
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3811

Abstract—The UML modeling of complex distributed systems

often is a great challenge due to the large amount of parallel real-time
operating components. In this paper the problems of verification of
such systems are discussed. ECPN, an Extended Colored Petri Net is
defined to formally describe state transitions of components and
interactions among components. The relationship between sequence
diagrams and Free Choice Petri Nets is investigated. Free Choice
Petri Net theory helps verifying the liveness of sequence diagrams.
By converting sequence diagrams to ECPNs and then comparing
behaviors of sequence diagram ECPNs and statecharts, the
consistency among models is analyzed. Finally, a verification process
for an example model is demonstrated.

Keywords—Consistency, liveness, Petri Net, sequence diagram.

I. INTRODUCTION
N distributed systems; there are a lot of parallel
components. The parallel components bring potential risks

for system performance. One of goals for system analysis is to
discover the potential risks by means of static analysis or
simulation of system models. The deadlock checking of
models has been the study focus for distributed applications.
Deadlocks mostly accompany interactions. From system view,
interaction means not only the exchange of data but also
synchronization between processes. The exchange of data is
possibly related to deadlock caused by resource competition,
while unreasonable application of synchronization between
processes probably results communication deadlock. For
object-oriented applications, besides properties of individual
models, the consistency analysis among models has become
another focus of application research [1]-[3].

In UML, the interaction among objects in a sequence
diagram depends on services provided by individual objects
[4] [5]. All services are linked to behaviors of objects, which
are clearly depicted in the statecharts. It can be observed that
sequence diagrams and statecharts have significant overlap in
terms of expressing some dynamic behaviors. A key concern
is identifying the degree of consistency of these two models.
With its formal representation and dynamic analysis
techniques, Petri Net can be used to check the consistency of
different models, such as a sequence diagram and a statechart,
based on their dynamic behaviors. There has been a lot of

Shuzhen Yao is with Software School of Beihang University, Beijing,

China (phone: 86-10-82314660; e-mail: szyao@buaa.edu.cn).
Fengjing Zhao is with Electronics & Information School of Shanhai Dianji

University, Shanghai, China.
Jianwei He is with Computer School of Beihang University, Beijing,

China.

study devoted to individual models [6]-[8], but relatively little
effort on exploring the relationship among such models. This
paper explores the liveness of individual models and the
consistency relationship between a sequence diagram and a
statechart.

In Section 2, we will define ECPN. The property analysis
techniques will be provided in detail in Section 3. Section 4
concludes the paper and mentions further work.

II. EXTENDED CPN
Sequence diagrams show a detailed flow for a specific use

case or even just part of a specific use case. They show the
calls between the different objects in their sequence and can
show, at a detailed level, different calls to different objects. A
sequence diagram has two dimensions: The vertical dimension
shows the sequence of messages/calls in the time order that
they occur; the horizontal dimension shows the object
instances to which the messages are sent.

The widely used form of interactive diagram is sequence
diagram, which describes interactions by focusing on the
sequence of messages that are exchanged, along with their
corresponding event occurrences on the lifelines. Sequence
diagrams are applied to model interactions and in various
phases of the software development process (e.g. use case
refinement, modeling of test scenarios, interactive model,
detailed modeling of message exchanges or specification of
interfaces).

There have been formal techniques to analyze sequence
diagrams. A variety of Colored Petri Nets (CPNs) or
stochastic Petri Net are applied to check properties of
interactive models, especially communication features [9]-
[11]. An Extended CPN (ECPN) is defined to provide a
verification mechanism on both individual models and multi
models in this paper.

A. Overview of ECPN
ECPN is described as ∑ = (P，T，F，W，M0), where:
P{p1,p2,…,pn }（n≥0）is a finite set of places. There are 2

sorts of places: state places and event places. State places are
for holding states, represented as circles; event places is for
holding events, represented as dual circles for synchronous
events and a circle with a nested square for asynchronous
events;

T={t1,t2,…,tm}（m≥0）is a finite set of transitions,
represented as rectangles. There are 2 sorts of transitions.
Action transitions are used for general actions, represented as
rectangles; object transitions are used to create or destroy
objects, represented as rectangles with a nested rectangle;

F⊆(P x T)∪(T x P) is a set of arcs. A special kind of arc,
inhibitor is introduced into F, which is shown as a line with a

Interactive Model Based on an Extended CPN
Shuzhen Yao, Fengjing Zhao, and Jianwei He

I

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3812

small circle at the end, specifying a restriction that only when
the source place of an inhibitor is empty, the transition
associated is enabled. Inhibitors are adopted to describe
synchronous interaction and priority of transitions. W and M0
are the weight function and the initial marking of ∑
respectively.

