
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:12, 2009

2831

Abstract—Fair share is one of the scheduling objectives

supported on many production systems. However, fair share has been
shown to cause performance problems for some users, especially the
users with difficult jobs. This work is focusing on extending goal-
oriented parallel computer job scheduling policies to cover the fair
share objective. Goal-oriented parallel computer job scheduling
policies have been shown to achieve good scheduling performances
when conflicting objectives are required. Goal-oriented policies
achieve such good performance by using anytime combinatorial
search techniques to find a good compromised schedule within a time
limit. The experimental results show that the proposed goal-oriented
parallel computer job scheduling policy (namely Tradeoff-
fs(Tw:avgX)) achieves good scheduling performances and also
provides good fair share performance.

Keywords— goal-oriented parallel job scheduling policies, fair
share.

I. INTRODUCTION

AIR share is one of many main objectives supported on
several parallel production job schedulers

[1,2,3,4,5,6,7,8]. However, these schedulers adopted the idea
of fair share from the Fair Share Scheduling [9] proposed for
time-sharing systems. A previous study [10] shows that fair
share can cause performance problems for some users,
especially users with mixtures of jobs due to the priority
mechanism currently implemented on many schedulers. This
work is proposed to extend goal-oriented parallel computer
job scheduling policies to improve such problems. The goal-
oriented parallel computer job scheduling policies have been
shown to achieve good scheduling performances even when
conflicting objectives are required [11,12,13]. Since fair share
objective can conflict with other scheduling objectives,
applying goal-oriented policies on such problems could be a
good solution.

 The remaining of this paper is organized as follows. In
Section II, goal-oriented parallel computer jobs scheduling
policies are reviewed. The current performance problems
caused by fair share feature implemented in production
schedulers are discussed in Section III. The experimental
designs in this work including workloads, policies and
performance measures are described in Section IV, while the
experimental results and discussions are presented in Section

S. Vasupongayya is with the Department of Computer Engineering, Prince

of Songkla University, Hat Yai, Songkhla, 90110, Thailand (e-mail:
vsangsur@coe.psu.ac.th phone: 66-74-287360; fax: 66-74-212895).

V. Finally, conclusions are given in Section VI.

II. GOAL-ORIENTED PARALLEL COMPUTER JOB SCHEDULING

Goal-oriented parallel computer job scheduling policies
[11,13] have been recently proposed to reduce the system
administrator tasks of adjusting and tuning low-level
scheduling parameters for performance by employing a
complete search technique to find a ‘good’ solution in a
limited time. A given set of objectives required at a production
parallel computer center can be conflicting with each other
such as preventing starvation and minimizing average
performance. To prevent starvation, for example, difficult jobs
(i.e., large jobs, long jobs and large-and-long jobs) must have
a high priority because these jobs are likely to be delayed. To
minimize average wait time, on the other hand, small and
short jobs must have a high priority because majority of jobs
are in this category. To achieve such objectives, most
scheduling policies use some kind of priority based
mechanisms to prioritize and consider jobs for executions
according to the priority order. Typically, the priority is
implemented by using either a queue-based or a job-based
priority mechanism.

Under a queue-based scheme [1,2,3], each job is assigned
to a queue according to the job characteristic. For example, a
difficult job is assigned to a high priority queue because it is
difficult to schedule such job; on the other hand, a short job is
assigned to a medium high priority queue because it should
not wait too long; a small job is assigned to a low priority
queue because it is easy to backfill such job. The queue-based
priority job scheduler then selects jobs from each queue
according to the priority in the queue and uses small jobs to
backfill on available resources to improve the utilization.

Under a job-based scheduling policy [5,6,7], however, a job
is prioritized by a weighted function of a set of job measures.
For example, to prevent starvation the wait time of each job is
added to the priority function. To improve the average
measures, the short jobs must be favored. Therefore, the job
runtime information is added to the priority function. Each
measure has an associated weight value so that the priority
function returns a single priority value. The scheduler is then
considering jobs for executions according to their priority
value.

The priority mechanism either queue-based or job-based
implementation can usually achieve only one objective. Goal-
oriented parallel computer job scheduling policies have been

Achieving fair share objectives via goal-oriented
parallel computer job scheduling policies

Sangsuree Vasupongayya

F

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:12, 2009

2832

shown to achieve good performances on two conflicting
objectives by automatically searching for a 'good'
compromised schedule. Furthermore, an anytime systematic
searching algorithm employed by the goal-oriented parallel
computer job scheduling policies always guarantees to find an
equal to or a better schedule when more time is given.

