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Abstract— This paper presents the idea of a rough controller with 

application to control the overhead traveling crane system. The 
structure of such a controller is based on a suggested concept of a 
fuzzy logic controller. A measure of fuzziness in rough sets is 
introduced. A comparison between fuzzy logic controller and rough 
controller has been demonstrated. The results of a simulation 
comparing the performance of both controllers are shown. From these 
results we infer that the performance of the proposed rough controller 
is satisfactory. 
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I. INTRODUCTION 

HE crane can be considered as one of the most important 
tools used in industry to transfer loads from one desired 

position to another. Usually cranes have very strong structures 
in order to lift heavy payloads in factories, in building 
construction, on ships, and in harbors. Until recently, cranes 
were manually operated. But when cranes became larger and 
they are being moved at high speeds, their manual operation 
became difficult. Consequently, methods of automating their 
operation are being sought. Two special inference engines 
(two rule-base) FLC had been done with [1-2]. Many 
researchers [1-3] deal with the fuzzy controller, some of 
researchers took one FLC only to control two system’s 
variables like [3]. In many real processes, control relies 
heavily upon human experience. Skilled human operators can 
control such processes quite successfully without any 
qualitative models. The control strategy of human operator is 
mainly based on linguistic qualitative knowledge concerning 
the behaviour of an ill-defined process. In order to cope with 
this difficulty, the human mind using intuitive and subjective 
thinking is realized as fuzzy logic An alternative approach to 
manipulating incomplete or imprecise information was 
presented by Pawlak in (1982) as a rough set theory [4]. The 
essence of this approach relies on the approximation of 
incomplete or imprecise information by means of completely 
and precisely known pieces of information. As a natural need, 
Dubois and Prade, [5] combined fuzzy sets and rough sets in a 
fruitful way by defining rough fuzzy sets and fuzzy rough sets. 
By analogy with the concept of a fuzzy controller, the idea of 
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a rough controller based on the notion of a rough set theory 
will be introduced in the next section. 

II. ROUGH SET THEORY 
Rough Set Theory (RST) is a mathematical tool to deal with 

vagueness and uncertainty in the areas of machine learning. It 
is a recent development in the area of data mining and 
knowledge discovery. Let U be a set called universe and let R 
be an equivalence relation on U; called an in discredibility 
relation. The pair S= (U, R) is called an approximation space. 
Then for any non-null subset X of U;  

 
  X}[x]:U{x(X)A R ⊆∈=                                            (1) 

  }X[x] :U{x(X) A R φ≠∈= I                                     (2) 
  
The sets (X))A (X),A(A(X) =  , are  respectively, called  

the lower and the upper approximation  of  x in S; where [x]R 
denotes  the  equivalence  class  of the relation (R) containing  
the  element x. Below are the fundamental notions of the RST 
[6-7]. 

 
Definition: Let A=( A,A ) and B=( B,B ) be any two rough 

sets in the approximation space S=(U,R) then; 
(I) A U B= )BA  ,BA( UU  . 

(II) ).BA ,BA(BA III =  
(III) A ⊂ B⇔A∩B. 

 
It says that A is a rough subset of B or B is a rough superset 

of A. Thus, in the case of rough sets A and B, A ⊂ B if and 
only if  B A and   BA ⊂⊂ . This property of rough inclusion 
has all the properties of set inclusion. The natural inverse 
rough set of A denoted by (–A) is defined by: 

(IV) )AU,A(UA −−=−  

(V) )BA,BA(B)(ABA −−=−=− I  
 

A) Amount of Fuzziness Present in Rough Set 
Let (U,R) be an approximation space and suppose X⊆U. In 

the partition domain U/R, the rough set of X is, say, 
)X,X(R(X) = . Thus in the approximation space (U,R) the set 

X is approximated by two approximations. One from the inner 
side called the lower approximation of X and the other is from 
the outer side called the upper approximation of X. If a set is 
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approximated by X itself, then there is no roughness in this 
approximation. Otherwise, there exists some amount of 
roughness due to rough boundary. In order to express, 
numerically how a set can be approximated using all 
equivalence classes of R, the accuracy of approximation of X 
in S (accuracy measure) will be used [6]. 

 
XRcard
XRcard(X)R =α                                                         (3) 

Where X ≠0. As we can see, if X is R-exactly 
approximated in AR then αR(X) = 1. If X is R-roughly 
approximated in S the 0<αR(X)<1. Below we use another 
measure related αR(X) defined as; 

)(1)(R XX Rαα −=                                                      (4) 
In addition, it is referred to as R-roughness of X. 