B. ECPN Models
As a high-level Petri Net, ECPN can be used to model

sequence diagrams. For sequence diagrams, we discuss their
three basic flow structures: alternative, parallel and loop, and
four basic interactive actions: sending message, receiving
messages, creating messages and destroying messages. We
began our research with defining equivalent ECPN structures
for these basic components of sequence diagram, seen in Fig.
1 and Fig. 2.

Fig. 1 Basic flow structures in ECPN

Fig. 2 Basic interactive actions in ECPN

We can get a corresponding ECPN from a sequence

diagram by integrating the basic components. Let’s take Fig. 3
as an example. Fig. 4 demonstrates two ECPNs corresponding
to object A and object B in Fig. 3.

Fig. 3 An example of sequence diagram

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3813

Fig. 4 ECPN of individual object

III. PROPERTIES ANALYSIS
The next step is to merge all ECPNs into the overall ECPN

of the sequence diagram. For objects in an interaction, some
places from different objects may hold same kind of message.
These places will be merging points of interactive objects.
Fig. 5 is the ECPN merged from ECPNs in Fig. 4; Fig. 6 is the
improved version of Fig. 5.

A. Merging of ECPNs
According to definition of ECPN, there are two sorts of

places: state places and event places. For clear illustration, we
predefine two functions over set of places as follows,
Definition 1：Type
Type：P→{State,Event} is to get the type of a specific place.
Definition 2：Event
Event：P→set of events, is to get the type of the message
which is allowed to reside in a specific place.
Based on the definitions above, we give an operation .
Definition 3：Merging of ECPNs
Assuming ECPN
∑1＝(P1，T1，F1，W1，M10)，∑2＝(P2，T2，F2，W2，M20

)，∑＝∑1⊕ ∑2＝(P，T，F，W，M0) is the merging of ∑1
and ∑2，where：
P=P1∪P2, and ∀p1∈P1, p2∈P2 if
Type(p1)=Type(p2)=Event∧Event(p1)=Event(p2)，then p1=p2
in P,
T= T1∪T2,
F={f|f∈P x T∪T x P，and f∈F1 or f∈F2},
W={w|w∈ W1 or w∈ W2},
M0= {m|m∈ M10 or m∈ M20}

In order to represent the synchronous message m1 to ensure
that all event places hold asynchronous messages, an inhibitor
from m1 to t2 is drawn as seen in Fig. 5 for the transformation

from synchronous messages to asynchronous messages. When
t1 is fired, tokens are put into place p2 and m1.With the
restriction of the inhibitor, t2 is disabled until t6 is fired and
token in m1 is taken. That is in accordance with semantic of
synchronous message of sequence diagram.

Fig. 5 Merging of ECPNs

B. Liveness Analysis
ECPN has a large expressive power to model a variety of

interactive systems. But it is bound to have a high complexity,
and it is not possible to develop a comprehensive theory that
relates the structure of ECPN to its behavior. These limitations
can be removed when we restrict our study to a specific
subclass of Petri Net, where the result of the choice between
two transitions can never be influenced by the rest of the
system except for their common input places--in other words,
choices are free. This subclass of Petri Net is called Free
Choice Petri Net. Through analysis, it’s found that, each basic
interaction action of ECPN shown in Fig. 2 corresponds a
Free Choice Petri Net. The typical structure for
synchronization is a synchronized transition with multi input
places. All of merging happens at the place which is either the
starting place of an exclusive input arc to its post transitions or
and the starting place of an exclusive output arc from itself.
It’s really the feature of a Free Choice Petri Net.

With the aid of Free Choice Petri Net theory, we could
reason many properties of ECPNs, such as liveness,
boundedness and cyclicity[12]. In Fig. 6, the feature liveness
or deadlock-freedom is easily ruled out by means of Free
Choice Petri Net theory about liveness. The analysis results
are useful to enhance interactive models.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3814

Fig. 6 Improved ECPN with synchronous messages transformed

C. Consistency Analysis
Another important property, consistency, is investigated in

the paper. For a sequence diagram, related behavior sequences
of an object can be formed from its ECPN’s behavior
sequence by picking up those transitions of receiving and
sending messages by the object. Then we can interpret each
transition related to message m as send m(short for sending
m), or rec m(short for receiving m).