In this work, the goal-oriented parallel computer job
scheduling policies are extended to cover fair share objective.
The scheduling performance and fair share performances are
presented in Section V.

III. FAIR SHARE

 Fair share is one of the main objectives supported on many
production parallel computer schedulers [1,4,6,7,8]. When a
fair share policy is in used, each user will have his/her fair
share priority dynamically computed. All jobs that belong to a
user are given the same fair share priority. A job priority will
be adjusted up or down according to the fair share priority of
its owner. The fair share priority of each user is a function of
the entitled share and the cumulated usage. The entitled shares
define the importance of each user relative to other users. The
cumulated usage of each user, on the other hand, is the
amount of resources that the user has currently used so far.
Both the entitled share and the cumulated usage are
dynamically calculated within a fair share window. This type
of fair share is referred to as a relative fair share model. One
important configurable parameter of fair share is a fair share
window which is the period of time where the usage of each
user is cumulated. The typical default fair share window size
is one day or seven days.
 A previous study [14] shows that fair share feature does not
affect the average performance; however, this study does not
consider per-user performance or maximum wait performance.
Another study [10] shows that the fair share is in fact fair
because it can prevent heavy-demand users to dominate the
system resources. As a result, resources are available for other
users. In addition, the later study considers the per-user
performance and the finding demonstrates that fair share
objectives can affect performance of some users severely due
to the non-preemptive nature of the underline system and the
use of priority mechanisms.
 These users suffer poor performance because their difficult
jobs (i.e., large jobs, long jobs or both large and long jobs) are
delayed in reserving recourses because their difficult jobs
enter the system behind their not-so-difficult jobs. Due to the
priority mechanism, once a job of a user is started, the fair
share priority of the user is lowered which may prevent the
difficult jobs of the same user from receiving a reservation.
These difficult jobs are in nature required a reservation to
reserve enough resource for their executions. The delay in
reserving resources for such jobs can cause an extended delay
of starting these jobs.
 In this work, goal-oriented policies are applied to improve
the problems. To do so, a newly proposed goal-oriented
parallel computer job scheduling policy is proposed. Next, the
experimental settings including the policies, the workloads,
the performance and fair share measures are given.

IV. EXPERIMENTAL DESIGN

All policies are evaluated using an event-driven simulator
with a real job trace from a production parallel computer
center. The job trace is a ten-monthly workload that ran on an
Intel Itanium Linux cluster (IA-64) at the National Center for
Supercomputing Applications at the University of Illinois at
Urbana-Champaign during June 2003 to March 2004.

TABLE I

INFORMATION OF NSC IA-64 WORKLOAD
 Proc. #jobs per users

Month demand #users #jobs Avg. Median Max.
6/03 82% 73 2191 30.0 8.0 659
7/03 89% 68 1400 20.6 8.0 145
8/03 79% 73 3221 44.1 8.0 1873
9/03 72% 74 3057 41.3 15.0 703
10/03 71% 75 4149 55.3 15.0 1151
11/03 73% 81 3443 42.5 17.0 665
12/03 74% 61 3521 57.7 14.0 635
1/04 73% 53 3156 59.5 17.0 679
2/04 74% 73 3969 54.4 28.0 541
3/04 75% 70 3466 49.5 15.5 1234

 Job size (NT) demand (NT) per user
Month Avg. Median Max. Avg. Median Max.
6/03 34.5 0.8 960.0 1034.7 24.0 24071
7/03 60.6 1.3 1536.0 1247.4 145.7 16719
8/03 23.4 0.0 1536.0 1031.6 120.0 14346
9/03 21.7 0.1 912.0 895.5 72.5 18499
10/03 16.3 0.4 912.0 899.5 114.7 8060
11/03 19.5 0.7 1536.0 827.1 27.6 10183
12/03 20.1 1.1 1152.0 1159.3 23.2 17776
1/04 22.1 5.1 1920.0 1313.6 317.4 10340
2/04 16.6 0.3 1824.0 900.3 93.3 8931
3/04 20.6 0.0 1832.8 1018.0 46.1 12892

