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Abstract—Fair share is one of the scheduling objectives 

supported on many production systems. However, fair share has been 
shown to cause performance problems for some users, especially the 
users with difficult jobs. This work is focusing on extending goal-
oriented parallel computer job scheduling policies to cover the fair 
share objective. Goal-oriented parallel computer job scheduling 
policies have been shown to achieve good scheduling performances 
when conflicting objectives are required. Goal-oriented policies 
achieve such good performance by using anytime combinatorial 
search techniques to find a good compromised schedule within a time 
limit. The experimental results show that the proposed goal-oriented 
parallel computer job scheduling policy (namely Tradeoff-
fs(Tw:avgX)) achieves good scheduling performances and also 
provides good fair share performance. 
 

Keywords— goal-oriented parallel job scheduling policies, fair 
share.  

I. INTRODUCTION 

AIR share is one of many main objectives supported on 
several parallel production job schedulers 

[1,2,3,4,5,6,7,8]. However, these schedulers adopted the idea 
of fair share from the Fair Share Scheduling [9] proposed for 
time-sharing systems. A previous study [10] shows that fair 
share can cause performance problems for some users, 
especially users with mixtures of jobs due to the priority 
mechanism currently implemented on many schedulers. This 
work is proposed to extend goal-oriented parallel computer 
job scheduling policies to improve such problems. The goal-
oriented parallel computer job scheduling policies have been 
shown to achieve good scheduling performances even when 
conflicting objectives are required [11,12,13]. Since fair share 
objective can conflict with other scheduling objectives, 
applying goal-oriented policies on such problems could be a 
good solution. 

 The remaining of this paper is organized as follows. In 
Section II, goal-oriented parallel computer jobs scheduling 
policies are reviewed. The current performance problems 
caused by fair share feature implemented in production 
schedulers are discussed in Section III. The experimental 
designs in this work including workloads, policies and 
performance measures are described in Section IV, while the 
experimental results and discussions are presented in Section 
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V. Finally, conclusions are given in Section VI.  

II. GOAL-ORIENTED PARALLEL COMPUTER JOB SCHEDULING 

Goal-oriented parallel computer job scheduling policies 
[11,13] have been recently proposed to reduce the system 
administrator tasks of adjusting and tuning low-level 
scheduling parameters for performance by employing a 
complete search technique to find a ‘good’ solution in a 
limited time. A given set of objectives required at a production 
parallel computer center can be conflicting with each other 
such as preventing starvation and minimizing average 
performance. To prevent starvation, for example, difficult jobs 
(i.e., large jobs, long jobs and large-and-long jobs) must have 
a high priority because these jobs are likely to be delayed. To 
minimize average wait time, on the other hand, small and 
short jobs must have a high priority because majority of jobs 
are in this category. To achieve such objectives, most 
scheduling policies use some kind of priority based 
mechanisms to prioritize and consider jobs for executions 
according to the priority order. Typically, the priority is 
implemented by using either a queue-based or a job-based 
priority mechanism.  

Under a queue-based scheme [1,2,3], each job is assigned 
to a queue according to the job characteristic. For example, a 
difficult job is assigned to a high priority queue because it is 
difficult to schedule such job; on the other hand, a short job is 
assigned to a medium high priority queue because it should 
not wait too long; a small job is assigned to a low priority 
queue because it is easy to backfill such job. The queue-based 
priority job scheduler then selects jobs from each queue 
according to the priority in the queue and uses small jobs to 
backfill on available resources to improve the utilization.  

Under a job-based scheduling policy [5,6,7], however, a job 
is prioritized by a weighted function of a set of job measures. 
For example, to prevent starvation the wait time of each job is 
added to the priority function. To improve the average 
measures, the short jobs must be favored. Therefore, the job 
runtime information is added to the priority function. Each 
measure has an associated weight value so that the priority 
function returns a single priority value. The scheduler is then 
considering jobs for executions according to their priority 
value.  

