
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:4, 2009

786

Abstract—Long number multiplications (n ≥ 128-bit) are a

primitive in most cryptosystems. They can be performed better by
using Karatsuba-Ofman technique. This algorithm is easy to
parallelize on workstation network and on distributed memory, and
it’s known as the practical method of choice. Multiplying long
numbers using Karatsuba-Ofman algorithm is fast but is highly
recursive. In this paper, we propose different designs of
implementing Karatsuba-Ofman multiplier. A mixture of sequential
and combinational system design techniques involving pipelining is
applied to our proposed designs. Multiplying large numbers can be
adapted flexibly to time, area and power criteria. Computationally
and occupation constrained in embedded systems such as: smart
cards, mobile phones…, multiplication of finite field elements can be
achieved more efficiently. The proposed designs are compared to
other existing techniques. Mathematical models (Area (n), Delay (n))
of our proposed designs are also elaborated and evaluated on
different FPGAs devices.

Keywords—finite field, Karatsuba-Ofman, long numbers,
multiplication, mathematical model, recursivity.

I. INTRODUCTION
INITE field multiplication in GF (2n) is one of the most
important operations in cryptographic protocols (RSA,

Diffie-Hellman key exchange, DSS, ECC …) [1, 8, 21]. That
means the optimization on multiplication is critical for overall
performance of cryptographic implementations. It is very
costly in terms of Area and Delay performances. A lot of
researches have been performed in designing performant
multipliers (low Area occupation and high-speed
computation). Several designs have been reported for
multiplication on fields of characteristic two [16]. Efficient
bit-parallel multipliers for both canonical and normal basis
representation as well as hybrid multiplication have been
proposed in literature [15]. All these algorithms exhibit a

M. Machhout, W.El hadj youssef, B.Bouallegue, and R.Tourki are with the
Electronics and Micro-Electronic Laboratory (LEME), University of Sciences,
Monastir, Tunisia. (e-mail: machhout@yahoo.fr).
A.Baganne is with the Laboratoire des Sciences et Techniques de
l’Information, de la Communication et de la Connaissance (Lab-STICC),
University of South Brittany, Lorient, France. . (e-mail: adel.baganne@univ-
ubs.fr).
corresponding author :
M.Zeghid is with the Laboratoire des Sciences et Techniques de l’Information,
de la Communication et de la Connaissance (Lab-STICC) and Electronics and
Micro-Electronic Laboratory (LEME), Monastir, Tunisia. (phone +216
73 501 785, e-mail: medien.zeghid@fsm.rnu.tn)
Manuscript received March 11, 2008.

space complexity of O (n2). However, there are some
asymptotically faster methods for finite field multiplications,
such as the Recursive Karatsuba-Ofman Algorithm [18].
Published in 1962, it was the first algorithm to accomplish
polynomial multiplication in O (n1,58) operations [20]. The
Karatsuba-Ofman Algorithm (KOA) can successfully be
applied to polynomial multiplication step. The fundamental
Karatsuba-Ofman multiplication (KM) for polynomial in GF
(2n) is based on the idea of divide-and-conquer, since the
operands are divided into two segments [3]. Compared to the
well-known Schoolbook method, the KOA saves
multiplications of the partial products at the cost of extra
additions. Further work of hardware and software
implementations of Karatsuba-Ofman multipliers in literature,
was done to improve the KOA and to find bounds of the
complexity. Several works detailed information on the usage
of KOA in order to multiply with the least cost are provided
[2, 22]. Multiplying long numbers (n ≥ 128-bit) using
Karatsuba-Ofman algorithm is fast but the algorithm is highly
recursive. Our work is related to Karatsuba-Ofman multiplier
for large numbers. In this paper, we proposed and developed
different Karatsuba-Ofman multiplier designs in GF (2n),
intended to perform the design of the cryptographic protocols
in embedded system such as smart card and mobile phone.
Our design constraints are: the latency, the energy
consumption and the area occupation.

