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Abstract—In this paper, we present a novel objective non-

reference performance assessment algorithm for image fusion. It 
takes into account local measurements to estimate how well the 
important information in the source images is represented by the 
fused image. The metric is based on the Universal Image Quality 
Index and uses the similarity between blocks of pixels in the input 
images and the fused image as the weighting factors for the metrics. 
Experimental results confirm that the values of the proposed metrics 
correlate well with the subjective quality of the fused images, giving 
a significant improvement over standard measures based on mean 
squared error and mutual information. 
 

Keywords—Fusion performance measures, image fusion, non-
reference quality measures, objective quality measures. 
 

I. INTRODUCTION 
MAGE and video fusion is emerging as a vital technology 
in many military, surveillance and medical applications. It is 

a subarea of the more general topic of data fusion, dealing 
with image and video data [1,2]. The ability to combine 
complementary information from a range of distributed 
sensors with different modalities can be used to provide 
enhanced performance for visualization, detection or 
classification tasks. Multi-sensor data often present 
complementary information about the scene or object of 
interest, and thus image fusion provides an effective method 
for comparison and analysis of such data. There are several 
benefits of multi-sensor image fusion: wider spatial and 
temporal coverage, extended range of operation, decreased 
uncertainty, improved reliability and increased robustness of 
the system performance. 

In several application scenarios, image fusion is only an 
introductory stage to another task, e.g. human monitoring. 
Therefore, the performance of the fusion algorithm must be 
measured in terms of improvement in the following tasks. For 
example, in classification systems, the common evaluation 
measure is the number of the correct classifications. This 
system evaluation requires that the ‘true’ correct 
classifications are known. However, in experimental setups 
the ground-truth data might not be available. 
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In many applications the human perception of the fused 
image is of fundamental importance and as a result the fusion 
results are mostly evaluated by subjective criteria [3,4]. 
Objective image fusion performance evaluation is a tedious 
task due to different application requirements and the lack of a 
clearly defined ground-truth. Various fusion algorithms 
presented in the literature [5] have been evaluated objectively 
by constructing an “ideal” fused image and using it as a 
reference for comparison with the experimental results [6,7]. 
Mean squared error (MSE) based metrics were widely used 
for these comparisons. Several objective performance 
measures for image fusion have been proposed where the 
knowledge of ground-truth is not assumed. In [8], authors 
used the mutual information as a parameter for evaluation of 
the fusion performance. Xydeas and Petrovic [9] proposed a 
metric that evaluates the relative amount of edge information 
that is transferred from the input images to the fused image.  

In this paper, we present a novel objective non-reference 
quality assessment algorithm for image fusion. It takes into 
account local measurements to estimate how well the 
important information in the source images is represented by 
the fused image, while minimizing the number of artefacts or 
the amount of distortion that could interfere with 
interpretation. Our quality measures are based on an image 
quality index proposed by Wang and Bovik [10].  

II. DEFINITION OF THE UNIVERSAL IMAGE QUALITY INDEX 
The measure that was used as the basis for our objective 

performance evaluation of image fusion is the Universal 
Image Quality Index (UIQI) [10]. The authors compared the 
proposed quality index to the standard MSE objective quality 
measure and the main conclusion was that their new index 
outperforms the MSE, due to the UIQI’s ability in measuring 
structural distortions [10].  

Let X={xi|i=1,2,…,N} and Y={yi|i=1,2,…,N} be the original 
and the test image signals, respectively. The proposed quality 
index is defined as [10]: 
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The dynamic range of Q is [-1,1]. The best value 1 is achieved 
if and only if yi=xi for all i=1,2,…N. The lowest value of -1 
occurs when yi=2 x -xi for all i=1,2,…N. This quality index 
models image distortions as a combination of three different 
factors: loss of correlation, luminance distortion and contrast 
distortion. In order to make this more understandable, the 
definition of Q can be rewritten as a product of three 
components: 
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The first component is the correlation coefficient between X 
and Y and its dynamic range is [-1,1]. The best value 1 is 
obtained when yi=axi+b for all i=1,2,…N, where a and b are 
constants and a>0. Even if X and Y are linearly related, there 
still might be relative distortions between them and these are 
evaluated in the second and third component. The second 
component with a value range of [0,1] measures how close the 
mean luminance is between X and Y. It equals 1 if and only 
if yx = . σx and σy can be viewed as an estimate of the contrast 
of X and Y, so the third component measures how similar the 
contrasts of the images are. The range of values for the third 
component is also [0,1], where the best value 1 is achieved if 
and only if σx=σy. 

