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1 
Abstract—In this paper we present discretization and 

decomposition methods for a multi-component transport model of a 
chemical vapor deposition (CVD) process. CVD processes are used 
to manufacture deposition layers or bulk materials. In our transport 
model we simulate the deposition of thin layers. The microscopic 
model is based on the heavy particles, which are derived by 
approximately solving a linearized multicomponent Boltzmann 
equation. For the drift-process of the particles we propose diffusion-
reaction equations as well as for the effects of heat conduction. We 
concentrate on solving the diffusion-reaction equation with analytical 
and numerical methods. For the chemical processes, modelled with 
reaction equations, we propose decomposition methods and decouple 
the multi-component models to simpler systems of differential 
equations. In the numerical experiments we present the 
computational results of our proposed models. 
 

Keywords—Chemical reactions, chemical vapor deposition, 
convection-diffusion-reaction equations, decomposition methods, 
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I. INTRODUCTION 

E are motivated to study the deposition of a CVD 
process with low-temperature and low-pressure plasma. 

In the last years, due to the research in producing high 
temperature films by depositing of low pressure processes the 
interest on such apparatuses has increased. We present such a 
model for low temperature and low pressure plasma, that can 
be used to implant or deposit thin layers of important materials. 
The applications are used in the production of so called 
metallic bipolar plates, which are used in polymer electrolyte 
fuel cells (PEFC), see [2]. 

Our apparatus is based on a plasma, which is modeled by a 
Boltzmann equation for the heavy particles and for their drift 
we use a classical diffusion equation, see [22]. For the 
simplification we neglect the electron modeling, because of 
their sufficient small influence.  

Further we concentrate on modelling the reaction-processes 
in the CVD apparatus, which can be done with coupled 
reaction equations. 
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The numerical approximation is done by applying semi-
analytical methods or finite difference methods of second 
order in space and time. For the effective computations we 
propose the Waveform-relaxation method as a decomposition 
method for the multi-species reaction equations. 

The paper is outlined as follows. 
In section 2 we present our mathematical model and a possible 
reduced model for the further approximations. In section 3 we 
discuss the time and spatial discretization methods. Further in 
section 4, we propose the Waveform-relaxation method for 
decoupling the complicate equations to reduce the amount of 
computational work. The numerical experiments are given in 
Section 5. In the contents, that are given in Section 6, we 
summarize our results. 

II. MATHEMATICAL MODEL 
In the following a model is presented due to the motivation 

in [22] and [14]. 
The modeling is considered for the chemical reactions in 

the plasma reactor.  
The simulation of the thin-film deposition can be done with 

a reaction equation combined with a diffusion equation, see 
[20]. 

We will concentrate on the reaction equations, which are 
given as 

( )1 1 1 1 1 2 2  in 0, ,t m mu v u u u u Tλ λ λ∂ + ∇ = − + + + Ω×…   (1) 
#  

( )1 1 2 2  in 0, ,t m m m m mu v u u u u Tλ λ λ∂ + ∇ = + + − Ω×…   (2) 

 ( ) ( ) ( )( )0,0 , , ,
t

mu x c x c x= ∈Ω…  

where the unknowns are given as ( )1 1 ,u u x t=  till  

( ),m mu u x t=  in ( )0,T +⊂ \ . 
m is the number of species, e.g. reactants, heavy particles, etc.. 
The interactions are chemical reactions between the species 
and given as 1λ  till mλ . We assume the same densities 0c  till 

mc  of the species as initial condition. For the boundary 
conditions we assume Neumann- or Dirichlet boundaries. 
 

A. Large Knudsen Numbers 
The model assumes that the heavy particles can be 

described with a fluid dynamical model, where the elastic 
collision define the dynamics and few inelastic collisions are, 
among other reasons, responsible for the chemical reactions. 

To describe the individual mass densities, as well as the 
global momentum and the global energy as the dynamical 
conservation quantities of the system, corresponding 
conservation equations are derived from Boltzmann equations. 

W 
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The individual character of each species is considered by 
mass-conservation equations and the so called difference 
equations. 