The remainder of this paper is organized as follows: The
illustration of the efficiency of the multiplication arithmetic
operator throughout the applications of cryptographic
protocols for embedded systems is described in Section 2.
Section 3 describes the Recursive Karatsuba-Ofman
multiplication. In Section 4, we present new designs of
adapted KOA, so that it can be implemented efficiently. Many
approaches to Sequential and Parallel Recursive Karatsuba-
Ofman Multipliers (RKM) to optimize the designs are
developed in this section. Experimental results of FPGA
implementation (area, latency, power) are presented in Section
5. Mathematical models (Area (n), Delay (n)) of our proposed
Sequential/Parallel designs are also elaborated in Section 6.
Section 7 concludes the paper.

II. EFFICIENT CRYPTOGRAPHIC PROTOCOLS FOR EMBEDDED
SYSTEM

Embedded systems (such as : smart cards, mobile phones,
Personal Digital Assistants, etc.), which ubiquitously are used

Efficient Large Numbers Karatsuba-Ofman
Multiplier Designs for Embedded Systems

M.Machhout, M.Zeghid, W.El hadj youssef, B.Bouallegue, A.Baganne, and R.Tourki

F

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:4, 2009

787

to capture, store, manipulate, and access data of a sensitive
nature, pose several unique and interesting security challenges
[12]. Therefore, providing security and trust in embedded
systems raises important technological challenges. The
cryptographic primitives and security protocols are hard to
realize in embedded systems.

Embedded systems are extremely resource constrained
devices in terms of computing and communication
capabilities, energy, power, chip and memory area, etc.
Moreover, they generally have to work in harsh, uncontrolled,
and even hostile surrounding conditions. The security is not
only the addition of features, such as specific cryptographic
algorithms and security protocols, to the system but also the
elaboration of novel design principles, methods, algorithms,
designs and techniques in order to efficiently and securely
realize cryptographic primitives and security protocols for
embedded systems [23], which are the building blocks for
security, privacy, and trust. The implementation of
cryptographic systems presents several requirements and
challenges. First, the performance of the algorithms is often
crucial. One needs encryption algorithms to run at the
transmission rates of the communication links. Slow running
cryptographic algorithms translate into consumer
dissatisfaction and inconvenience. On the other hand, fast
running encryption might mean high product costs since
traditionally, higher speeds were achieved through custom
hardware devices. Recently, ECCs are especially suited to
smart cards because of the limited memory and computational
power available on these devices. Another benefit of ECCs is
that they can use a much shorter key length than other public
key cryptosystems such as RSA to provide an equivalent level
of security [5, 17]. For ECC systems, the most important
operation is the scalar multiplication which is based on the
finite field multiplication. For large integer, the efficiency of
multiplication dominates the overall performance of ECC
implementation [9, 10]. It was shown that as much as 85% of
execution time is spent on multiplication for a typical point
multiplication in ECC. (see figure 1).

Multiplication

Others

Fig. 1 Distribution of area occupation in ECC point multiplication

arithmetic

Several techniques of multiplication were introduced in
literature. The KOA is recommended for many cryptosystems.
Therefore, the performance is primarily determinated by the
efficient implementation of the arithmetic multiplication. In
this context, new designs of Karatsuba-Ofman multiplication
are necessary to achieve the following two goals: one goal is
to design a high speed multiplier, the second goal is to reduce

the area and the power consumption for large numbers (n ≥
64-bit) on embedded processors and constrained platforms.

Hence, in order to improve time, area and power
requirements of the ECC (on GF (2n) with n ≥ 163-bit), it is
essential to have a variety of Karatsuba-Ofman multiplication
designs with consideration to trade-offs between the
application and platform requirements.