The priority mechanism either queue-based or job-based 
implementation can usually achieve only one objective. Goal-
oriented parallel computer job scheduling policies have been 
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shown to achieve good performances on two conflicting 
objectives by automatically searching for a 'good' 
compromised schedule. Furthermore, an anytime systematic 
searching algorithm employed by the goal-oriented parallel 
computer job scheduling policies always guarantees to find an 
equal to or a better schedule when more time is given.  

In this work, the goal-oriented parallel computer job 
scheduling policies are extended to cover fair share objective. 
The scheduling performance and fair share performances are 
presented in Section V. 

III. FAIR SHARE 

 Fair share is one of the main objectives supported on many 
production parallel computer schedulers [1,4,6,7,8]. When a 
fair share policy is in used, each user will have his/her fair 
share priority dynamically computed. All jobs that belong to a 
user are given the same fair share priority. A job priority will 
be adjusted up or down according to the fair share priority of 
its owner. The fair share priority of each user is a function of 
the entitled share and the cumulated usage. The entitled shares 
define the importance of each user relative to other users. The 
cumulated usage of each user, on the other hand, is the 
amount of resources that the user has currently used so far. 
Both the entitled share and the cumulated usage are 
dynamically calculated within a fair share window. This type 
of fair share is referred to as a relative fair share model. One 
important configurable parameter of fair share is a fair share 
window which is the period of time where the usage of each 
user is cumulated. The typical default fair share window size 
is one day or seven days. 
 A previous study [14] shows that fair share feature does not 
affect the average performance; however, this study does not 
consider per-user performance or maximum wait performance. 
Another study [10] shows that the fair share is in fact fair 
because it can prevent heavy-demand users to dominate the 
system resources. As a result, resources are available for other 
users. In addition, the later study considers the per-user 
performance and the finding demonstrates that fair share 
objectives can affect performance of some users severely due 
to the non-preemptive nature of the underline system and the 
use of priority mechanisms.  
 These users suffer poor performance because their difficult 
jobs (i.e., large jobs, long jobs or both large and long jobs) are 
delayed in reserving recourses because their difficult jobs 
enter the system behind their not-so-difficult jobs. Due to the 
priority mechanism, once a job of a user is started, the fair 
share priority of the user is lowered which may prevent the 
difficult jobs of the same user from receiving a reservation. 
These difficult jobs are in nature required a reservation to 
reserve enough resource for their executions. The delay in 
reserving resources for such jobs can cause an extended delay 
of starting these jobs.  
 In this work, goal-oriented policies are applied to improve 
the problems. To do so, a newly proposed goal-oriented 
parallel computer job scheduling policy is proposed. Next, the 
experimental settings including the policies, the workloads, 
the performance and fair share measures are given. 

IV. EXPERIMENTAL DESIGN 

All policies are evaluated using an event-driven simulator 
with a real job trace from a production parallel computer 
center. The job trace is a ten-monthly workload that ran on an 
Intel Itanium Linux cluster (IA-64) at the National Center for 
Supercomputing Applications at the University of Illinois at 
Urbana-Champaign during June 2003 to March 2004.  

 
TABLE I 

INFORMATION OF NSC IA-64 WORKLOAD 
 Proc.   #jobs per users 

Month demand #users #jobs Avg. Median Max. 
6/03 82% 73 2191 30.0 8.0 659 
7/03 89% 68 1400 20.6 8.0 145 
8/03 79% 73 3221 44.1 8.0 1873 
9/03 72% 74 3057 41.3 15.0 703 
10/03 71% 75 4149 55.3 15.0 1151 
11/03 73% 81 3443 42.5 17.0 665 
12/03 74% 61 3521 57.7 14.0 635 
1/04 73% 53 3156 59.5 17.0 679 
2/04 74% 73 3969 54.4 28.0 541 
3/04 75% 70 3466 49.5 15.5 1234 