From Fig. 6 we get the behavior sequence of a sequence
diagram
1) {(send m1,rec m1) (send m2,rec m2,send m3,rec m3)+},
2) {(send m1,rec m1) (send m2, send m3, rec m2,re cm3)+},
3) {(send m1,rec m1) (send m3,send m2,rec m2, rec m3)+}
4) {(send m1,rec m1) (send m2, send m3, rec m3,recm2)+}
5) {(send m1,rec m1) (send m3, rec m3,send m2,rec m2)+}
6) {(send m1,rec m1) (send m3,send m2,rec m3,rec m2)+}

In case 1)~3), the behavior sequence of object B is {rec
m1, (rec m2,rec m3)+ }.In case 4)~6), the behavior sequence of
object B is {rec m1, (rec m3,rec m2)+ }.So the behavior
sequence of object B is {rec m1, (rec m3,rec m2)+ } or {rec
m1, (rec m3,rec m2)+ }.

If the internal structure of the object B is like Fig. 7, we
get the behavior sequence of single object B based on the
algorithm for ECPN of statecharts as (rec m1,rec m2,rec m3)+.

Fig. 7 One internal structure of object B

Fig. 8 Another internal structure of object B

Assuming we get the behavior sequence of a sequence

diagram (rec m1, rec m2, rec m3)+, (rec m1 ,rec m2, ,rec m3) is
the only element included in {rec m1, (rec m3,rec m2)+ or {rec
m1, (rec m3,rec m2)+,which is object B’s behavior sequences.
The comparison result indicates that from the second time on,
there will be inconsistency.

This inconsistency detected by means of consistency
checking will help to enhance the original models, interactive
model or internal structure models. Considering the form of
object B in Fig. 7, if we replace the arc from t3 to p2 with the
arc from t3 to p1 , seen in Fig. 8, then the behavior sequence of
the ECPN of the sequence diagram in Fig. 6 is included by the
behavior sequence in the ECPN of the statechart in Fig. 8.

IV. CONCLUSION
In the paper, we outline the features of sequence diagrams

in UML, and introduce ECPN to describe dynamic features of
UML models. Our research covers UML modeling and
property checking. With the wide application of Petri Nets,
many modeling and analysis tools have been developed [13].
We have developped ECPN modeling tools to convert
sequence diagrams and startcharts into analyzable ECPNs.
The mechanism to analyze some important properties like
liveness, consistency is demonstrated in the paper. We are
processing on other features of the models and trying to find a
way for automatic optimization of model behaviors.

REFERENCES
[1] G. Engels, J. H. Hausmann, R. Heckel, and S. Sauer, “Testing the

consistency of dynamic UML diagrams”, Integrated Design and Process
Technology, June 2002.

[2] S. K. Kim and D. Carrington, “A Formal Object-Oriented Approach to
defining Consistency Constraints for UML Models”, 2004 Australian
Software Engineering Conference, 2004.

[3] T. Miyamoto, “A Survey of Object Oriented Petri Nets and Analysis
Methods”, IEICE Trans. Fundamentals, Vol. E88–A, No. 11, 2005

[4] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling
Language Reference Manual. Addison Wesley/Pearson, Jan. 2001.

[5] Tom Pender, UML Bible, Wiley, Sep. 2003.
[6] T. Schafer, A. Knapp, and S. Merz. Model Checking UML State

Machines and Collaborations on the Workshop on Software Model
Checking, Paris, Jul.2001.

[7] W. Dong, and Z. C. Qi, “Study on the checking of UML Models”,
Dissertation of National Defense University of Science and Technology,
China, Oct. 2002.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3815

[8] B.Simona,D.Susanna,M.Jose, from UML Sequence Diagrams and
Statecharts to analysable Petri Net models,In Proc. of 3. rd. Int.
Workshop on. Software and Performance (WOSP2002), .Rome, Italy,
July 2002.

[9] E. Guerra and J. D. Lara, “A Framework for the Verification of UML
models. Examples using Petri Nets”,
http://www.ii.uam.es/~jlara/investigacion

[10] S.Z.Yao, F.G.Tang, and Y.F. Liu, “An object-oriented model for parallel
software”, TOOLS27, China, Sep.1998.

[11] M.H.Hamza, Modelling, Identification, and Control (MIC 2004),
Grindelwald, Switzerland, Feb.2004.

[12] T. Murata, “Petri Nets: Properties, Analysis and Applications”, Proc.
IEEE, Vol. 77, 1989.

[13] http://www.informatik.uni-hamburg.de/TGI/Petri Nets /tools.