The Boltzmann equations for the heavy particles (Ions and 
Neutral elements) are given as 

( ) ( ) ,s
s s s s nn n u n c Q

t r
∂ ∂

+ ⋅ + =
∂ ∂

 

 ( )*

1
,

N

s s
s

u uu nT I q n E
t r
ρ ρ τ

=

∂ ∂
+ ⋅ + − =

∂ ∂ ∑  

 

( )** * *
tot totu q nTu u

t r
ε ε τ∂ ∂

+ ⋅ + + − ⋅ =
∂ ∂

 

( ) ( )
,

1
.

n
e

s s s inel
s

q n u c E Qε
=

+ ⋅ −∑  

where ρ is the mass density, u is the velocity and T is the  
temperature of the ions. 
 

Further the production terms ( )
,

s
n sign r rr

Q a k n nα α=∑ , where 

the rate coefficients are ,rkα . 
The drift diffusion for the heavy particles are in the 

following fluxes. The dissipative fluxes of the impulse and 
energy balance are linear combinations of generalized forces 

 ( ),*

1

1 ,
N N

s
E n

s s

q E T n
r n r

α
α

α

λ λ λ
=

∂ ∂
= − −

∂ ∂∑∑  

 * 2 ,
3

u u u I
r r r

τ η
Τ⎛ ⎞∂ ∂ ∂⎛ ⎞ ⎛ ⎞= − + − ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

 

 * 2 2

1

1 1 3 .
2 2 2

N

tot s s
s

c u nTε ρ ρ
=

= + +∑  

The diffusion of the species is underlying to the given 
plasma and described by the following equations 

 ( ) ( ) ,s
s s s s nn n u n c Q

t r
∂ ∂

+ ⋅ + =
∂ ∂

 

 ( ) ( ),

1

1 .
N

s s
s s T n

s

c E d T D n
r n r

α
α

α

μ
=

∂ ∂
= − −

∂ ∂∑  

The densities of the species are dynamical values and the 
species transport and mass transport are underlying to the 
following constraint conditions 
 ,s s

s

m n ρ=∑  

  
 0.s s s

s
n m c =∑  

Fieldmodel 
The plasma transport equations are maxwell equations and 

are coupled with a field. They are given as 

 �
0

1 ,dyn e e extB en u j
μ

∇× = − +  

 0,dynB∇⋅ =  

 .dynE B
t
∂

∇× = −
∂

 

 
 

B. Simplified model for large Knudsen Numbers 
For the numerical analysis and for the computational results, 

we reduce the complex model and derive a system of coupled 
Boltzmann and Diffusion equations. 

We do the following assumptions: 

 * ,q T
r

λ ∂
= −

∂
 

 * 0,τ =  

 ( )
, conste
inelQε =  

 
and we obtain the system of equations: 

 ( ) 0,u
t r
ρ ρ∂ ∂
+ ⋅ =

∂ ∂
 

 ( )
1

,
N

s s
s

u uu nT I q n E
t r
ρ ρ

=

∂ ∂
+ ⋅ + =

∂ ∂ ∑  

 3 3
2 2

nT nTu T nTu
t r r

λ∂ ∂ ∂⎛ ⎞+ ⋅ + + =⎜ ⎟∂ ∂ ∂⎝ ⎠
 

( ) ( )
,

1
.

N
e

s s s inel
s

q n u c E Qε
=

+ ⋅ −∑  

 
Remark 1. We obtain three coupled equations for the density, 
velocity and the temperature of the plasma. The equations are 
strong coupled and a decomposition can be done in the 
discretized form. 
 

C. Chemical Reactions 
For the application of the material balance to model the 

CVD apparatus, the chemical reactions are important to 
understand the chemical kinetics of the system, see [20]. 

We discuss the influence of concentration on kinetics and 
especially to gross reaction types. 

To describe our chemical reactions, the following types are 
necessary: 
– Autocatalytic Reactions 
– Consecutive Reactions 
– Parallel Reactions 
– Complex Reactions 
 

In the models we achieve the following terms with the 
reaction parts: 

1.) Autocatalytic Reactions: Here we have the following 
reaction: kA P⎯⎯→ , where A  and P  are the reactants. 
For the reaction rates, we obtain the term: A A PR kc c= − , so that 
our differential equation is given as 

 A
A P

c kc c
t

∂
= −

∂
 (3) 

where Ac , Pc are the concentration of each species. 
2.) Consecutive Reactions: Here we have the following 

reactions: 1kA B⎯⎯→  and 2kB C⎯⎯→ , where A , B  and C are 
the reactants. 
For the reaction rates, we obtain the terms: 1A AR k c= − , 

