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Abstract—The new technology of fuzzy neural networks for 

identification of parameters for mathematical models of geofields is 
proposed and checked. The effectiveness of that soft computing 
technology is demonstrated, especially in the early stage of 
modeling, when the information is uncertain and limited. 
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I. INTRODUCTION 
OR many problems in sciences on Earth (geodesy, 
geology, geophysics, cartography, photogrammetry, etc.) 

the problem of modeling the geofields surface (height, depth, 
pressure, temperature, pollution factor, etc.), wich is usually 
displayed on maps by means of isolines, is urgent. If 
representation of geofields surface is possible as function of 
two variables h=f (x, y), which has hi values at (xi, yi), (i 

= n,1 ) peaks, the digital model of this function is required for 
computer processing and storage. 

We are going to consider the digital model of geofield 
(DMG) as a set of digital values of continuous objects in 
cartography (e.g. height of a relief) for which their spatial 
coordinates and the mean of structural description are 
specified. It will allow calculating the values of geofield in the 
given area. The important part of any DMG is the method of 
interpolating of its surface. For this, various ways of 
interpolation yield various results which can be estimated only 
from the point of view of practical applications [1- 6].  

Nowadays, more than ten methods of surface interpolation 
are known. They are as fellows algebraic and orthogonal 
polynoms, rational fractions; in some eases they take functions 
satisfying some apriori given conditions (e.g. positivity of f (x, 
y)) values; multi squadric function, at which approximation is 
reached bu means of square – law functions (squadric), 
representing hyperboles; splines; geostatic methods (kriging). 
However, none of them is completely universal. We shall 
consider widely used procedure of interpolation by algebraic 
polynoms 
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where i = ;m,0   j = n,0  - exponents;   A - factors at 
decomposition members received on a method of least squares 
(LSM). 

Realization of these methods is rather simple; therefore they 
have received a wide circulation [1-5]. This is the linear 
interpolation modeling of a surface as set of triangles. Thus 
the normal to a surface is constant along all surface of a 
triangle and sharply varies at transition through the sides 
separating triangles. Therefore, LSM constructed with use of 
linear interpolation, frequently insufficiently adequately 
represent the investigated phenomenon [2]. 

The much better result (absence of sharp differences of 
values of researched parameter, smoothness of isolines), is 
given by modeling with the use of polynomial to interpolation 
of higher degree. The general (common) expression for 
calculation of value, for example, heights h in a point of a 
surface with coordinates (x, y) looks like: 
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We shall consider a special case (1) at m=2, that is the 
equation of regress of the second order 
 

H(x,y)=C00+C10x+C01y+C20x2+C11xy+C02y2                     (2)     
             
The equation of measurements of target coordinate h for 

this case will be written down as: 
 

Zh=C00+C10x+C01y+C20x2+C11xy+C02y2+δh 

 
Then the model of an experimental material can be 

presented in the following matrix kind: 
 

Zh=Xθ+δh, 

 

where Zh = || z1h, z2h,…, znh || - a vector of measurements of 
target coordinate h;  θ= ||C00, C10, C01, C20, C11, C02||T - a vector 
of required factors; 
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A structural matrix; n - quantity(amount) of points of 

supervision (measurements). 
Usually for identification (estimation) of factors of a 

polynom (2) are used LSM of the following kind 
 

θ=(ХТХ)-1(ХТZh), 
Dθ=(ХТХ)-1σ2, 

 
where θD - dispersive matrix of mistakes of estimations.  

The use of statistical probability methods, such as the least-
squares method, requires preliminary analysis of the data for 
normality of the sample distribution. A normality check 
assumes that the following four conditions are satisfied. 
 
1. The intervals σ±σ± 2x,x x and σ± 3x  must contain 68, 
95, and 100%, respectively, of the sample values x  is the 
mean and о is the standard deviation). 
2. The coefficient of variation V must not exceed  33%. 
3. The kurtosis xE  and the asymmetry coefficient kS  must 
be close to zero. 
4. Mx ≈ . where M is the sample median. 
 

The analysis [6] was used for modeling (2) showed that 
distribution contradicted the normality assumption (Table 1). 

It must be noted that in the early stage modeling of 
geofield, the data are not only limited and uncertain but also 
fuzzy (the output and input coordinates of the system are 
measured in definite intervals and their values are measured 
with errors). 

II. PROBLEM FORMULATION AND SOLUTION  
It is therefore necessary to identify the parameters of a 

mathematical model of a multivariate fuzzy object described 
by the regression equation 
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where  jkc~       are the desired fuzzy parameters. 

We shall determine the fuzzy values of the parameters   jkc~   
of equation (3) using. experimental fuzzy statistical data of the 
process, i.e., the input y~,x~  and output  H~  coordinates of the 

model. Let us consider a solution of this problem using fuzzy 
logic and neural networks [7,8]. 

A neural network consists of interconnected sets of fuzzy 

neurons. When an neural network is used to solve equation 
(3), the input signals of the network are the fuzzy values of the 
variable ),y~,x~(B~ =  and the output is H~  . The fuzzy values of 

the parameters   jkc~     are the network parameters. We present 

the fuzzy variables in triangular form, the membership 
functions of which are calculated by the formula 
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    Neural-network training is the principal task in solving the 
problem of identification of the parameters  jkc~  of equation 
(3). An α-section is used to train the parameter values [7]. 

