of Computer Science, Vol. 3 (5), pp. 281-288, 2007

[13] Challagulla, V.U.B. , Bastani, F.B. , I-Ling Yen , Paul, (2005)
“Empirical assessment of machine learning based software defect
prediction techniques”, 10th IEEE International Workshop on Object-
Oriented Real-Time Dependable Systems, WORDS 2005, 2-4 Feb 2005,
pp. 263-270.