 Job size (N) Job size (T)
Month Avg. Median Max. Avg. Median Max.
6/03 12.1 4.0 128 1.4h 0.20h 12h
7/03 23.5 8.0 128 1.9h 0.18h 12h
8/03 7.3 1.0 128 1.1h 0.00h 12h
9/03 9.1 1.0 128 1.4h 0.03h 12h
10/03 5.0 1.0 128 2.0h 0.13h 12h
11/03 6.0 1.0 128 2.5h 0.15h 12h
12/03 5.6 1.0 128 3.6h 0.33h 24h
1/04 10.7 2.0 128 4.5h 1.10h 24h
2/04 5.0 2.0 128 3.1h 0.11h 24h
3/04 5.8 1.0 128 2.4h 0.00h 24h

Scheduling performances of each month are computed for

jobs submitted during the month. To be realistic, however,
each simulation of a given month includes a one-week (from
the previous month) warm up and a cool-down period in
which jobs (from the next month) continue to arrive. The
cool-down period is typically a few days only because the
period will end when all jobs submitted during the month for
which the performance measures are computed have all
started. To understand the full potential of all policies, the
simulator uses the perfect runtime information of each job,
and thus the impact of inaccurate runtime estimates is
eliminated.

Table 1 shows the workload characteristic in each month
including demand (Proc. demand), number of users (#users),
number of jobs (#jobs) and job size (i.e., NT: node-hour, N:
node, T: runtime in hours). Job size information is given in

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:12, 2009

2833

three measures including average (Avg.), median and
maximum (Max.) values.

A. Policies
 Two types of policies are evaluated in this work. The first

type of policies is the simple priority-based scheduling
policies with backfill techniques. This set of policy includes
the basic First-Come-First-Serve (FCFS) priority, Largest-
Slowdown-First (LXF) priority and the fair share priority. The
second type of policies is the goal-oriented parallel computer
job scheduling policies both the original version and the
newly proposed version.

The most widely used non-preemptive parallel job
scheduling policies are priority based scheduling policies with
backfill techniques. Backfill techniques allow lower priority
jobs to start on idle resources as long as their executions do
not delay the scheduled start time of the oldest waiting job. In
this work, FCFS-backfill and LXF-backfill policies are used
as baseline policies because FCFS-backfill tends to achieve
good maximum wait, whereas LXF-backfill achieves good
average performance.

A simple relative fair share policy namely RelShare(1d) is
also evaluated. RelShare(1d) policy uses one-day fair share
window. Under this policy, the job is ordered by its owner fair
share priority. The fair share priority of each user is
dynamically computed based on the user’s cumulated usage
during the current fair share window (i.e., the current day).
The cumulated usage of a user includes the actual usage of the
user from the beginning of the day until the current time as
well as the expected usage of the currently running jobs and
the job with the reservation (if any). However, the usage is
only computed within the current fair share window. That is,
if the job is expected to run across fair share window, only the
usages in the current window are cumulated.

Goal-oriented parallel computer job scheduling policies,
namely Tradeoff(Tw:avgX) [11,13], are extended to cover fair
share objective by using the fair share priority to organize the
search space. That is, the fair share priority of the job owner is
used as a branching heuristic. This way, the fair share
objective biases the searching process to the schedule that
favors fair share objectives. The way in which the fair share
priority is calculated here is similar to that in the RelShare(1d)
policy. That is, the fair share window is one-day and the
cumulated usages include the actual usages and the expected
usages in the current fair share window. This adapted policy is
called Tradeoff-fs(Tw:avgX). Under this policy, the searching
process starts from a fair share favored schedule and continue
its search to other schedules. During the searching process the
current ‘best’ schedule found so far is kept. To find the ‘best’
schedule, the searching algorithm compares the newly found
schedule with the current ‘best’ schedule. If the new schedule
results in a ‘better’ performance according to the current
objectives, the new schedule is kept as the current ‘best’
schedule. The searching process continues until the time limit
is reached. Note that the definition of the ‘best’ performance
can be found in the previous works [11,15] and the left-most

path schedule is always started as the first current ‘best’
schedule.

B. Performance Measures
Both widely used scheduling performances and a fair share

performance are studied in this work. Previous work [9] has
shown that achieving fair share can affect the scheduling
performance of some users. Thus, several widely used
scheduling performance measures [16,17,18,19,20] are
studied. These measures include average wait, average
bounded slowdown, maximum wait and 99th-percentile wait.
The maximum wait and the fair share performance measures
are focused in this study because previous studies indicated
that the fair share has little or no impact on average
performance [14] but the maximum wait performance is
affected severely [10].