III. RECURSIVE KARATSUBA-OFMAN MULTIPLICATION
(RKM)

In this section, we introduce the fundamental KOA which
can successfully be applied to polynomial multiplication. The
fundamental Karatsuba-Ofman multiplication for polynomial
in GF (2n) is a recursive divide-and-conquer technique. It is
considered as one of the fastest way to multiply long numbers
[11]. For polynomial multiplication with original Karatsuba
method both operands have to be divided into two equal parts.
If the length of operands is odd, they have to be padded with
leading ‘0’ [4]. Therefore, the KOA becomes recursive. A
straightforward application of the KOA requires log2 (n)
iteration steps for polynomials of degree (n-1). Let A = (a0,
a1,…, an-1) and B = (b0, b1,…,bn-1), the binary
representation of two long integers. The operands A and B can
be decomposed into two equal-size parts A1A0 and B1B0
respectively, which represent the n/2 higher and lower order
bits of A and B. We can split them into two parts as follows:

∑ ∑∑
−

=

−

=

−

=

+==
1

2

1
2

0

1

0
)(

n

ni

n

i

i
i

i
i

i
n

i
i xaxaxaxA

01
2

1
2

0

1
2

0 2

2 AAxxaxax
n

n

i

i
i

i

n

i
ni

n

+=+= ∑∑
−

=

−

= +
 (1)

∑ ∑∑
−

=

−

=

−

=

+==
1

2

1
2

0

1

0
)(

n

ni

n

i

i
i

i
i

i
n

i
i xbxbxbxB

01
2

1
2

0

1
2

0 2

2 BBxxbxbx
n

n

i

i
i

i

n

i
n

i

n

+=+= ∑∑
−

=

−

= +
 (2)

So the product P(x) = A(x)*B(x) can be computed as follows:
2/

10011100)()()(nn xBABAxBABAxBxA +++= (3)
Equation 3 needs four (n/2-bits) multiplications to compute

the product P(x). To improve the computation of P(x),
Equation 3 can be modified to Equation 5 as follows:

001101011001)B+)(BA+(A BABABABA −−=+
11001100 ()()(BABAxBABAxBxA n +++=

 2/
0101))B+)(BA+(A nx+ (5)

The result is:
nxCCxBxA 10)()(+= (6)

Field multiplication can be performed into two steps.
Firstly, we perform an ordinary polynomial multiplication of

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:4, 2009

788

two field elements as shown in Equation 5. Secondly, a
reduction operation with an irreducible polynomial is needed
to be performed in order to obtain the (n - 1) degree
polynomial. It is noticed that once the irreducible polynomial
F(x) = xn + xk + 1 has been selected, the reduction step can be
accomplished by using XOR gates only [3]. However, we
want to focus on an efficient method based on KOA to
calculate the polynomial multiplication. Figure 2 shows the
procedure of KOA where A and B are two n-bit length
polynomials.

T1

T3

A*B

T1

T2

T3

2n-1

n/2 n/2-1n/2-1 1 n/2

0
n/2

1 A+xA =A

0
n/2

1 B+xB = B

111 BA = T

)B+)(BA+(A = T 01012

003 BA = T

Fig. 2 Karatsuba-Ofman’s multiplication

The multiplication over GF (2n) is computed by a single

AND operation. After completion of these polynomial
multiplications, the final value of the lower half of C0 as well
as the upper half of C1 are determined. The KOA can be
applied recursively to the three polynomial multiplications.
Hence, we can postpone the computations of the polynomial
products A0B0, A1B1 and (A1+A0)(B1+B0); and instead we
can split again each one of these three factors into three
polynomial products. By applying recursively this strategy,
each polynomial multiplication is transformed into three
polynomial multiplications with their degrees reduced to about
half of its previous value [7]. This leads immediately to a
recursive construction process of Karatsuba-Ofman
Multiplication (RKM), which builds Combinational Karatsuba
Multiplier (CKMs) of width n = 2i for arbitrary i Є N [13, 14].
(see figure 3).

c0

b0b1

c1c2c3c4c5c6

CKM1

CKM1

CKM1

b0b1

 b2b3a0a1a3 a2

b0a0

.