Since images are generally non-stationary signals, it is 
appropriate to measure Q0 over local regions and then 
combine the different results into a single measure Q. In [10] 
the authors propose to use a sliding window: starting from the 
top-left corner of the two images X, Y, a sliding window of a 
fixed size block by block over the entire image until the 
bottom-right corner is reached. For each window w the local 
quality index Q0(X,Y|w) is computed for the pixels within the 
sliding window w. Finally, the overall image quality index Q 
is computed by averaging all local quality indices: 
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where W is the family of all windows and |W|  is the 
cardinality of W. Wang and Bovik [10] have compared (under 
several types of distortions) their quality index with existing 
image measures such as MSE as well as with subjective 
evaluations. The tested images were distorted by: additive 
white Gaussian noise, blurring, contrast stretching, JPEG 
compression, salt and pepper noise, mean shift and 
multiplicative noise. The main conclusion was that UIQI 
outperforms the MSE, which due to the index’s ability of 
measuring structural distortions, in contrast to the MSE which 
is highly sensitive to the energy of errors.  
In order to apply the UIQI for image fusion evaluation, Piella 
and Heijmans [11] introduce salient information to the metric. 
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where X and Y are the input images, F is the fused image, c(w) 
is the overall saliency of a window and λ is defined as: 

.
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λ should reflect the relative importance of image X compared 
to image Y within the window w. s(X|w) denotes saliency of 
image X in window w. It should reflect the local relevance of 

image X within the window w, and it may depend on e.g. 
contrast, sharpness, or entropy. As with the previous metrics, 
this metric does not require a ground-truth or reference image. 
Finally, to take into account some aspect of the human visual 
system (HVS) which is the relevance of edge information, the 
same measure is computed with the ‘edge images’ (X′, Y′ and 
F′) instead of the grey-scale images X, Y and F. 
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where α is a parameter that expresses the contribution of the 
edge images compared to the original images. 

III. PROPOSED IMAGE FUSION PERFORMANCE METRICS 
 In the computation of Piella’s metric parameter λ in 
equation (4) is computed with s(X|w) and s(Y|w) being the 
variance (or the average in the edge images) of images X and 
Y within window w, respectively. Therefore, there is no clear 
measure of how similar each input image is to the final fused 
image. Each time the metric is calculated, an ‘edge image’ has 
to be derived from the input images, which adds significantly 
to the computational complexity of the metric. In addition, the 
metrics calculated and presented in [11] are only for one 
window size (8x8). The window size has a significant 
influence on this fusion performance measure, as the main 
weighting factor is the ratio of the variances of the input 
images which tend to vary significantly with the window size.  
 We propose a novel fusion performance measure that takes 
into account the similarity between the input image block and 
the fused image block within the same spatial position. It is 
defined as:                    

( ) ( ) )|,())|,,(1(|,)|,,(,, wFYQwFYXsimwFXQwFYXsimFYXQ
Ww

b −+= ∑
∈

( )( ) )|,()|,(|,)|,,( wFYQwFYQwFXQwFYXsim
Ww

+−⋅= ∑
∈

      

 (8) 
where X and Y are the input images, F is the fused image, w is 
the analysis window and W is the family of all windows. We 
define sim(X,Y,F|w) as: 
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Each analysis window is weighted by the sim(X,Y,F|w) that is 
dependent on the similarity in spatial domain between the 
input image and the fused image. The image block from two 
of the input images that is more similar to the fused image 
block is assigned a larger weighting factor used for calculation 
of the fusion performance metric. The impact of the less 
similar block is accordingly decreased. In this sense, we are 
able to measure more accurately the fusion performance, 
especially in an experimental setup where the input images are 
distorted versions of the ground-truth data; obtained by e.g. 
blurring, JPEG compression, noise addition, mean shift, etc. 
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The sim(X,Y,F|w) function is designed to have the upper limit 
at one, so that impact of the less significant block is 
completely eliminated when the other input block similarity 
measure equals one. Calculation of the sim(X,Y,F|w) function 
is computationally significantly less demanding, compared to 
the metrics proposed in [8] and [11]. 