The slowdown is the ratio of the job turnaround time to its
runtime. However, if the job is very short, its slowdown
measure is very high. Thus, the performance of a few very
short jobs can affect the overall slowdown measure. To
minimize this impact, a bounded slowdown is used instead of
the slowdown. The bound in this study is set to one minute
meaning that any job shorter than one minute will calculate its
slowdown as a one-minute job.

To evaluate the fair share performance, the deviation in
node hours (dev)—defined in [10] is used for evaluating the
per-user fair share performance of each policy. The dev
measure is designed to be the difference between the
cumulated actual usage and the cumulated entitled share of
each user over a given fair share window. In this work, a fair
share window of one-day which is a normal default fair share
window size of many production job schedulers is used. By
definition, a positive dev value and a negative dev value mean
an over-share and an under-share, respectively.

V. RESULTS AND DISCUSSION

Results and discussions are organized as follows. First, the
overall scheduling performance of the all policies studied is
presented. Next, the fair share performance is given. Then, the
detailed analysis of how the proposed goal-oriented policy can
achieve good scheduling performances, while maintaining
good fair share performance is discussed.

A. Overall Scheduling Performance
The overall scheduling performances of FCFS-backfill,

LXF-backfill, RelShare(1d), and Tradeoff-fs(Tw:avgX) are
presented in Figure 1. Figure 1(a)-(d) show the average
bounded slowdown, the average wait, the maximum wait, and
the 99th-percentiel wait performance, respectively. As
expected, FCFS-backfill provides good maximum wait
performances on all months (Figure 1(c)), while LXF-backfill
provides good performances on both average bounded
slowdown Figure 1(a)) and average wait (Figure 1(b).

Impressively, Tradeoff-fs(Tw:avgX) achieves the best or
close to the best performance on all measures in all months,
except perhaps a slightly high maximum wait in March 2004.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:12, 2009

2834

These results indicate that the proposed goal-oriented parallel
job scheduling policy does not degrade the scheduling
performances. Note that Tradeoff-fs(Tw:avgX) significantly
outperforms RelShare(1d) on maximum wait measure.

0

100

200

av
g

bo
un

de
d

sl
ow

do
w

n

6/
03

7/

03

8/
03

9/

03

10
/0

3

11
/0

3

12
/0

3

1/
04

2/

04

3/
04

FCFS-backfill
LXF-backfill
RelShare(1d)
Tradeoff-fs(Tw:avgX)

0

10

20
av

g
w

ai
t (

hr
)

6/
03

7/

03

8/
03

9/

03

10
/0

3

11
/0

3

12
/0

3

1/
04

2/

04

3/
04

FCFS-backfill
LXF-backfill
RelShare(1d)
Tradeoff-fs(Tw:avgX)

 (a) Average bounded slowdown (b) Average wait

0

200

400

m
ax

 w
ai

t (
hr

)

6/
03

7/

03

8/
03

9/

03

10
/0

3

11
/0

3

12
/0

3

1/
04

2/

04

3/
04

FCFS-backfill
LXF-backfill
RelShare(1d)
Tradeoff-fs(Tw:avgX)

0

200

400

99
th

-p
er

ce
nt

itl
e

w
ai

t (
hr

)

6/
03

7/

03

8/
03

9/

03

10
/0

3

11
/0

3

12
/0

3

1/
04

2/

04

3/
04

FCFS-backfill
LXF-backfill
RelShare(1d)
Tradeoff-fs(Tw:avgX)

(c) Maximum wait (d) 99th-percentitle wait

Fig. 1 Overall scheduling performance

In conclusion, the results in this section show that the
proposed goal-oriented parallel computer job scheduling
policy performs well on all scheduling performance measures.
The next section investigates the fair share performance of
each policy.

B. Fair share performance
This section is focusing on evaluating the fair share

performance of each policy by showing the deviation of node
hour performance. Figure 2 shows the average over all users
and the sum of all users of the absolute per-user dev in each of
the ten month of each policy.