CKM1 CKM1

CKM1

a0a1

c0 c0c1c2

CKM1

CKM2

CKM4

(a) CKM1 : 1 bit (b) CKM2: 2 bits (c) CKM4 : 4bits

Fig. 3 Recursive Karatsuba-Ofman multiplication (RKM)

As can be concluded, parallel multipliers perform partial
products in minimum clock cycle but require more area to be
implemented. The area occupation metric becomes more and
more important for n ≥ 64-bit. Therefore, we required new
RKM designs to adjust their performances: delays; and
especially area occupation.

IV. PROPOSED RKM DESIGNS
Multiplication can be implemented either in serially or

parallel. In one side, serial multipliers require small area, less
complex structure and high latency. In the other side, parallel
multipliers perform the total operation in a minimum clock
cycle but require more space to be implemented. When the
operands are long (n ≥ 64-bit), the performances of the
algorithm especially the area occupation, is deteriorated as
will be shown in section 5.1. This problem is not noticed for
little numbers (n < 64-bit). Hence, to ameliorate the
performances of RKM with n ≥ 64-bit, we proposed new
hybrid RKM designs that can be adapted to various
performances as known: delay, area and power constraints for
large finite field’s elements.

Finite
State

Machine

Arithmetic
Control

Unit

start

Done

clk

rst

Inputs
A(x), B(x)

output
C(x)

data

control

R
A

M

clk
rst

data

clk
rst

clk
rst

clk
rst

16
RKM

32
RKM

64
RKM

Fig. 4 Design of Recursive 128-bit Karatsuba-Ofman’s multiplication (RKM)

A block diagram of 128-bit RKM’s design is developed as

shown in Figure 4.
The design includes the following units:

• Architecture Unit (AU): Constituted by 64-bit, 32-bit

and 16-bit RKM multipliers. It takes care of reading
operands from a port operand memory.

• Memory (RAM): is used to load initial operands.
• Arithmetic Control Unit (ACU): generates control

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:4, 2009

789

signal for all other units and the memory.
• Finite State Machine (FSM): determinates when

enable, reset the multiplication process, accept input
data and register output results in the memory. It
decided when the result obtained is to be used or
ignored.

In order to optimize this design, we have developed and tested
five new 64-bit RKM designs as shown in Figure 5 and 6. All

these designs are based on Parallel and Sequential applications
of RKM. The major purpose of these approaches is to obtain a
reduced area consumption and power of the hardware designs.
The second purpose is to keep the high speed performance of
RKM hardware implementations.

control

control
Unit

16-bit RKM XOR network 16-bit RKM
clk

rst
clk

rst
control

Inputs
A(x),
B(x)

output
C(x)

clk

rst

Done

start

B1
B0 A1

A0

product 1 product 2
product 3

16-bit RKM
clk

rst
control

control
Unit

16-bit RKM XOR network
clk

rst

control

Inputs
A(x),
B(x)

output
C(x)

clk

rst

Done

start

B1
B0 A1

A0

product 1
product 2

clk

rst
16-bit RKM

control
product 3

control
Unit

XOR network

Inputs
A(x),
B(x)

output
C(x)

clk

rst

Done

start

B1 B0
A1

A0

product 2
product 1,3

16-bit RKM
clk

rst
control

control

control
Unit

32-bit RKM XOR network 32-bit RKM
clk

rst
clk

rst
control

Inputs
A(x),
B(x)

output
C(x)

clk

rst

Done

start

B1
B0 A1

A0

product 1 product 2
product 3

32-bit RKM
clk

rst
control

(a) 32-bit RKM1

(b) 32-bit RKM2
(c) 32-bit RKM3

Fig. 5 A proposed 64-bit RKMj designs using Three parallel 32-bit RKM with (a) Three parallel 16-bit RKM; (b) Two parallel and one

sequential 16-bit RKM; (c) Three sequential 16-bit RKM

control

control
Unit

16-bit RKM XOR network 16-bit RKM
clk

rst
clk

rst
control

Inputs
A(x),
B(x)