1 2B A BR k c k c= −  and 2C BR k c= . The differential equation is 
given as 
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 1 ,A
A

c k c
t

∂
= −

∂
 (4) 

 1 2 ,B
A B

c k c k c
t

∂
= −

∂
 (5) 

 2 ,C
B

c k c
t

∂
=

∂
 (6) 

where Ac , Bc and Cc  are the concentration of each species. 
3.) Parallel Reactions: Here we have the following types: 

1kA P⎯⎯→ , 2kA X⎯⎯→ , where A , P  and X are the 
reactants. For the reaction rates, we obtain the terms: 

( )1 2A AR k k c= − + , 1P AR k c=  and 2X AR k c= . The derived 
differential equations are given as: 

( )1 2 ,A
A

c k k c
t

∂
= − +

∂
   (7) 

 1 ,P
A

c k c
t

∂
=

∂
 (8) 

 2 ,X
A

c k c
t

∂
=

∂
 (9) 

where Ac , Pc  and Xc  are the concentrations of each species. 
4.) Complex Reactions: We deal with the following 

examples: 1 2k kA P Q⎯⎯→ ⎯⎯→  with 3kA X⎯⎯→ , 4kP Y⎯⎯→  
and 1kA B P+ ⎯⎯→  with 2kA P X+ ⎯⎯→ . Here we have 
combinations of parallel and consecutive reactions. 

The differential equations can be solved analytically or 
numerically. We propose the Waveform-relaxation method, 
see [17], [23], because of its decomposition idea to simpler 
parts. We have also taken into account the more difficult part 
with adding the diffusion processes to the kinetic model. 
Therefore we can deal with the operator-splitting and decouple 
the transport and reaction equations, see [9]. 

III. TIME- AND SPATIAL DISCRETIZATION METHODS 
In the following we describe the time and spatial 

discretization methods. We consider the following ordinary 
linear differential equation: 
 ( ) ( ) ( ),tc t Ac t Bc t∂ = +   

where the initial-conditions are given as ( )n nc c t= . The 
operators A and B are assumed to be spatial discretised, e.g. 
convection or reaction operators. 
 

A. Time Discretization methods 
For the multiple species reaction models we need to 

investigate numerical methods for solving the equations. Such 
time-dependent equations we treat with Runge-Kutta and 
Backward Differential Formula (BDF) and Implicit-Explicit 
(IMEX) methods. 

 
Runge-Kutta, BDF and IMEX methods  
For the time-discretization of our diffusion-reaction 

equations we taken into account the stiff and non-stiff parts of 
the equation-parts. Because of the nonstiff diffusion part and 
the stiff reaction part, we propose the combination of explicit 
and implicit methods, see [3] and [1]. 

Therefore we propose the Runge-Kutta and BDF methods 
as adapted timediscretization 
methods to reach higher-order results. 

For the time-discretization we use the following higher-
order discretization 
methods. 
 

Runge-Kutta method  
We use the implicit trapezoidal rule: 

 
 

(10) 
 
 
 
 
 
 
 
Furthermore we use the following Gauss-Runge-Kutta method: 
 
 
 

(11) 
 
 
 
 
To use these Runge-Kutta methods with the Waveform-
Relaxation method, we have to take into account that we solve 
equations of the form t i iu Au b∂ = + in each iteration step, 
where 1ib Bu −= is the right hand side and given at the solution 

1iu − . 
For the implicit trapezoidal rule this is no problem, because 

we do not need the values at any sub-points. However, for the 
Gauss method we need to know the values of b  at the sub-

points 0 1t c h+  and 0 2t c h+  with 1 3 1 3,
2 6 2 6

T

c
⎛ ⎞

= − +⎜ ⎟⎜ ⎟
⎝ ⎠

. 

Therefore we must interpolate b . On that account we choose 
the cubic spline functions. 

Numerical experiments show that this works properly with 
non-stiff problems, but not very well with stiff problems. 
 

B. BDF method 
Because the higher-order Gauss-Runge-Kutta method 

combined with cubic spline interpolation does not work 
properly with stiff problems, we use the following BDF 
method of order three, which does not need any sub-points and 
therefore no interpolation. 