 Job size (NT) demand (NT) per user 
Month Avg. Median Max. Avg. Median Max. 
6/03 34.5 0.8 960.0 1034.7 24.0 24071 
7/03 60.6 1.3 1536.0 1247.4 145.7 16719 
8/03 23.4 0.0 1536.0 1031.6 120.0 14346 
9/03 21.7 0.1 912.0 895.5 72.5 18499 
10/03 16.3 0.4 912.0 899.5 114.7 8060 
11/03 19.5 0.7 1536.0 827.1 27.6 10183 
12/03 20.1 1.1 1152.0 1159.3 23.2 17776 
1/04 22.1 5.1 1920.0 1313.6 317.4 10340 
2/04 16.6 0.3 1824.0 900.3 93.3 8931 
3/04 20.6 0.0 1832.8 1018.0 46.1 12892 

 Job size (N) Job size (T) 
Month Avg. Median Max. Avg. Median Max. 
6/03 12.1 4.0 128 1.4h 0.20h 12h 
7/03 23.5 8.0 128 1.9h 0.18h 12h 
8/03 7.3 1.0 128 1.1h 0.00h 12h 
9/03 9.1 1.0 128 1.4h 0.03h 12h 
10/03 5.0 1.0 128 2.0h 0.13h 12h 
11/03 6.0 1.0 128 2.5h 0.15h 12h 
12/03 5.6 1.0 128 3.6h 0.33h 24h 
1/04 10.7 2.0 128 4.5h 1.10h 24h 
2/04 5.0 2.0 128 3.1h 0.11h 24h 
3/04 5.8 1.0 128 2.4h 0.00h 24h 

 
Scheduling performances of each month are computed for 

jobs submitted during the month. To be realistic, however, 
each simulation of a given month includes a one-week (from 
the previous month) warm up and a cool-down period in 
which jobs (from the next month) continue to arrive. The 
cool-down period is typically a few days only because the 
period will end when all jobs submitted during the month for 
which the performance measures are computed have all 
started. To understand the full potential of all policies, the 
simulator uses the perfect runtime information of each job, 
and thus the impact of inaccurate runtime estimates is 
eliminated. 

Table 1 shows the workload characteristic in each month 
including demand (Proc. demand), number of users (#users), 
number of jobs (#jobs) and job size (i.e., NT:  node-hour, N: 
node, T: runtime in hours). Job size information is given in 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:12, 2009

2833

 

 

three measures including average (Avg.), median and 
maximum (Max.) values.  

A. Policies  
 Two types of policies are evaluated in this work. The first 

type of policies is the simple priority-based scheduling 
policies with backfill techniques. This set of policy includes 
the basic First-Come-First-Serve (FCFS) priority, Largest-
Slowdown-First (LXF) priority and the fair share priority. The 
second type of policies is the goal-oriented parallel computer 
job scheduling policies both the original version and the 
newly proposed version.  

The most widely used non-preemptive parallel job 
scheduling policies are priority based scheduling policies with 
backfill techniques. Backfill techniques allow lower priority 
jobs to start on idle resources as long as their executions do 
not delay the scheduled start time of the oldest waiting job. In 
this work, FCFS-backfill and LXF-backfill policies are used 
as baseline policies because FCFS-backfill tends to achieve 
good maximum wait, whereas LXF-backfill achieves good 
average performance.  

A simple relative fair share policy namely RelShare(1d) is 
also evaluated. RelShare(1d) policy uses one-day fair share 
window. Under this policy, the job is ordered by its owner fair 
share priority.  The fair share priority of each user is 
dynamically computed based on the user’s cumulated usage 
during the current fair share window (i.e., the current day). 
The cumulated usage of a user includes the actual usage of the 
user from the beginning of the day until the current time as 
well as the expected usage of the currently running jobs and 
the job with the reservation (if any). However, the usage is 
only computed within the current fair share window. That is, 
if the job is expected to run across fair share window, only the 
usages in the current window are cumulated.    