output
C(x)

clk

rst

Done

start

B1
B0 A1

A0

product 1 product 2
product 3

16-bit RKM
clk

rst
control

control
Unit

16-bit RKM XOR network
clk

rst

control

Inputs
A(x),
B(x)

output
C(x)

clk

rst

Done

start

B1
B0 A1

A0

product 1
product 2

clk

rst
16-bit RKM

control

control
Unit

32-bit RKM XOR network
clk

rst

control

Inputs
A(x),
B(x)

output
C(x)

clk

rst

Done

start

B1
B0 A1

A0

product 1
product 2

clk

rst
32-bit RKM

control

(a) 32-bit RKM4 (b) 32-bit RKM5

Fig. 6 A proposed 64-bit RKMj designs using Two parallel, one sequential 32-bit RKM with (a) Three parallel 16-bit RKM; (b) Two parallel

and one sequential 16-bit RKM
The proposed Parallel and Sequential 64-bit RKMj progress

cycles are shown in Table 1. For two proposed designs,
multitasks sequences functions are detailed. Table 1 shows all

steps describing the Architecture Units activation and
deactivation. For example, to perform 64-bit RKM using
RKM1, three 16-bit multipliers are performed in parallel; all

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:4, 2009

790

16-bit AUs are active “ON”. Therefore, the three 32-bit
RKMs required are consequently active “ON”. However,
when applying RKM2, the two 16-bit AUs are done in parallel
(active: “ON”). Next sub-step, 16-bit AU is performed

sequentially; the other unit is deactivated (“OFF”) as shown in
Table 2. Consequently, the three 32-bit RKMs are activated in
parallel.

TABLE I
CYCLE PROGRESS OF 64-BIT RKM1 DESIGN

TABLE II
 CYCLE PROGRESS OF 64-BIT RKM2 DESIGN

32-bit RKM 32-bit RKM 32-bit RKM 64-bit
RKM2 16-bit

RKM
16-bit
RKM

16-bit
RKM

16-bit
RKM

16-bit
RKM

16-bit
RKM

1.1 ON ON ON ON ON ON
ON OFF ON OFF ON OFF Step 1 1.2

ON ON ON
Step 2 Result Ready

In the following, we note Aij with i the number of 128-bit
RKMs (i Є [1, 3]) and j the number of 64-bit RKM applied (j

Є [1, 5]). So, we have fourteen 128-bit RKM designs. The
detailed proposed designs are shown in Figure 7.

control

control
Unit

64-bit RKM XOR network 64-bit RKM
clk

rst
clk

rst
control

Inputs
A(x),
B(x)

output
C(x)

clk

rst

Done

start

B1
B0 A1

A0

product 1 product 2
product 3

64-bit RKM
clk

rst
control

control
Unit

64-bit RKM XOR network
clk

rst

control

Inputs
A(x),
B(x)

output
C(x)

clk

rst

Done

start

B1
B0 A1

A0

product 1
product 2

clk

rst
64-bit RKM

control

 (a) 128-bit RKM1 : Three paralle 64-bit RKMj (b) 128-bit RKM2 : Two paralle and one sequential 64-bit RKMj

control
Unit

XOR network

Inputs
A(x),
B(x)

output
C(x)

clk

rst

Done

start

B1
B0

A1
A0

product 2
product 1,3

64-bit RKM
clk

rst
control

 (c) 128-bit RKM3 : Three sequential 64-bit RKMj

Fig.7 Three proposed 128-bit RKM designs
Table 3 presents the cycle number of 128-bit RKM designs.

TABLE III
 CYCLE REQUIREMENTS OF 128-BIT RKM’S DESIGN

Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Design A11 A21 A31 A12 A32 A14 A24 A34 A15 A25 A35 A13 A23 A33
Cycle number 13 28 42 25 78 26 52 78 48 96 144 34 70 105

As can be seen, the design A11 needs 13 cycles to perform a
full 128-bit multiplication. So, it’s the fastest proposed design.