 
The BDF3 method is defined by 

 ( ) ( )3 2 1 3 31 11 3 13
6 2 3

n n n n n nu u u u A u B u
k

+ + + + +⎛ ⎞− + − = +⎜ ⎟
⎝ ⎠

 (12) 

For the pre-stepping, i.e. to obtain nu , 1nu + , we use the implicit 
trapezoidal rule (10). 
 

Implicit-explicit methods  

0 
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The IMEX schemes have been widely used for time 
integration of spatial discretized partial differential equations 
of the diffusion-convection type. These methods are applied to 
decouple the implicit and explicit terms. Treating the 
convection-diffusion equation for example, one can use the 
explicit part for the convection and the implicit part for the 
diffusion term. In our application we divide between the stiff 
and non-stiff term, so we apply the implicit part for the stiff 
operators and the explicit part for the non-stiff operators.  
 
FSRK method  
We propose the A-stable fractional-stepping Runge-Kutta 
(FSRK) scheme, see [3], of first and second order for our 
applications. The tableau in the Butcher form is given as 
 

1 1    0    

1 1 0   0 1   

4
9

 88
45

−  0 
12
5

 0 0 
5
9

 0  

1
3

 
407
75

−

 
0 

144
25

−

 
0 0 

31
15

−

 
0 

12
5

 

order 1 1 0 0 0 0 1 0 0 

order 2 
1

10
 0 

9
10

 0 0 
1
4

 0 
3
4

 

(13) 
 

To obtain second-order convergence in numerical examples it 
is important to split the operator in the right way as we will 
show later. 
 

SBDF Method  
We use the following stiff backward differential formula 

(SBDF) method, which is a modification of the third-order 
backward differential formula (BDF3) method. 
As pre-stepping method we again use  the implicit trapezoidal 
rule. 

1 1 21 11 3 13
6 2 3

n n n nu u u u
k

+ − −⎛ ⎞− + − =⎜ ⎟
⎝ ⎠

 

( ) ( ) ( ) ( )1 2 13 3 .n n n nA u A u A u B u− − +− + +  (14) 
Again it is important to split the operator in the right way. 
 

C. Spatial Discretization methods 
We discretize the diffusion-dispersion-equation with 

implicit time-discretization and finite-volume method for the 
following equation 

( ) 0t Rc D c∂ −∇ ⋅ ∇ =   (15) 

where ( ),c c x t=  with x∈Ω  and 0t ≥ . The diffusion-

dispersion-tensor ( ),D D x v=  is given by the Scheidegger-
approach, cf. [21]. The velocity is given as v . The retardation-
factor is 0.0R > . 

The boundary-values are denoted by ( ), 0n D c c t⋅ ∇ = , 
where x∈Γ = ∂Ω  is the boundary, cf. [10]. The initial 
conditions are given by ( ) ( )0,0c x c x= . 

We integrate the equation (17) over space and time and 
derive 

 ( ) ( )
1 1

.
n n

n n
j j

t t

tt t
R c dtdx D c dtdx

+ +

Ω Ω
∂ = ∇ ⋅ ∇∫ ∫ ∫ ∫  (16) 

The time-integration is done by the backward-Euler method 
and the diffusiondispersion term is lumped, cf. [12] 
 ( ) ( )( ) ( )1 1 ,

j j

n n n nR c R c dx D c dxτ+ +

Ω Ω
− = ∇ ⋅ ∇∫ ∫  (17) 

The equation (17) is discretized over the space with respect of 
using the Greensformula. 

( ) ( )( )1 1 ,
j j

n n n nR c R c dx Dn c dτ γ+ +

Ω Γ
− = ⋅∇∫ ∫  (18) 

where jΓ  is the boundary of the finite-volume cell jΩ . We 
use the approximation in space, cf. [12]. 

The spatial-integration for (18) is done by the mid-point 
rule over the finite boundaries and given as 
 ( ) ( )1 , 1

e
j j

n n n e e e e n
j j j j jk jk jk jk

e k

V R c V R c n D cτ+ +

∈Λ ∈Λ

− = Γ ⋅ ∇∑ ∑  (19) 

where e
jkΓ  is the length of the boundary-element e

jkΓ . The 
gradients are calculated with the piecewise finite-element-
function lφ  and we obtain 

 ( ), 1 1 .
e

e n n e
jk l l jk

l

c c xφ+ +

∈Λ

∇ = ∇∑  (20) 

We get with the difference-notation for the neighbor-point j in 
the following equation, cf. [10] 
 ( )1( )n n

j j j jV R c V R c+ − =  

 ( ) ( )
{ }

1 1

\

,
e e

j j

n e e e e n n
jk jk jk l jk j l

e l j k

n D x c nτ φ + +

∈Λ ∈Λ ∈Λ

⎛ ⎞
⎜ Γ ⋅ ∇ ⎟ −⎜ ⎟
⎝ ⎠

∑ ∑ ∑  (21) 

where 1, ,j m= … . 