0

200

400

600

av
g

ab
s(

de
v)

6/
03

7/

03

8/
03

9/

03

10
/0

3

11
/0

3

12
/0

3

1/
04

2/

04

3/
04

FCFS-backfill
LXF-backfill
RelShare(1d)
Tradeoff-fs(Tw:avgX)

0

1

2

3x 105

su
m

 a
bs

(d
ev

)

6/
03

7/

03

8/
03

9/

03

10
/0

3

11
/0

3

12
/0

3

1/
04

2/

04

3/
04

FCFS-backfill
LXF-backfill
RelShare(1d)
Tradeoff-fs(Tw:avgX)

(a) Average absolute dev (b) sum absolute dev

Fig. 2 Monthly dev performances

Figure 2(a) shows the average absolute dev over all users in

each month of the four policies studied, whereas Figure 2(b)
shows the total dev of all users in each month. The average
dev performance in Figure 2(a) shows that the proposed

Tradeoff-fs(Tw:avgX) policy outperforms all policies and
achieves the lowest deviation of fair share among users in all
months. RelShare(1d) policy reduces unfairness observed
under FCFS-backfill policy but it still loose to LXF-backfill
policy. Note that LXF-backfill provides good fair share
performances but it achieves these performances by favoring
the majority of jobs, resulting in poor overall maximum wait
performances. Tradeoff-fs(Tw:avgX) policy, on the other
hand, achieves good fair share performances without
degrading the maximum wait performance.

According to the results so far, the conclusion is that
Tradeoff-fs(Tw:avgX) not only achieves good scheduling
performances but also provides good fair share performances.

C. How goal-oriented policies solve unfairness problems
In this section, the per-user performance is analyzed to

discover how Tradeoff-fs(Tw:avgX) achieves such good
performances. To answer the question, the performance of the
proposed Tradeoff-fs(Tw:avgX) policy is compared against
the performance of the original Tradeoff(Tw:avgX). This
result provides evidence that the fair share priority used as a
branching heuristic in the newly proposed policy does
influence the good performances. In addition, the original
Tradeoff(Tw:avgX) has never been evaluated on any fair
share measure. Figure 3 shows performances of the two goal-
oriented parallel computer job scheduling policies and the
RelShare(1d) policy.

Figure 3(a)-(f) show the average bounded slowdown, the
average wait, the maximum wait, the 99th-percentile wait, the
average absolute per-user dev and the sum absolute per-user
dev performances of RelShare(1d), Tradeoff(Tw:avgX) and
Tradeoff-fs(Tw:avgX), respectively. The results show that
Tradeoff-fs(Tw:avgX) outperforms Tradeoff(Tw:avgX) on
fair share measures (Figure 3(e)-(f)), while achieves similar
scheduling performances (Figure 3(a)-(d)).

Next, the users who suffer under RelShare(1d) as reported
in [9] are analyzed. Table II shows the dev, maximum wait,
average wait and average bounded slowdown performances
under each policy of the users with worse degradation in wait
time under RelShare(1d) in July 2003 month. Results on other
months are similar. The results on July 2003 are presented
here due to its high load characteristic.

As shown in Table III, Tradeoff-fs(Tw:avgX) policy
improves performances of the users (except user #21) who
suffer under RelShare(1d) as being seem from the dev
measure. User #21 is slightly under-shared under Tradeoff-
fs(Tw:avgX) policy. However, all scheduling performances of
user #21 under Tradeoff-fs(Tw:avgX) policy are better than
those under RelShare(1d) policy.

 To understand how Tradeoff-fs(Tw:avgX) policy achieves
good performances, Figure 4 shows the number of jobs
belonging to user #8 on each day in July 2003 month. The
numbers of three types of jobs are shown in the figure: the
jobs that are waiting at the beginning of that day, the jobs that
are submitted during that day, and the jobs that are started on
that day. Figure 4(a) shows the job information of user #8

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:12, 2009

2835

under RelShare(1d) policy, while Figure 4(b) shows the same
information under Tradeoff-fs(Tw:avgX) policy. User #8
suffers poor performance under RelShare(1d) because only a
few jobs of the user can start each day. On the other hand,
Tradeoff-fs(Tw:avgX) policy allows several jobs of user #8 to
start each day. Thus, the backlog under Tradeoff-fs(Tw:avgX)
policy is smaller than that under RelShare(1d). To further
illustrate this point, Figure 5(a) shows the per-day demand,
usages and entitle shares of user #8 under RelShare(1d)
policy, while Figure 5(b) shows the same information under
Tradeoff-fs(Tw:avgX) policy. The average demand of all
active users is also given for comparison purposes. Since the
backlog is reduced under Tradeoff-fs(Tw:avgX) policy the
demand on each day under Tradeoff-fs(Tw:avgX) is lower
than that under RelShare(1d) policy. Note that the demand is
computed daily. Thus, the demand on each day consists of the
newly submitted jobs and the current backlog on that day.
This way, some jobs can be counted as demand on several
days if the jobs remain in the system for several days.