V. IMPLEMENTATION AND COMPARISONS RESULTS
In this section we present the results obtained from fourteen

proposed 128-bit RKM’s designs and we give some
recommendations for RKM designs with focus on the cell-
based design techniques. The different proposed designs are
implemented in the Very High Speed Integrated Circuit
Description Language -VHDL by using the Model

Technology’s ModelSim Simulator. The VHDL codes of the
different design are synthesized placed and routed using three
target devices: Xilinx Virtex II 2v2000ff896-6, Xilinx Virtex
E XCV2000Efg860-6 and Spartan 3s2000fg900-5 FPGAs.
The designs were simulated for verification of the correct
functionality.

According to the required performances design,
performance metrics such as area occupation (slices), speed
(ns) and power consumption (mW) are used. As can be seen,
the 32-bit RKM design as know A1 (three 16-bit RKM are

32-bit RKM 32-bit RKM 32-bit RKM
64-bit RKM1 16-bit

RKM
16-bit
RKM

16-bit
RKM

16-bit
RKM

16-bit
RKM

16-bit
RKM

16-bit
RKM

16-bit
RKM 16-bit RKM

ON ON ON ON ON ON ON ON ON Step1 1.1 ON ON ON
Step2 Result Ready

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:4, 2009

791

applied in parallel) is four time faster (154,163 ns) than the
32-bit RKM design as know A2 (three 16-bit RKM are
applied sequentially) on two platforms. As concluded, when
applying (A2), we obtain a profit of (26%) in speed with a
little waste in area occupation by only (3%). Furthermore, the
design (A1) takes (5 %) of the total number of CLB slices
available in the same platform. Table 4 presents detailed
results for 32 bit-RKM design. Still, the latency is the main
metric of RKM algorithm when n ≤32-bit.

A. 64-bit RKMj Implementation Results
The implementation results of the five 64-bit RKMj designs

developed in the previous section are shown in Figure 8.

0

20

40

60

80

100

120

140

160

180

RKM 1 RKM 2 RKM 3 RKM 4 RKM 5

architectures of 64-bit RKM

De
la

y
(n

s)

(a) Delay (ns)

0

500

1000

1500

2000

2500

3000

3500

RKM 1 RKM 2 RKM 3 RKM 4 RKM 5

Architectures of 64-bit RKM

Ar
ea

 (S
lic

es
)

(b) Area occupation (Slices)

0

10
20

30
40

50
60

70
80

90

RKM 1 RKM 2 RKM 3 RKM 4 RKM 5

architectures of 64-bit RKM

Po
w

er
 (m

W
)

(c) Power consumption (mW)

Fig. 8 Sensitivity tests: (a) Delay (ns); (b) Area occupation (Slices);
(c) Power consumption (mW) for five 64-bit RKMij’s designs on

Virtex 2

As can be noticed the 64-bit RKM1 design presents the best
results in speed (30, 88 ns), however the area occupation is
about 3263 slices and the power consumption 83,05mW. We
can divide the five proposed 64-bit RKMj design in three
groups: the high latency group (RKM1) and the low area
occupation group (RKM5). The third group is composed by
medium latency and medium occupation (RKMj with j Є [2,
4]). The 64-bit RKM3 design can be adopted as the optimal
solution. The important point is to conserve the speed of the
RKM, which is much more important than the waste in the
area occupation. In the subsection below, we present the
efficiency of the 128-bit RKM based on 64-bit RKMj designs.

B. 128-bit RKMij Implementation Results
Figure 9, shows the computation time (ns), area occupation

(slices) and power consumption (mW) required by our
proposed 128-bit RKMs designs.