Goal-oriented parallel computer job scheduling policies, 
namely Tradeoff(Tw:avgX) [11,13], are extended to cover fair 
share objective by using the fair share priority to organize the 
search space. That is, the fair share priority of the job owner is 
used as a branching heuristic. This way, the fair share 
objective biases the searching process to the schedule that 
favors fair share objectives. The way in which the fair share 
priority is calculated here is similar to that in the RelShare(1d) 
policy. That is, the fair share window is one-day and the 
cumulated usages include the actual usages and the expected 
usages in the current fair share window. This adapted policy is 
called Tradeoff-fs(Tw:avgX). Under this policy, the searching 
process starts from a fair share favored schedule and continue 
its search to other schedules. During the searching process the 
current ‘best’ schedule found so far is kept. To find the ‘best’ 
schedule, the searching algorithm compares the newly found 
schedule with the current ‘best’ schedule. If the new schedule 
results in a ‘better’ performance according to the current 
objectives, the new schedule is kept as the current ‘best’ 
schedule. The searching process continues until the time limit 
is reached. Note that the definition of the ‘best’ performance 
can be found in the previous works [11,15] and the left-most 

path schedule is always started as the first current ‘best’ 
schedule. 

B. Performance Measures  
Both widely used scheduling performances and a fair share 

performance are studied in this work. Previous work [9] has 
shown that achieving fair share can affect the scheduling 
performance of some users. Thus, several widely used 
scheduling performance measures [16,17,18,19,20] are  
studied. These measures include average wait, average 
bounded slowdown, maximum wait and 99th-percentile wait. 
The maximum wait and the fair share performance measures 
are focused in this study because previous studies indicated 
that the fair share has little or no impact on average 
performance [14] but the maximum wait performance is 
affected severely [10]. 

The slowdown is the ratio of the job turnaround time to its 
runtime. However, if the job is very short, its slowdown 
measure is very high. Thus, the performance of a few very 
short jobs can affect the overall slowdown measure. To 
minimize this impact, a bounded slowdown is used instead of 
the slowdown. The bound in this study is set to one minute 
meaning that any job shorter than one minute will calculate its 
slowdown as a one-minute job. 

To evaluate the fair share performance, the deviation in 
node hours (dev)—defined in [10] is used for evaluating the 
per-user fair share performance of each policy. The dev 
measure is designed to be the difference between the 
cumulated actual usage and the cumulated entitled share of 
each user over a given fair share window. In this work, a fair 
share window of one-day which is a normal default fair share 
window size of many production job schedulers is used. By 
definition, a positive dev value and a negative dev value mean 
an over-share and an under-share, respectively.   

V. RESULTS AND DISCUSSION 

Results and discussions are organized as follows. First, the 
overall scheduling performance of the all policies studied is 
presented. Next, the fair share performance is given. Then, the 
detailed analysis of how the proposed goal-oriented policy can 
achieve good scheduling performances, while maintaining 
good fair share performance is discussed.   

A. Overall Scheduling Performance  
The overall scheduling performances of FCFS-backfill, 

LXF-backfill, RelShare(1d), and Tradeoff-fs(Tw:avgX) are 
presented in Figure 1. Figure 1(a)-(d) show the average 
bounded slowdown, the average wait, the maximum wait, and 
the 99th-percentiel wait performance, respectively. As 
expected, FCFS-backfill provides good maximum wait 
performances on all months (Figure 1(c)), while LXF-backfill 
provides good performances on both average bounded 
slowdown Figure 1(a)) and average wait (Figure 1(b).  

Impressively, Tradeoff-fs(Tw:avgX) achieves the best or 
close to the best performance on all measures in all months, 
except perhaps a slightly high maximum wait in March 2004. 
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These results indicate that the proposed goal-oriented parallel 
job scheduling policy does not degrade the scheduling 
performances. Note that Tradeoff-fs(Tw:avgX) significantly 
outperforms RelShare(1d) on maximum wait measure.  
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(c) Maximum wait (d) 99th-percentitle wait 

Fig. 1 Overall scheduling performance 
 

In conclusion, the results in this section show that the 
proposed goal-oriented parallel computer job scheduling 
policy performs well on all scheduling performance measures. 
The next section investigates the fair share performance of 
each policy. 