The results so far have shown that the branching heuristic
used by Tradeoff-fs(Tw:avgX) policy helps to improve the
fair share performance while providing the similar scheduling
performances. Tradeoff-fs(Tw:avgX) policy also improves the
performance of user with mixtures of jobs who suffers poor
maximum wait performance under RelShare(1d) policy. The
explanation here is that Tradeoff-fs(Tw:avgX) policy allows
jobs of these users to start as long as their executions result in
a better scheduling performance. On the other hand,
RelShare(1d) policy blocks the jobs of these users because of
the priority mechanism.

Performances of other users under Tradeoff-fs(Tw:avgX)
policy are also improved as shown in Table III. Table III
shows the dev, maximum wait, average wait and average
bounded slowdown of users with mixture of jobs but spread
their jobs out over a period of time during the month. These
users are not suffered under RelShare(1d) policy. In fact, they
could benefit under RelShare(1d) policy by becoming over-
share users. For example, user #70 on July 2003 goes from
under-share of 1040.8 node-hours under FCFS-backfill policy
to over-share of 423.5 node-hours under RelShare(1d) policy
and user #103 on November 2003 goes from under-share of
355.1 node-hours under FCFS-backfill policy to over-share of
424.8 node-hours under RelShare(1d) policy.

Tradeoff-fs(Tw:avgX) policy, on the other hand, does not
allow these users to get benefits from the fair share. User #70
on July 2003 is under-share by only 89.2 node-hours and user
#103 on November 2003 is under-share by only 38.1 node-
hours, while these two users become over-share users under
RelShare(1d) policy. In addition, Tradeoff-fs(Tw:avgX)
policy also reduce the amount of under-share of the already
under-share users such as user #113 on August 2003. The
amount of under-share of this user is reduced from 1178.6
node-hours under FCFS-backfill policy to under-share of only
303.2 node-hours under Tradeoff-fs(Tw:avgX), whereas this
user is still under-share of 411.5 node-hours under
RelShare(1d).

0

100

200

av
g

bo
un

de
d

sl
ow

do
w

n

6/
03

7/

03

8/
03

9/

03

10
/0

3

11
/0

3

12
/0

3

1/
04

2/

04

3/
04

Tradeoff(Tw:avgX)
RelShare(1d)
Tradeoff-fs(Tw:avgX)

0

10

20

av
g

w
ai

t (
hr

)

6/
03

7/

03

8/
03

9/

03

10
/0

3

11
/0

3

12
/0

3

1/
04

2/

04

3/
04

Tradeoff(Tw:avgX)
RelShare(1d)
Tradeoff-fs(Tw:avgX)

(a) Average bounded slowdown (b) Average wait

0

200

400

m
ax

 w
ai

t (
hr

)

6/
03

7/

03

8/
03

9/

03

10
/0

3

11
/0

3

12
/0

3

1/
04

2/

04

3/
04

Tradeoff(Tw:avgX)
RelShare(1d)
Tradeoff-fs(Tw:avgX)

0

200

400

99
th

-p
er

ce
nt

itl
e

w
ai

t (
hr

)

6/
03

7/

03

8/
03

9/

03

10
/0

3

11
/0

3

12
/0

3

1/
04

2/

04

3/
04

Tradeoff(Tw:avgX)
RelShare(1d)
Tradeoff-fs(Tw:avgX)

(c) Maximum wait (d) 99th-percentitle wait

0

200

400

600

av
g

ab
s(

de
v)

6/
03

7/

03

8/
03

9/

03

10
/0

3

11
/0

3

12
/0

3

1/
04

2/

04

3/
04

Tradeoff(Tw:avgX)
RelShare(1d)
Tradeoff-fs(Tw:avgX)

0

1

2

3x 105

su
m

 a
bs

(d
ev

)

6/
03

7/

03

8/
03

9/

03

10
/0

3

11
/0

3

12
/0

3

1/
04

2/

04

3/
04

Tradeoff(Tw:avgX)
RelShare(1d)
Tradeoff-fs(Tw:avgX)

(e) Average absolute dev (f) sum absolute dev

Fig. 3 Scheduling and fair share performance of
RelShare(1d), Tradeoff(Tw:avgX) and Tradeoff-fs(Tw:avgX)

VI. CONCLUSIONS

This study presents and analyzes the results of extending a
goal-oriented parallel job scheduling policy to cover fair share
objective by applying the fair share priority as a branching
heuristic. All policies are evaluated using an event-driven
simulator with a ten-monthly workload that ran on a real
production computer center. In addition to the fair share
objective, the goal-oriented policies considered two
objectives—preventing starvation and minimizing average
measures. The scheduling performance of the proposed policy
(i.e, Tradeoff-fs(Tw:avgX) is compared against the two
priority backfill policies namely FCFS-backfill and LXF-
backfill. These policies have been shown to achieve the best
performance on each objective studied. In addition, a simple
relative fair share policy namely RelShare(1d) policy is also
evaluated.