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10 11 12 13 14
architectures

D
el

ay
 (n

s)

Spartan 3
Virtex 2
Virtex E

(a) Delay (ns)

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

architectures

A
re

a
(S

lic
es

)

Spartan 3
Virtex 2
Virtex E

(b) Area occupation (Slices)

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14

architectures

P
ow

er
 (m

W
)

Spartan 3
Virtex 2
Virtex E

(c) Power consumption (mW)

Fig. 9 Sensitivity tests: (a) Delay (ns); (b) Area occupation (Slices);
(c) Power consumption (mW) for fourteen 128-bit RKMij’s designs

on Spartan 3, Virtex 2 and Virtex E

From figure 9.a, we remark that each design have a

different computing time on three FPGAs devices. However,
the design number 1 (A11) provides the least computing time
to perform a 128-bit multiplication in all platforms. In figure

TABLE IV
DELAY AND AREA PERFORMANCES OF 32-BIT A1 AND A2 DESIGNS ON

TWO PLATFORMS

Designs A1 (Parallel) A2 (Sequential)
Spartan 3 40,7 154,163 Delay

(ns) Virtex 2 24,31 113,264
Spartan 3 5 % 2 % Area

(Slices%) Virtex 2 6 % 4 %

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:4, 2009

792

9.b, area performances are given in terms of total numbers of
slices necessary for the implementation. The design (A11) has
the worst area occupation on the three platforms. The design
number 14 (A33) introduces the best area performances. As
can be noticed, the proposed design number 14 (A33) requires
the least power consumption on all targeted devices compared
to the other proposed designs.

We conclude from figure 9.c, that independently of targeted
FPGA devices, the 128-bit RKM’s designs (A11) and (A33)
can be adapted respectively to obtain a minimum delay and
least area occupation. The different RKM’s designs and
circuits have to be adapted in order to take full advantage of
the corresponding logic block resources of FPGAs. The
choice of the adequate RKM design depends on the platform
targeted and the goal aimed application.

0 100 200 300 400 500 600 700

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

 Area (dealy)
 Power (dealy)

Dealy (ns)

Ar
ea

 (s
lic

es
)

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

P
ow

er (m
W

)

 Spartan 3

(a)

0 100 200 300 400 500

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

 Area (delay)
 Power (delay)

dealy (Ns)

Ar
ea

 (s
lic

es
)

60

65

70

75

80

85

90

95

100

 Virtex 2

pow
er (m

W
)

 (b)

0 200 400 600 800 1000 1200

2000

4000

6000

8000

10000 Area (dealy)
 power (dealy)

Dealy (ns)

Ar
ea

 (s
lic

es
)

0

2
 Virtex E pow

er (m
W

)

(c)

Fig. 10 Delay, Area and Power criteria for fourteen 128-bit RKMij’s
designs on: (a) Spartan 3; (b) Virtex 2 (c); Virtex E

These figures can be adapted for user as a reference to
choose the ideal RKM’s design for a targeted FPGA platform.
A study is also made on the adapted FPGA for all proposed
RKM’s designs in order to give to the designers the flexibility
to make trade-offs between speed, area and power criteria. So
to implement an RKM in a constrained platform, one need to
consider trade-offs between these parameters and the user can
get all advantages of his FPGA as depicted in Figure 10.

C. Comparisons results
Table 5 shows the performance results obtained by the

Xilinx project synthesizer of our proposed RKM designs. A
comparison performance result for the hardware
implementations against each other is not straight forward.
This is because, in literature large numbers (for n≥128-bit)
karatsuba multiplication are not treated. Furthermore, different
proposed multiplier designs performances (delay (ns) and area
occupation (Slices)) deduced from this study are compared
with our previous work on multipliers as know booth and
hybrid multiplier with 128-bit length [6]. Furthermore, Table
5 compares our designs with other works recently reported in
literature [19] in terms of 240-bit karatsuba multipliers, using
the Virtex II reconfigurable hardware platform.