B. Fair share performance  
This section is focusing on evaluating the fair share 

performance of each policy by showing the deviation of node 
hour performance. Figure 2 shows the average over all users 
and the sum of all users of the absolute per-user dev in each of 
the ten month of each policy.  
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Fig. 2 Monthly dev performances 
 
Figure 2(a) shows the average absolute dev over all users in 

each month of the four policies studied, whereas Figure 2(b) 
shows the total dev of all users in each month. The average 
dev performance in Figure 2(a) shows that the proposed 

Tradeoff-fs(Tw:avgX) policy outperforms all policies and 
achieves the lowest deviation of fair share among users in all 
months. RelShare(1d) policy reduces unfairness observed 
under FCFS-backfill policy but it still loose to LXF-backfill 
policy. Note that LXF-backfill provides good fair share 
performances but it achieves these performances by favoring 
the majority of jobs, resulting in poor overall maximum wait 
performances. Tradeoff-fs(Tw:avgX) policy, on the other 
hand, achieves good fair share performances without 
degrading the maximum wait performance. 

According to the results so far, the conclusion is that 
Tradeoff-fs(Tw:avgX) not only achieves good scheduling 
performances but also provides good fair share performances.  

C. How goal-oriented policies solve unfairness problems  
In this section, the per-user performance is analyzed to 

discover how Tradeoff-fs(Tw:avgX) achieves such good  
performances. To answer the question, the performance of the 
proposed Tradeoff-fs(Tw:avgX) policy is compared against 
the performance of the original Tradeoff(Tw:avgX). This 
result provides evidence that the fair share priority used as a 
branching heuristic in the newly proposed policy does 
influence the good performances. In addition, the original 
Tradeoff(Tw:avgX) has never been evaluated on any fair 
share measure. Figure 3 shows performances of the two goal-
oriented parallel computer job scheduling policies and the 
RelShare(1d) policy.  

Figure 3(a)-(f) show the average bounded slowdown, the 
average wait, the maximum wait, the 99th-percentile wait, the 
average absolute per-user dev and the sum absolute per-user 
dev performances of RelShare(1d), Tradeoff(Tw:avgX) and 
Tradeoff-fs(Tw:avgX), respectively. The results show that 
Tradeoff-fs(Tw:avgX) outperforms Tradeoff(Tw:avgX) on 
fair share measures (Figure 3(e)-(f)), while achieves similar 
scheduling performances (Figure 3(a)-(d)). 

Next, the users who suffer under RelShare(1d) as reported 
in [9] are analyzed. Table II shows the dev, maximum wait, 
average wait and average bounded slowdown performances 
under each policy of the users with worse degradation in wait 
time under RelShare(1d) in July 2003 month. Results on other 
months are similar. The results on July 2003 are presented 
here due to its high load characteristic.  

As shown in Table III, Tradeoff-fs(Tw:avgX) policy 
improves performances of the users (except user #21) who 
suffer under RelShare(1d) as being seem from the dev 
measure. User #21 is slightly under-shared under Tradeoff-
fs(Tw:avgX) policy. However, all scheduling performances of 
user #21 under Tradeoff-fs(Tw:avgX) policy are better than 
those under RelShare(1d) policy.  

 To understand how Tradeoff-fs(Tw:avgX) policy achieves 
good performances,  Figure 4 shows the number of jobs 
belonging to user #8 on each day in July 2003 month. The 
numbers of three types of jobs are shown in the figure: the 
jobs that are waiting at the beginning of that day, the jobs that 
are submitted during that day, and the jobs that are started on 
that day.  Figure 4(a) shows the job information of user #8 
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under RelShare(1d) policy, while Figure 4(b) shows the same 
information under Tradeoff-fs(Tw:avgX) policy. User #8 
suffers poor performance under RelShare(1d) because only a 
few jobs of the user can start each day. On the other hand, 
Tradeoff-fs(Tw:avgX) policy allows several jobs of user #8 to 
start each day. Thus, the backlog under Tradeoff-fs(Tw:avgX) 
policy is smaller than that under RelShare(1d). To further 
illustrate this point, Figure 5(a) shows the per-day demand, 
usages and entitle  shares of user #8 under RelShare(1d) 
policy, while Figure 5(b) shows the same information under 
Tradeoff-fs(Tw:avgX) policy. The average demand of all 
active users is also given for comparison purposes. Since the 
backlog is reduced under Tradeoff-fs(Tw:avgX) policy the 
demand on each day under Tradeoff-fs(Tw:avgX) is lower 
than that under RelShare(1d) policy. Note that the demand is 
computed daily. Thus, the demand on each day consists of the 
newly submitted jobs and the current backlog on that day. 
This way, some jobs can be counted as demand on several 
days if the jobs remain in the system for several days.  