The experimental results show that the proposed goal-
oriented parallel computer job scheduling policy (i.e.,
Tradeoff-fs(Tw:avgX)) does achieve the best or close to the
best performance on all scheduling objectives, while provides
a good fair share performance. Tradeoff-fs(Tw:avgX) policy
works similar to RelShare(1d) policy such that it does not
allow heavy-demand users to overtake the system resources.
However, Tradeoff-fs(Tw:avgX) policy does not cause any

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:12, 2009

2836

scheduling and fair share performance problems for users
with mixture of jobs as observed under RelShare(1d) policy.
In fact, Tradeoff-fs(Tw:avgX) policy is more fair because it
optimizes the dev measure better than the RelShare(1d)
policy.

The results presented in this work are very encouraging
even though the Tradeoff-fs(Tw:avgX) policy does not
consider the fair share directly as parts of its objectives. In the
future work, low overhead fair share measures will be
investigated so that the fair share can be directly considered as
one of the objectives in the goal-oriented parallel computer
job scheduling policies.

TABLE II

PERFORMANCE OF USERS WITH WORSE DEGRADATION
IN WAIT TIME UNDER RELSHARED(1D) IN JULY 2003

Deviation in node hours
User FCFS-bf LXF-bf RelShare Tradeoff-fs

8 -2907.8 -1606.5 -7245.0 -1396.0
21 -1706.0 -1611.1 -667.8 -2311.1
24 -1787.6 -894.3 -4592.9 -767.9
49 1532.0 -1373.0 68.6 190.0
71 6585.3 3803.6 4582.9 3712.5

Maximum wait
User FCFS-bf LXF-bf RelShare Tradeoff-fs

8 82.8h 26.6h 280.7h 61.0h
21 65.6h 63.5h 109.5h 68.4h
24 114.8h 30.7h 283.8h 33.2h
49 66.2h 179.8h 163.5h 84.0h
71 105.1h 143.5h 211.2h 125.2h

Average wait
User FCFS-bf LXF-bf RelShare Tradeoff-fs

8 21.1h 4.6h 80.7h 10.1h
21 11.4h 6.3h 11.9h 6.7h
24 26.1h 8.8h 73.3h 10.7h
49 11.5h 16.0h 23.7h 8.0h
71 29.1h 27.7h 31.8h 22.0h

Average bounded slowdown
User FCFS-bf LXF-bf RelShare Tradeoff-fs

8 168.1 34.7 907.2 89.6
21 126.6 28.9 103.8 35.6
24 459.5 122.4 2033.2 181.2
49 106.7 42.6 108.4 14.7
71 148.2 45.8 94.1 103.6

10 20 30
0

5

10

15

of

 jo
bs

Day of the month

previous wait
new submitted
started today

10 20 30

0

5

10

15

of

 jo
bs

Day of the month

previous wait
new submitted
started today

 (a) RelShare(1d) (b) Tradeoff-fs(Tw:avgX)

Fig. 4 Per-day number of jobs of user #8 on July 2003

10 20 30
0

500

1000

no
de

 h
ou

rs

Day of the month

demand
usages
entitled share
avg. demand of all users

10 20 30
0

500

1000

no
de

 h
ou

rs

Day of the month

demand
usages
entitled share
avg. demand of all users

 (a) RelShare(1d) (b) Tradeoff-fs(Tw:avgX)

Fig. 5 Per-day node-hours of user #8 on July 2003

TABLE III
PERFORMANCE OF USERS WITH MIXTURE OF JOBS

BUT SPREAD THEIR JOBS
Dev

User Mo FCFS-bf LXF-bf RelShare Tradeoff-fs
70 7/03 -1040.8 -581.3 423.5 -89.2

113 8/03 -1178.6 -351.6 -411.5 -302.2
103 11/03 -355.1 -483.0 424.8 -38.1

Maximum wait
User Mo FCFS-bf LXF-bf RelShare Tradeoff-fs
70 7/03 49.0h 60.0h 20.1h 34.0h