IV. DECOMPOSITION METHODS 
In the following we present the different decomposition 

methods, with respect to our application. 
 
A. Operator Splitting method 
The following splitting methods we propose to 

decomposition in different operators. Our methods are based 
on sequential splitting method, see [8]. 

We consider the following ordinary linear differential 
equation: 
 ( ) ( ) ( ),tc t Ac t Bc t∂ = +  (22) 

where the initial-conditions are given as ( )n nc c t= . The 
operators A  and B  are assumed to be bounded linear 
operators in the Banach-space X  with , :A B X X→ . In 
applications the operators correspond to the physical operators, 
e.g. the convection- and the diffusion-operator. 

The operator-splitting method is introduced as a method 
which solves two equation-parts sequentially, with respect to 
initial conditions. The method is given as following 
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 ( ) ( ) ( )
*

* *,    with ,n nc t
Ac t c t c

t
∂

= =
∂

 (23) 

 ( ) ( ) ( ) ( )
**

** ** 1,    with .n nc t
Ac t c t c t

t
+∂

= =
∂

 

where the time-step is given as 1n n nt tτ += − . The solution of 
the equation (22) is ( )1 ** 1n nc c t+ += . 

The splitting-error of the method is derived with Taylor-
expansion, cf. [12]. We obtain the global error as 

 ( )( ) ( ) ( )( ) ( )1 exp exp expn n n n
n A B B A c tρ τ τ τ

τ
= + − =  

 [ ] ( ) ( )( )21 , ,
2

n n nA B c t Oτ τ+  (24) 

where [ ],A B AB BA= −  is the commutator of A  and B . We 

get an error ( )nO τ  if the operators A  and B  do not 
commutate, otherwise the method is exact. 
 

B. The Waveform-Relaxation Method 
A method to solve large coupled differential equations is 

the Waveform-Relaxation scheme. 
The iterative method was discussed in [23], [17] and [15]. 

For the method, there exist Gauss- or Jacobian schemes to 
decouple at least the schemes more or less effective. 

We deal with the following ordinary differential equation or 
assume a semidiscretised partial differential equation: 
 ( ) ( ), ,  in 0, ,tu f u t T=  

 ( ) 00 ,u c=   

where ( )1 2, , , t
mu u u u= … , ( ),f u t =  

( ) ( ) ( )( )1 2, , , , , ,
t

mf u t f u t f u t…  and ( )0 0,1 0,2 0,, , ,
t

mc c c c= …  is 
the initial condition. 

We apply the Waveform-Relaxation method for 1,i m= …  
and have: 

 ( ) ( ) ( ) ( )1,
1 1, 2, 1 , 1 1, 1

,
, , ,  with i n n

i i m i i

u x t
f u u u u t u t

t − −

∂
= =

∂
… (25) 

 ( ) ( ) ( ) ( )2,
2 1, 1 2, 3, 1 , 1 2, 2

,
, , ,  with i n n

i i i m i i

u x t
f u u u u u t u t

t − − −

∂
= =

∂
…  

(26) 
#  

( ) ( ) ( ) ( ),
1, 1 2, 1 1, 1 , 1 ,

,
, , ,  with ,m i n n

m i i m i m i m i m

u x t
f u u u u u t u t

t − − − − −

∂
= =

∂
…

(27) 
where we have ( ) ( ) ( ) ( )1, 1 1 , 1, ,n n

m mu t u t u t u t− −= =…  for the 
initialisation of the first step. 

We reduce to two equations and reformulate the method to 
our iterative splitting methods. So we deal with: 

 ( ) ( ) ( )1
11 1 12 2, , ,  in 0, ,u f u t f u t T

t
∂

= +
∂

 (28) 

 ( ) ( ) ( )2
21 1 22 2, , ,  in 0, ,u f u t f u t T

t
∂

= +
∂

 (29) 

 0(0) ,u c=  (30) 

where ( )1 2, tu u u= . 