The results so far have shown that the branching heuristic 
used by Tradeoff-fs(Tw:avgX) policy helps to improve the 
fair share performance while providing the similar scheduling 
performances. Tradeoff-fs(Tw:avgX) policy also improves the 
performance of user with mixtures of jobs who suffers poor 
maximum wait performance under RelShare(1d) policy. The 
explanation here is that Tradeoff-fs(Tw:avgX) policy allows 
jobs of these users to start as long as their executions result in 
a better scheduling performance. On the other hand, 
RelShare(1d) policy blocks the jobs of these users because of 
the priority mechanism. 

Performances of other users under Tradeoff-fs(Tw:avgX) 
policy are also improved as shown in Table III.  Table III 
shows the dev, maximum wait, average wait and average 
bounded slowdown of users with mixture of jobs but spread 
their jobs out over a period of time during the month. These 
users are not suffered under RelShare(1d) policy. In fact, they 
could benefit under RelShare(1d) policy by becoming over-
share users. For example, user #70 on July 2003 goes from 
under-share of 1040.8 node-hours under FCFS-backfill policy 
to over-share of 423.5 node-hours under RelShare(1d) policy 
and user #103 on November 2003 goes from under-share of 
355.1 node-hours under FCFS-backfill policy to over-share of 
424.8 node-hours under RelShare(1d) policy.  

Tradeoff-fs(Tw:avgX) policy, on the other hand, does not 
allow these users to get benefits from the fair share. User #70 
on July 2003 is under-share by only 89.2 node-hours and user 
#103 on November 2003 is under-share by only 38.1 node-
hours, while these two users become over-share users under 
RelShare(1d) policy. In addition, Tradeoff-fs(Tw:avgX) 
policy also reduce the amount of under-share of the already 
under-share users such as user #113 on August 2003. The 
amount of under-share of this user is reduced from 1178.6 
node-hours under FCFS-backfill policy to under-share of only 
303.2 node-hours under Tradeoff-fs(Tw:avgX), whereas this 
user is still under-share of 411.5 node-hours under 
RelShare(1d). 
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(a) Average bounded slowdown (b) Average wait 
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Fig. 3 Scheduling and fair share performance of 
RelShare(1d), Tradeoff(Tw:avgX) and Tradeoff-fs(Tw:avgX) 

VI. CONCLUSIONS 

This study presents and analyzes the results of extending a 
goal-oriented parallel job scheduling policy to cover fair share 
objective by applying the fair share priority as a branching 
heuristic. All policies are evaluated using an event-driven 
simulator with a ten-monthly workload that ran on a real 
production computer center. In addition to the fair share 
objective, the goal-oriented policies considered two 
objectives—preventing starvation and minimizing average 
measures. The scheduling performance of the proposed policy 
(i.e, Tradeoff-fs(Tw:avgX) is compared against the two 
priority backfill policies namely FCFS-backfill and LXF-
backfill. These policies have been shown to achieve the best 
performance on each objective studied. In addition, a simple 
relative fair share policy namely RelShare(1d) policy is also 
evaluated.  

The experimental results show that the proposed goal-
oriented parallel computer job scheduling policy (i.e., 
Tradeoff-fs(Tw:avgX)) does achieve the best or close to the 
best performance on all scheduling objectives, while provides 
a good fair share performance. Tradeoff-fs(Tw:avgX) policy 
works similar to RelShare(1d) policy such that it does not 
allow heavy-demand users to overtake the system resources. 
However, Tradeoff-fs(Tw:avgX) policy does not cause any 
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scheduling and fair share performance  problems for users 
with mixture of jobs as observed under RelShare(1d) policy. 
In fact, Tradeoff-fs(Tw:avgX) policy is more fair because it 
optimizes the dev measure better than the RelShare(1d) 
policy.  