Roughness, as opposed to accuracy, represents the degree of 
inexact approximation of X in S. Additional numerical 
characteristics of imprecision, e.g., the rough membership 
function of the set X is defined as: 

  
)Rcard([x]

X)Rcard([x]
(x)μR

X

I
=                                           (5) 

The coefficient characterizing the uncertainty of 
membership of the element to the set with respect to the 
possessed knowledge is: 

 
card(x)

X)card([x](x)μ R
x

I
=                                            (11) 

The above mentioned measures may be used in rough 
controller synthesis. 

III. ROUGH CONTROLLER STRUCTURES 
The main disadvantages of FLCs are the necessity of 

acquisition and preprocessing of the human operator’s 
knowledge about the controlled process, sequential search rule 
bases, and time-consuming defuzzifcation methods. The 
following preliminaries are required in the sequel work and 
hence presented in brief [6-7]: For simplicity of the proposed 
methods, only (25-rule) as shown in the look-up table I was 
created using an ordinary fuzzy logic and was designed for the 
swing angle of the OTC. The corresponding knowledge base 
for a rough controller was created in the following way. At the 
beginning, a decision table was made, where the condition 
attributes {e, de/dt} corresponded to the decision attribute 
Uc={u}. In such a decision table an indiscernibility relation 
with respect to both condition and decision attributes has the 
same values. As we can see, the indiscernibility relation 
divides all rows of the decision table into equivalence classes. 
Accuracy measures were calculated. So, U={25-actions} and 
the upper rough set {25}XR = , while the equivalence classes 
are as follows: PL={6}, PS={4}, Z={5}, NS ={4}, NL={6}. 

 

 
 
The division of the universum U with respect to the 

indiscernibility relation is: X1=PL, X2=PS, X3=Z, X4=NS, 
X5=NL. In order to express, numerically how a set can be 
approximated using all equivalence classes of R the accuracy 
of approximation of X in S (accuracy measure) equation (3) 
will be used. 

αR(X1) = 1/6 =0.167 
αR(X2) = 0/4 =0 
αR(X3) = 1/5 =0.2 
αR(X4) = 0/4 =0 
αR(X5) = 1/6 =0.167 
Therefore, the whole number rules become nine as given in 

the look up table II. Which divides the input space into three 
parts and obtaining the (two inputs and one output) rough 
controller block diagram is shown in Fig. 1. The main 
procedures of this controller are illustrated in Fig. 2. 
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Fig. 1 Block diagram of Rough Controller For OTC 

TABLE II 
THE LOOK-UP TABLE OF ROUGH 

CONTROLLER 

de/dt 
   e  P Z N 

N αR(X3) αR(X2) αR(X1) 

Z αR(X4) αR(X3) αR(X2) 

P αR(X5) αR(X4) αR(X3) 

TABLE I 
LOOK-UP OF CONVENTIONAL FLC FOR SWING ANGLE OF OTC 

  dθ/dt
 θ NL NS Z PS PL 

NL PL PL PL PS Z 

NS PL PL PS Z NS 

Z PL PS Z NS NL 

PS PS Z NS NL NL 

PL Z NS NL NL NL 
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IV. THE MATHEMATICAL MODEL OF THE OTC  
This section presents a nonlinear dynamic model. It is 

derived based on a two degree-of-freedom swing angle, for a 
three-dimensional overhead crane. The dynamic model for a 
three-dimensional overhead crane has the following features: 
XYZ is the fixed coordinate system and (XTYTZT) is the trolley 
coordinate system, which moves with the trolley. The origin of 
the trolley coordinate system is (x, y, 0) in the fixed coordinate 
system. Each axis of the trolley coordinate system is parallel 
to the counterpart of the fixed coordinate system. Fig. 3 shows 
the coordinate systems of a three-dimensional overhead crane 
and its load [[8]].  

 
The equations of the trolley–load system are associated with 

the generalized coordinates x, xθ , y, yθ  and  L, respectively, 

by used Lagrange’s equations.  

xfxθxsin θ mL-xθLxθxcos 2m

xxDLxsin θ mxθxcos θ mLxm)x(M

=+

++++

&&&

&&&&&&&   (7) 

 

 0xsin θ mgL
xθL2mLxxcos mLxθmL 2

=+

++ &&&&&              (8) 

The dynamic model of a three-dimensional overhead crane 
is reduced to that of a two-dimensional overhead crane 
moving along the x-axis (Traveling). When 

0θθθyy yyy ===== &&&&&& , the equations of motions for the 

crane system become as below: 
 

xfxθxsin θ mL-

xxDxθxcos θ mLxm)x(M

=

+++

&

&&&&&              (9) 

0sin θ mgLxcos mLθmL xxx
2 =++ &&&                     (10) 

Where Dx, Dy, and DL denote the viscous damping 
coefficients associated with the x, y, and L motions, 
respectively. Mx is the trolley mass, while m is the load mass, 
and L is the length of the load cable. 