Our notation for the operator equation is given as: 

 ( ) ( ) ( ),  in 0, ,u A u B u T
t

∂
= +

∂
 (31) 

0(0) ,u v=    (32) 
where 

 ( )
( )
( )

11 1

21 1

,
f u

A u
f u

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

 (33) 

 ( )
( )
( )

12 1

22 1

.
f u

B u
f u

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

 (34) 

The iterative splitting method as Waveform-Relaxation 
method written for 0,1, ,i m= … is: 

 ( ) ( )1, 2, 1 1, 1 2,, ,i
i i i i

u A u u B u u
t − −

∂
= +

∂
 (35) 

 ( ) ( ) ( ) ( )1, 1 2, 2with  and ,n n n n
i iu t u t u t u t= =  

where we have ( ) ( )1, 1 1
nu t u t− = , ( ) ( )2, 1 2

nu t u t− =  for the 
initialisation of the first step. 
 

C. Application of the Waveform-Relaxation method 
For an effective application, we modify the Waveform-

Relaxation method. We deal with the following equations: 
 ( )1 1 1 2 2  in 0, ,t m mu u u u Tλ λ λ∂ = − + + + Ω×…  (36) 
 #  
 ( )1 1 2 2  in 0, ,t m m mu u u u Tλ λ λ∂ = + + − Ω×…  (37) 

 ( ) ( )10 , .mu c c= ∈Ω…  (38) 
The algorithm is given with semi-analytical solutions of the 

reaction equations 
 � ( ) � ( )( ) i �0 11exp exp ,

k k
u t u I t u

−−= −Λ + Λ − −Λ Λ  (39) 
where the matrices are given as 

 �

1

2 ,

k

k
k

k
m

u

u
u

u

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

#
 (40) 

 �

1
1

1
1 2

1

,

k

k
k

k
m

u

u
u

u

−

−
−

−

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

#
 (41) 

 

1

2

0 0
0 0

,

0 0 m

λ
λ

λ

⎛ ⎞
⎜ ⎟
⎜ ⎟Λ =
⎜ ⎟
⎜ ⎟
⎝ ⎠

…
…

# % % #
…

 (42) 

 i
2

1

1 2

0
0

.

0

m

m

λ λ
λ λ

λ λ

⎛ ⎞
⎜ ⎟
⎜ ⎟Λ =
⎜ ⎟
⎜ ⎟
⎝ ⎠

…
…

# % % #
…

 (43) 

The iterative algorithm is given as 
Step 1: � ( ) ( )( )0

1 , ,
T

mu c x c x= …  
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Step 2: Solve �
1

u  with 
� ( ) � ( )( ) i �1 0 01exp exp ,u t u I t u−= −Λ + Λ − −Λ Λ  (44) 

#  
Step k : 

� ( ) � ( )( ) i �0 11exp exp ,
k k

u t u I t u
−−= −Λ + Λ − −Λ Λ  (45) 

The stop-criterion is controlled after each step: 
We have the absolute error of the solution vector 
� � 1

err
k k

u u
−

− ≤   

and we finish the algorithm and obtain the results:  
( ) ( )ku t u t= . 

Remark 2. For modification to the Waveform-Relaxation 
method, we have the following contributions: 
1.) Gauss-Seidel Waveform-Relaxation Method: 
Here we apply the lower matrix for the iteration method. 
2.) Block Jacobian Waveform Relaxation Method: 
Here we have 2 2×  blocks for the diagonals. 
3.) Block Gauss-Seidel Waveform Relaxation Method: 
Here we have 2 2×  blocks for the diagonals and the lower 
matrix. 

V. EXPERIMENT FOR THE PLASMA REACTOR 
In the following experiments, we step by step introduce the 

model-equations for the plasma reactor. 
 

A. Simplified Model 
We deal with two species of the reaction system. Based on 

this small system we apply the numerical and analytical 
methods to get some experiences. 

The decay-factors are given as 1λ  and 2λ . 
We have the following equations 

 ( )1 1 1 2 2 in 0, , ,tu u u Tλ λ∂ = − + Ω×  (46) 

 ( )2 1 1 2 2  in 0, , ,tu u u Tλ λ∂ = − Ω×  (47) 

 ( ) ( )1 1,0 2 2,00 ,  0  ,u u u u= = ∈Ω  (48) 

where the particle densities are given as ( )1 1u u t=  and 

( )2 2u u t= in ( )0,T +⊂ \ . 
The interactions are given with 1 0.1λ =  and 2 0.01λ = . The 
initial conditions are given as 1,0 1.0u =  and 2,0 0.1c = . 