The results presented in this work are very encouraging 
even though the Tradeoff-fs(Tw:avgX) policy does not 
consider the fair share directly as parts of its objectives. In the 
future work, low overhead fair share measures will be 
investigated so that the fair share can be directly considered as 
one of the objectives in the goal-oriented parallel computer 
job scheduling policies.     

 
TABLE II 

PERFORMANCE OF USERS WITH WORSE DEGRADATION                    
IN WAIT TIME UNDER RELSHARED(1D) IN JULY 2003 

Deviation in node hours 
User FCFS-bf LXF-bf RelShare Tradeoff-fs 

8 -2907.8 -1606.5 -7245.0 -1396.0 
21 -1706.0 -1611.1 -667.8 -2311.1 
24 -1787.6 -894.3 -4592.9 -767.9 
49 1532.0 -1373.0 68.6 190.0 
71 6585.3 3803.6 4582.9 3712.5 

Maximum wait 
User FCFS-bf LXF-bf RelShare Tradeoff-fs 

8 82.8h 26.6h 280.7h 61.0h 
21 65.6h 63.5h 109.5h 68.4h 
24 114.8h 30.7h 283.8h 33.2h 
49 66.2h 179.8h 163.5h 84.0h 
71 105.1h 143.5h 211.2h 125.2h  

Average wait 
User FCFS-bf LXF-bf RelShare Tradeoff-fs 

8 21.1h 4.6h 80.7h 10.1h 
21 11.4h 6.3h 11.9h 6.7h 
24 26.1h 8.8h 73.3h 10.7h 
49 11.5h 16.0h 23.7h 8.0h 
71 29.1h 27.7h 31.8h 22.0h 

Average bounded slowdown 
User FCFS-bf LXF-bf RelShare Tradeoff-fs 

8 168.1 34.7 907.2 89.6 
21 126.6 28.9 103.8 35.6 
24 459.5 122.4 2033.2 181.2 
49 106.7 42.6 108.4 14.7 
71 148.2 45.8 94.1 103.6 
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         (a) RelShare(1d)                   (b) Tradeoff-fs(Tw:avgX) 

Fig. 4 Per-day number of jobs of user #8 on July 2003 

10 20 30
0

500

1000

no
de

 h
ou

rs

Day of the month

demand
usages
entitled share
avg. demand of all users

10 20 30
0

500

1000

no
de

 h
ou

rs

Day of the month

demand
usages
entitled share
avg. demand of all users

 
         (a) RelShare(1d)                        (b) Tradeoff-fs(Tw:avgX) 

Fig. 5 Per-day node-hours of user #8 on July 2003 
 

TABLE III 
PERFORMANCE OF USERS WITH MIXTURE OF JOBS                         

BUT SPREAD THEIR JOBS  
Dev 

User Mo FCFS-bf LXF-bf RelShare Tradeoff-fs
70 7/03 -1040.8 -581.3 423.5 -89.2 

113 8/03 -1178.6 -351.6 -411.5 -302.2 
103 11/03 -355.1 -483.0 424.8 -38.1 

Maximum wait 
User Mo FCFS-bf LXF-bf RelShare Tradeoff-fs
70 7/03 49.0h 60.0h 20.1h 34.0h 

113 8/03 35.6h 28.7h 30.6h 29.8h 
103 11/03 33.9h 32.4h 20.5h 38.8h 

Average wait 
User Mo FCFS-bf LXF-bf RelShare Tradeoff-fs
70 7/03 25.7h 17.4h 8.9h 12.0h 

113 8/03 19.2h 11.4h 12.4h 10.8h 
103 11/03 8.9h 2.9h 1.1h 1.6h 

Average bounded slowdown 
User Mo FCFS-bf LXF-bf RelShare Tradeoff-fs
70 7/03 54.1 25.8 28.8 31.4 

113 8/03 59.9 15.9 61.4 18.1 
103 11/03 141.7 27.8 2.8 7.0 
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