V. SIMULATION RESULTS 
Numerical results obtained by simulating the control of the 

OTC will be presented here. A knowledge base of table I and 
table II represents the knowledge base for a rough controller. 
Fuzzy and rough controllers have been tested on OTC model. 
In essence, the goal of the procedure in designing a rough 
controller, capable of reducing time consumption of 
computation also, to get high system performance in terms of 
swing damping while providing fast travel and zero final 
velocity, as will be seen below. In the first test, different 
inputs have been used and a specific trajectory command 
(LSPB, Linear Segment Parabolic Blend) on the system. The 
output’s results of the rough controller are shown in Fig. (4, a, 
b). All measurements responded well, the controller generate a 
control action to track the load to the desired position damping 
the oscillation and at the same time reducing the payload 
travel time. As an exception, the trolley velocity continuously 
increased until the trolley was stopped by the limit switch 
(mechanical constraint). The FLC was implemented to obtain 
the minimum angle within limited values (±15°) within a 
specified time, Fig. (5, a, b). Table III shows a competition 
among these controllers (Fuzzy and rough). In these 
experiments the tracking ability was tested. A sinusoidal input 
was applied with two different frequencies for both 
controllers, as illustrated in Figs. [(6, a, b) and (7, a, b)]. When 
frequency is decreased with the same amplitude, the 
performance of OTC system with FLC has improved the 
swing damping, while the movement of the trolley is slower. 

Finally, as for the efficiency of the system performance, it is 
necessary to use four different performance indices (P.Is) 
criterion methods for this purpose. These performance indices 
are ISE (Integral Square Error), ITSE (Integral–of-Time-
multiplied Square Error), IAE (Integral–Absolute Error), 
ITAE (Integral-of-Time multiplied Absolute Error) 
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Fig. 2 The main structure of Rough Controller 

 
Fig. 3 Coordinate systems of a three-dimensional overhead crane 

and its load 
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respectively. The best P.I would be obtained with sinusoidal 
(frequency=0.5 Hz and Amplitude=1.5 Vp-p), among the 
values of P.I the IAE is considered the best one. 

 

 
 

 

(a) 

 

(b) 

Fig. 5 (a, b ) Fuzzy controller with a LSPB trajectory command 

 

 
(a) 

 
(b) 

Fig. 4 ( a, b) Rough controller with LSPB trajectory command  

 

(a) Trolley Operation 

 

(b) Load Operation 
Fig. 6 ( a, b) Sinusoidal input with frequency=2.5Hz and 

Amplitude=1.5 Vp-p  
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(a) Trolley Operation 

 
(b) Load Operation 

Fig. 7 (a, b) Sinusoidal input with frequency=0.5 Hz and 
Amplitude=1.5 Vp-p  

 

VI. CONCLUSIONS 
As a conclusion, a rough controller works much faster than 

a conventional FLC under the same operating conditions. 
While controlling the system can be observed by using an 
FLC get a smooth control value as a function of time; applying 
a rough controller to get a sharp function of time for the 
control value. Nevertheless, the quality index does not differ 
very much for both controllers. However, the best error 
criterion P.I was obtained with FLC. The quickest running 
time was recorded with the rough controller (5 sec).  
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TABLE III 
 RESULTS OF OTC SYSTEM WITH (FUZZY AND ROUGH CONTROLLERS, 

WITH  DIFFERENT INPUT SIGNALS 

Performance Index Type of controllers 
Execution

time 
(sec) ITSE ISE IAE ITAE

Fuzzy Controller 9 28.47 3.28 3.79 28.9
6 

Fuzzy Controller 
Rough  Controller 10 26.13 3.02 3.64 27.7

Rough Controller 5 16.73 1.89 2.78 20.7
1 

Sinusoidal  
Sinusoidal with 
Freq.=2.5Hz, 

Amp.=1.5Vp-p 
4 24.45 4.95 6.29 31.0

7 

Sinusoidal with 
Freq=0.5Hz, 

Amp.=1.5Vp-p 
6 26.2 5.17 6.31

7 31.5