The analytical solutions are given as 

 ( )( )( )2
1 0 1 2 1

1

exp ,u c t cλ λ λ
λ

= + − + −  

 ( )( )( )2 0 1 2 1exp ,u c t cλ λ= + − +  

where the values 0c  and 1c  are given as 

 1,0 2,0
0 1 2,0 0

2

1

,  
1

u u
c c u cλ

λ

+
= = −

+
 

The numercial results are given in Fig. 1. 
 

B. Gas adsorption 
In a next example we simulate the gas adsorption with a 

diffusion reaction equation, see [24]. 

We have reversible reactions of two gas-species which are 
deposit to a surface (fluid or solid). 

We have the following reactions: 
 ( ) ( ) ( ) ( ),  ,A g A f A f P f→ →  

 ( ) ( ) ( ) ( ),  P ,P f A f g P f→ →  

where ( )A g  is reactant A  in the gas-phase, ( )A f  is reactant  

A in the fluid-phase, ( )P g  is reactant P  in the gas-phase, 

( )P f  is reactant P  in the fluid-phase. 
We deal with the following reaction rates:  

1
P

A A
CR k C
K

⎛ ⎞= −⎜ ⎟
⎝ ⎠

. 

 
The thin film can be simulated by: 

2

, 2 ,A
A f A

CD R
x

∂
=

∂
   (51) 

 
2

, 2 ,P
P f A

CD R
x

∂
= −

∂
 (52) 

where AC  is the concentration of reactant A  and PC  is the 
concentration of reactant P . 

We have the following boundary conditions: 
 ( ) ( )0 :  ,  ,I I

A A P Px C x C C x C= = =  (53) 

 ( ) i ( ) i:  ,  .A PA Px C x C C x Cδ= = =  (54) 
The analytical solutions are given as: 

 
( ) ( )

i isinh 1 sinh

sinh sinh

R I I R
A PA P

A
R R

x x
KC C KC CC

K K

φ φ
δ δ

φ υ φ υ

⎛ ⎞⎛ ⎞ ⎛ ⎞−⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠⎝ ⎠ ⎝ ⎠= + +
+ +

 

 
i i

1 ,
I I

A PA PC Cx x C C
K K

υ υ
δ υ δ υ

− −⎛ ⎞− +⎜ ⎟ + +⎝ ⎠
 (55) 

and 

 ( ) i( ) i( )( )I I I I
A PP P A A A P

xC C C C C C C Cυ υ
δ

= + − − − + −  (56) 

In the Fig. 2, we have simulated the gas-sorption with the 
following parameters: 

1 0.01,  1.0,  1.0k K δ= = =  
1.0,  0.5I I

A PC C= =  
i i1.0,  0.5A PC C= =  

, ,0.01,  0.02,A f P fD D= =  

where ( )1

,
R

A f

k K
D K

υ
φ δ

+
=  and ,

,

A f

P f

D
D

υ = . 

In the result, we obtain a balance of the reactant A  which is 
most decaying in the middle of the time-period, the relaxation 
takes place in the second period and at least some 
concentation is obtained. Here the deposition has only a very 
small time-period in which the second reactant P  can 
influence the process. 
 

C. Test-examples with three Species solved with analytical 
methods 

In the following experiment we deal with the analytical 
method to get the numerical solution of a coupled differential 
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equation system with three equations. We have taken into 
account 1000 time steps. The analytical method is based on a 
transformation to an eigenvalue problem and this method can 
be used to solve the results with the Waveform-Relaxation 
method.  