113 8/03 35.6h 28.7h 30.6h 29.8h
103 11/03 33.9h 32.4h 20.5h 38.8h

Average wait
User Mo FCFS-bf LXF-bf RelShare Tradeoff-fs
70 7/03 25.7h 17.4h 8.9h 12.0h

113 8/03 19.2h 11.4h 12.4h 10.8h
103 11/03 8.9h 2.9h 1.1h 1.6h

Average bounded slowdown
User Mo FCFS-bf LXF-bf RelShare Tradeoff-fs
70 7/03 54.1 25.8 28.8 31.4

113 8/03 59.9 15.9 61.4 18.1
103 11/03 141.7 27.8 2.8 7.0

REFERENCES
[1] OpenPBS, http://www.nas.nasa.gov/Software/PBS/
[2] PBS pro, http://www.pbspro.com
[3] LSF, http://www.platform.com/product/ lsffamily.
[4] LSF fair share documentation, http://accl.grc.nasa.gov/

job_schedulers/lsf/ Docs/lsf6.1/lsf6.1_admin /E_fairshare.html
[5] D. Jackson, Q. Snell & M. Clement. "Core algorithms of the MAUI

scheduler". In proceeding of the Workshop on Job Scheduling Strategies
for Parallel Processing, 2001.

[6] Maui scheduler, http://www.supercluster.org/maui
[7] Moab scheduler, http://www.clusterresources.com/products/mwm/

docs/moabadminguide450.pdf
[8] S. Kannan, M. Roberts, P. Mayes, D. Brelsford & J. Skovira. "Workload

management with LoadLeveler". Technical Report, IBM Redbook, 2001.
[9] J. Key & P. Lauder. "A fair share scheduler". Communications of the

ACM, 31(3):44-55, 1988.
[10] S. Vasupongayya, "Impact of fair share and its configurations on parallel

job scheduling algorithms". (to appear). In proceeding of the 2009
WASET International Conference on High Performance Computing,
Venice, Italy, October 2009.

[11] S.-H. Chiang and S. Vasupongayya, "Design and potential performance
of goal-oriented job scheduling policies for parallel computer
workloads". In the IEEE Transaction on Parallel and Distributed
Systems. 19(12):1642-1656, 2009.

[12] S. Vasupongayya, "Goal-oriented parallel job scheduling: A revisit", In
proceeding of the 2nd UBU-Research, Ubonratchathani, Thailand, July
2008.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:12, 2009

2837

[13] S. Vasupongayya, S.-H Chiang and B. Massey, "Search-based job
scheduling for parallel computer workloads", In proceeding of the IEEE
Cluster, Boston, MA, 2005.

[14] S. Kleban and S. Clearwater. "Fair share on high performance computing
system: What does fair really mean?" in proceeding of the IEEE
International Symposium on Cluster Computing and the Grid, 2003.

[15] S. Vasupongayya and S.-H. Chiang. "Multi-objective models for
scheduling jobs on parallel computer systems". In proceeding of IEEE
Cluster, Barcelona, Spain, 2006.

[16] S.-H. Chiang, A. Arpaci-Dusseau and M. Vernon. "The impact of more
accurate request runtimes on production job scheduling performance". In
Lecture Notes in Computer Science (2537):103-127, 2002.

[17] S.-H. Chiang and C. Fu. "Benefit of limited time-sharing in the presence
of very large parallel jobs". In proceedings of the IEEE International
Parallel and Distributed Processing Symposium, 2005.

[18] S.-H. Chiang and M. Vernon. "Production job scheduling for parallel
shared memory systems". In proceeding of the IEEE International
Parallel and Distributed Processing Symposium, 2001.

[19] D. Talby and D. Feitelson, "Supporting priorities and improving
utilization of the IBM SP2 scheduler using slack-based backfilling". In
proceeding of the International Parallel Processing Symposium, 1999.

[20] D. Talby and D. Feitelson, "Improving and stabilizing parallel computer
performance using adaptive backfilling". In proceeding of the IEEE
International Parallel and Distributed Processing Symposium, 2005.

Sangsuree Vasupongayya received a Bachelor of Engineering in Computer
Engineering from Prince of Songkla University, a Master of Science in
Computer Science from California State University Chico and a Ph.D. degree
in Computer Science from Portland State University. Currently, Dr.
Vasupongayya is the associate department head for academic affairs at the
computer engineering department, Faculty of Engineering, Prince of Songkla
University. Interested research areas include high-performance computer
resource scheduling, cryptography, eLearning and engineering curriculum and
education.