IV. EXPERIMENTAL RESULTS 
In this section we test the proposed fusion quality measure 

in Eq. (8) to evaluate several multiresolution (MR) image 
fusion algorithms and compare it to standard objective image 
metrics. The MR-based image fusion approach consists of 
performing an MR transform on each input image and, 
following specific rules, combining them into a composite MR 
representation. The composite image is obtained by applying 
the inverse transform on this composite MR representation 
[2]. 

During the tests we use the simple averaging method, the 
ratio pyramid, Principal Component Analysis (PCA) method 
and the discrete wavelet transform (DWT), and in all MR 
cases we perform 5-level decomposition. We perform the 
fusion of the coefficients of the MR decomposition of each 
input image by selecting at each position the coefficient with a 
maximum absolute value, except for the coefficients from the 
lowest resolution where the fused coefficient equals to the 
mean value of the coefficients in that subband. 

The first pair of test images used is the complementary pair 
shown in the top row of Fig. 1. The test images have been 
created artificially by blurring the original ‘Goldhill’ image of 
size 512x512, using Gaussian blurring with a radius of 10 
pixels. The images are complementary in the sense that the 
blurring takes place at the complimentary horizontal strips in 
the first and the second image, respectively. The fused images 
obtained by the average method, the ratio pyramid, the PCA 
method and DWT domain fusion are depicted in the first and 
the second row, from left to right. Table 1 compares the 
quality of these composite images using our proposed quality 
measures. The first three rows correspond to the proposed 
fusion quality measure, as defined in Eq. (4). The rows 4 to 6 
show the proposed fusion performance measure defined in Eq. 
(8). The proposed metrics are calculated for three window 
sizes: 4x4, 8x8 and 16x16 pixels, in order to examine the 
dependence of the metric’s output values versus the analysis 
window size.   

For comparison, we also compute the PSNR between the 
original ‘Goldhill’ image and each of the generated fused 
images. In ‘real life’ image fusion scenarios we do not have 
access to the original image, so the PSNR value is provided 
just as a reference. In addition, we have provided as 
references the fusion performance metric developed by 
Petrovic and Xydeas [8] (given in the fourth row of the Table 
1-3) and the metric based on mutual information [9] (the fifth 
row of the Table 1-3). Petrovic and Xydeas metric measures 
the amount of edge information ‘transferred’ from the source 
image to the fused image in order to give an estimation of the 
performance of the fusion algorithm. It uses a Sobel edge 
operator to calculate the strength and orientation information 
of each pixel in the input and output images. In this method 

the visual information is primarily associated with the edge 
information, while the region information is ignored. More 
precisely, the results in the fifth row of Table 1 have been 
obtained by adding the mutual information between the 
composite image and each of the inputs and dividing it by the 
sum of the entropies of the inputs: 
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where I(X,F) is the mutual information between X and F ,and 
H(X) the entropy of X. In this way, the measure is normalized 
to the range [0,1].  

The following two pairs of input images are contaminated 
by or Gaussian additive noise (Fig.2) and Salt and Pepper (SP) 
noise (Fig.3). Although the additive noise can be tackled by 
performing hard thresholding of the parameters in the 
transform domain and SP noise by median filtering we did not 
perform denoising in order to get more balanced data for the 
proposed metric. The results for the noisy input images are 
given in the Table 2 and Table 3 for the image distorted by 
Gaussian additive noise and SP noise, respectively. 
 

TABLE I 
COMPARISON OF DIFFERENT OBJECTIVE QUALITY MEASURES FOR THE 

COMPOSITE IMAGES IN FIG. 1 

metrics average ratio PCA DWT 
Qb (4x4) 0.7802 0.7232 0.7805 0.8770 
Qb (8x8) 0.7899 0.7485 0.7902 0.8770 