The reaction is given as 

 
The equation is given as, cf. [16]: 

 ( ) ( )1 12 13 1 21 2 31 3  in 0, ,ta k k a k a k a T∂ = − + + + Ω∈  (57) 

 ( ) ( )2 12 1 21 23 2 32 3  in 0, ,ta k a k k a k a T∂ = − + + Ω∈  (58) 

 ( ) ( )3 13 1 23 2 31 32 3  in 0, ,ta k a k a k k a T∂ = + − + Ω∈  (59) 

 ( )0 1 2 3, ,a c c c=  (60) 
We solve the equation with analytical methods, cf. [16] 

with three species. 
We have the following parameters: 

1 2 3
1 ,
3

c c c= = =  

12 21 130.50,  0.25,  0.20,  k k k= = =  

31 23 320.05,  0.30,  0.15k k k= = =  
The end-time is given as 10.0T = . 
In Fig. 3 we have simulated the three species. The end 
concentration of the species results in a loss of concentration 
of 1A (first species), a nearly balance of concentration of 

2A (second species) and a tremendous increase of 
concentration of 3A (third species). So at least the reaction on 
this end situation has taken place from 1A  to 3A . 
 

D.  Real-life example: Sputtering Reactions 
In the following experiment, we deal with the sputtering 

reactions which is discussed in [4]. 
The CVD-process has different chemical reactants, which 

react and decay in different time periods. We concentrate on a 
simple sputtering reaction, which has at least seven reactants. 

The reactions is given as 
( )

( ) ( )

2 31

1 2 3

1

1         1

 

            
              c                 c

tot B C F

A D E

c c c c

c

λ σ λ ηλ β

λ β λ σ λ η

−

− −

⎯⎯→ ⎯⎯⎯→ ⎯⎯→

↓ ↓ ↓  

We have the following reaction equations: 
 1 ,t tot totc cλ∂ = −  (61) 
 ( )1 1 ,t A totc cλ β∂ = −  (62) 
 1 2 ,t B tot Bc c cλ β λ∂ = −  (63) 
 2 3(1 ) ,t C B Cc c cλ σ λ∂ = − −  (64) 
 2 ,t D Bc cλ σ∂ =  (65) 
 ( )3 1 ,t E Cc cλ η∂ = −  (66) 
 3 ,t F Cc cλη∂ =  (67) 

where totc  is the total mass of the particles coming from the 
substrate. , , , ,A B C D Ec c c c c and Fc  are intermediate masses of 
the particles, only Ac   and Fc  arrive at the targets. 

We have the following reaction-matrix : 

 

( )

( )

( )

1

1

1 2

2 3

2

3

3

0 0 0 0 0 0
1 0 0 0 0 0 0

0 0 0 0 0
.0 0 1 0 0 0

0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0

A

λ
λ β
λ β λ

λ σ λ
λ σ

λ η
λη

⎛ − ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟−
⎜ ⎟

= − −⎜ ⎟
⎜ ⎟
⎜ ⎟

−⎜ ⎟
⎜ ⎟
⎝ ⎠

 (68) 

We apply an analytical method, cf. [16]. 
We have the following parameters: 

,0 ,0 0.1,A Fc c= = =…  

,0 1.0,totc =  
1 2 30.1,  0.05,λ λ λ= = =  

0.1,  0.5 0.9β σ η= = =  
The end-time is given as 10.0T = . 
In Fig. 4 we have simulated the sputtering reactions. In the 
results, we obtain the arrival of the Ac  and Fc  mass particles. 
The first deposition of totc  results in Ac . The second 
deposition of totc  results, due to the reaction chain, in Fc  and 
is tremendous decreasing. In our final time situation we have 
approximately 0.8 amount of the initial concentration that rests 
on the targets. As a result we loose nearly 20 % of the 
substrate and should additionally increase our source substrate 
to 1.2 amounts. 

VI. CONCLUSIONS AND DISCUSSIONS 
We present a plasma model for thin layers. The models are 
given as diffusion-reaction equations. The efficient 
Waveform-Relaxation method is used for the chemical 
reaction equations. We discuss various applications og 
chemical reactions. The results verify the theoretical 
investigations and we simulate a real life apparatus with 
sputtering reactions. 
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Fig.1 Experiment of a two species reaction, 1 0.1λ = , 2 0.01λ = , 

upper figure: 1c , middle figure: 2c , lower figure: 1c (red), 2c  (green). 
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Fig. 2 Experiment with the gas-sorption of two species, upper figure: 

AC , lower figure: PC . 

 
Fig. 3 Experiment of a three species reaction: 1a (green), 2a (red), 

3a (blue) 
 
 

 

 
Fig. 4 Experiment of a seven species reaction: upper figure: Ac  

(green),  Fc  (red);  lower figure: totc (green), Ac  (red), Bc (blue), 

Cc (yellow), Dc (magenta), Ec (black), Fc (cyan) 