We assume the presence of experimentally obtained fuzzy 
statistical data. From the input and output data we compose 
training pairs for the network )T~,B~( . To construct a model of a 
process, the input signals B~ are fed to the neural network 
input (Fig.1); the output signals are compared with standard 
output signals T~. 

After comparison, the deviation is calculated:  
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When an α-section is used. the deviations for the left and 
right parts are calculated by the  formulas 
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where [ ] [ ])(t),(t)(T~;)(h),(h)(H~ 2i1ii2i1ii αα=ααα=α  
 

Training (correction) of the network parameters is 
concluded when the deviations E for all training pairs are less 
than the specified value (Fig. 2). Otherwise, it is continued 
until E is minimized. 

The network parameters for the left and right parts are 
corrected a-s follows:  
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Here o
2jk

n
1jk

o
1jk c,c,c   and n

jkc 2  are the old and new  values 

of the left and right pans of the neural network parameters 
]c,c[c~ 2jk1jkjk = ,  and γ  is the training rate. 
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III. NUMERICAL EXAMPLE  
Large Let us consider the mathematical model is described 

the equation of fuzzy a regression (consider a special case (3) 
at m=2): 

)5(.y~c~y~x~c~x~c~y~c~x~c~c~H~ 2
0211

2
20011000 +++++=

 
 

We shall construct a neural structure for solution of (5) in 
which the network parameters are the coefficients 

021120011000 c~,c~,c~,c~,c~,c~ . The structure has four inputs and one 
output (Fig. 3). 

Using a neuro-network structure, we employ (4) to train the 
network parameters. For 0=a , we obtain the following 
expressions: 
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For 1=a , we obtain 
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    As a result of training (6) and (7), we find network 
parameters that satisfy the knowledge base with the required 
training quality. 

Fuzzy statistical data (see Table 2) were collected from 
experiments before the computer simulation It should be noted 
that for negative values of the parameter )0c~(c~ jkjk < , the 
formulas that include the parameter jkc~  in (5) and the 

correction of that parameter in (6) will have changed forms. 
For example, if 0c~jk < , the formula for the fifth expression, 

which includes jkc~  in (5) will have the following form: 

11112522211151 yxch;yxch ==  , and the correction formulas was 
performed.  
 

The network parameters were thus trained using the 
described fuzzy-neural network structure and experimental 
data. As a result, network-parameter values that satisfied the 
experimental statistical data were found (see Table 2): 
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     These data were obtained as a result of 20-minute training 
of the neural network.The coefficients 021120011000 c~,c~,c~,c~,c~,c~  
regression equation (5) were evaluated by a program written 
in Turbo Pascal on an IBM PC. 

IV. CONCLUSIONS 

The use of fuzzy neural networks (Soft Computing) to solve 
problems that involve evaluation parameters of mathematical 
models of geofields advantages over traditional statistical-
probability approaches. Primary is the fact that the proposed 
procedure can be used regardless of the type of distribution of 
the parameters geofield. The more so because, in the early 
stage of modeling, it is difficult to establish the type of 
parameter distribution, due to insufficient data. 
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APPENDIX

 
TABLE I 

NORMALITY ASSUMPTION   

Mx ≈  
68% 95% 100% V<33% Ex→0 Sk→0 

0.71≠0.59 
non – exe – 

cution 

77.7% 
execu - 

tion 

91.6 % 
non – exe – 

cution 

100% 
execu - 

tion 

47 % 
non – exe – 

cution 

0.45 
non – exe – 

cution 
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non – exe - 

cution 
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Fig. 1 Neural identification system 
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Training
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Random-number
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Fig. 2 System for network-parameter training (with backpropagation) 
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TABLE II 

THE EXPERIMENTAL STATISTICAL DATA 
 

              y~         
x~        

3,7,11 17,21,25 31,35,39 45,49,53 59,63,67 73,77,81 

28,31,35 
50,54,58 
68,72,76 
82,86,90 

92,96,100 
96,100,104 

0.77,0.81,0.85 
0.48,0.52,0.56 
0.37,0.41,0.45 
0.30,0.34,0.38 
0.27,0.31,0.35 
0.23,0.27,0.31 

1.08,1.13,1.17 
0.68,0.72,0.76 
0.53,0.57,0.61 
0.43,0.47,0.51 
0.39,0.43,0.47 
0.34,0.38,0.42 

1.28,1.33,1.44 
0.81,0.85,0.89 
0.63,0.67,0.71 
0.52,0.58,0.60 
0.46,0.50,0.54 
0.41,0.45,0.49 

1.43,1.47,1.51 
0.89,0.93,0.97 
0.69,0.73,0.77 
0.57,0.61,0.65 
0.51,0.55,0.59 
0.46,0.50,0.54 

1.49,1.53,1.57 
0.93,0.97,1.01 
0.72,0.76,0.60 
0.60,0.64,0.68 
0.54,0.58,0.62 
0.47,0.51,0.55 

1.48,1.50,1.54 
0.91,0.95,0.99 
0.71,0.75,0.79 
0.59,0.63,0.67 
0.53,0.57,0.61 
0.47,0.51,0.55 
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Fig. 3 Structure of neural network for second-order regression equation 