Qb (16x16) 0.8121 0.7762 0.8121 0.8725 
Petrovic 0.3445 0.4189 0.3544 0.6598 

MI 0.3158 0.3312 0.3173 0.2846 
PSNR (dB) 28.27 23.92 28.23 32.34 

 
TABLE II 

COMPARISON OF DIFFERENT OBJECTIVE QUALITY MEASURES FOR THE 
COMPOSITE IMAGES IN FIG. 2 

metrics average ratio PCA DWT 
Qb (4x4) 0.9321 0.8942 0.9327 0.9924 
Qb (8x8) 0.9328 0.8967 0.9333 0.9895 

Qb (16x16) 0.9337 0.8958 0.9342 0.9808 
Petrovic 0.8619 0.8601 0.8626 0.9745 

MI 0.6643 0.6054  0.6644 0.5338 
PSNR (dB) 17.09 17.09 15.89 16.10 

 
TABLE III 

COMPARISON OF DIFFERENT OBJECTIVE QUALITY MEASURES FOR THE 
COMPOSITE IMAGES IN FIG. 3 

metrics average ratio PCA DWT 
Qb (4x4) 0.8969 0.8385 0.8974 0.9679 
Qb (8x8) 0.8990 0.8601 0.8997 0.9814 

Qb (16x16) 0.9016 0.8665 0.9021 0.9705 
Petrovic 0.7734 0.7889 0.7745 0.9498 

MI 0.5366 0.4658 0.5369 0.4131 
PSNR (dB) 19.71 17.99 19.71 18.38 

 
Test results show that the DWT domain fusion visually 

outperform the other three schemes. It is most noticeable as, 
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for instance, the blurring (e.g., edges in the background and 
small details) and the loss of texture in the fused image 
obtained by the ratio pyramid and averaging. Furthermore, in 
the ratio-pyramid method fused image, some details of the 
images and background have been completely lost, and in the 
average composite image, the loss of contrast is very evident. 
These subjective visual comparisons agree with by the results 
obtained by the proposed metric, presented in Table 1-3. Note 
that the proposed metric has very similar quality measures as 
the Petrovic’s metric and that these two metrics considerably 
outperform the MI measure and PSNR. It is clear from the 
experiments that MI metric and PSNR often assign the highest 
value of the fusion performance measure to the algorithm that 
does not perform well in the subjective terms. The values 
obtained from the proposed metrics correlate well to the 
subjective quality of the fused images, which was not 
achievable by the standard MI fusion performance measure 
and PSNR. In addition, the proposed metrics is not 
significantly dependent on the size of the analysis window as 
the difference in fusion performance does not change 
extensively with the variation of window size.  

V. CONCLUSION 
We present a novel objective non-reference performance 

assessment algorithm for image fusion. It takes into account 
local measurements to estimate how well the important 
information in the source images is represented by the fused 
image. Experimental results confirm that the values of the 
proposed metrics correlate well with the subjective quality of 
the fused images, giving a significant improvement over 
standard measures based on mean squared error and mutual 
information. Compared to already presented fusion 

performance measures [8,11], it obtains comparable results 
with considerably decreased computational complexity. 

Further research will focus on how to select the salient 
points in order to optimize the fusion performance. Another 
extension of the work will be performance measure based on 
regions of the image, obtained by segmentation of the input 
images, rather than calculating the measure in square 
windows. 
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Fig. 1 Fusion results, the original image blurred in stripes. Top: input image X (one half of stripes in the original image blurred, left), input 
image Y (other half of stripes in the original image blurred, middle), fused image F using averaging (right). Bottom: fused image F using ratio 

pyramid decomposition (left), fused image F using the PCA decomposition (middle), fused image F using DWT domain fusion (right) 
 
 

    
 

   
 

Fig. 2 Fusion results, the original image corrupted by additive Gaussian noise and partial blurring. Top: input image X (the original image with 
added noise and a blurred segment, left), input image Y (the original image with added noise and another blurred segment, middle), fused 

image F using averaging (right). Bottom: fused image F using ratio pyramid decomposition (left), fused image F using the PCA decomposition 
(middle), fused image F using DWT domain fusion (right) 
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Fig. 3 Fusion results, the original image corrupted by the salt and pepper noise and partial blurring. Top: input image X (the original image 
with added noise and a blurred segment, left), input image Y (the original image with added noise and another blurred segment, middle), fused 
image F using averaging (right). Bottom: fused image F using ratio pyramid decomposition (left), fused image F using the PCA decomposition 

(middle), fused image F using DWT domain fusion (right) 