TABLE V

COMPARISON RESULTS OF MULTIPLIER DESIGNS ON VIRTEX-II OVER GF (2128)
AND GF (2240)

Ref. Design Delay (us) Area
(Slices)

Booth 2,183 4% Our previous work
[6]

GF(2128)
Hybrid

multiplier 0,280 92%

Hybrid
karatsuba

0,378
 14% [19]

GF(2240) classical
karatsuba

0,523
 15%

A31 0,153 37%
A32 0,205 30%
A23 0,250 39%

This work
GF(2128)

A33 0,378 23%
This work
GF(2240) RKM 0.29 45%

In order to have a fair evaluation, we choose the (A31),

(A32), (A23) and (A33) RKM designs because of optimal
performances. We can see from Table 5 that the (A31) design
is able to operate at a delay of 153, 93 ns, which is 14,267-
times faster than the booth method. However, it occupied
(33%) slices besides. Compared to hybrid multiplier, the
(A23) design runs approximately at the same delay. In other
side, it consumes (53%) slices less of the total platform area.
The focus of [19] was to implement karatsuba in classical and
hybrid karatsuba method for 240-bit length using the Virtex II
as a target. We notice that our proposed RKM multiplier
occupied more area occupation (+3332 and +3225 slices)
compared to the hybrid and classical karatsuba methods
developed in [19]. In the other side, our proposed RKM
design is respectively 0.09us and 0.233us faster.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:4, 2009

793

VI. RKM DESIGNS MODELING
The objective of this section is to present mathematical

models (Area (n), Delay (n)) of the proposed 128-bit RKM
designs. They enabled us to establish the basis of a
mathematical formalism of the RKM designs.

These models are available to designers before hardware
and software embedded system implementation. So, a clear
idea is available for FPGA designers about the delay and the
area occupation of the RKM multiplier for different bit rang
(n=64, 128,256...).

Mathematical performances models of all proposed designs
are elaborated on two platforms. In the following, we

presented mathematical modeling of two designs as know
(A11) and (A33) ones.

Figure 11 shows that the two Area variation’s curves of
RKM designs have approximately a polynomial pace.
However, in this figure they have no ideal pace because of
peaks. To perform a polynomial fit on the active data plot, a
Polynomial Fit Analysis is needed. In this operation, a number
of points are drawn in the fit curve. The fit equation model of
the Kth order is stated:

K
K XBXBXBXBAY +++++= ...3

3
2

21 (7)

With: A and Bi are the parameters.

0 50 100 150 200 250 300

0

5000

10000

15000

20000

25000

30000

35000 Aea (n)
 Polynomial Fit of area (n)

A
re

a

Bit-length (n)

 spartan 3

0 50 100 150 200 250 300

0

5000

10000

15000

20000

25000

30000

35000

Ar
ea

bit-length (n)

 Area (n)
 Polynomial Fit of area (n)

 virtex 2

 (a) A11 design.

0 50 100 150 200 250 300

0

2000

4000

6000

8000

A
re

a

Bit-length (n)

 Area (n)
 Polynomial Fit of area (n)

 Spartan 3

0 50 100 150 200 250 300

0

2000

4000

6000

8000

A
re

a

bit-lengh (n)

Area (n))
Polynomial Fit of area (n)

virtex 2

(b) A33 design.

Fig. 11 Mathematical model (Area (n)) of RKM multiplier based on:(a) A11 design; (b) A33 design

We conclude that the Area (n) occupation of RKM
multiplier bases on (A11) and (A33) designs are presented in
Section 3 has respectively a third and second polynomial
order. The model’s parameters of the Area (n) are illustrated
in Table 6.

 From Figure 12, we conclude that Delay (n) performance
of RKM multiplier bases on (A11) and (A33) designs has
respectively a second and first exponential order. The
exponential fitting equation is as follows:

21
210

t
x

t
x

eAeAyy
−−

++= (8)

TABLE VI
 AREA (N) MODEL PARAMETERS OF RKM A11 AND A33 DSIGNS

Parameters Mode Equation

Spartan 3
A + B1 n+B2 n2 + B3 n3

B1 Є [16.84, 20.78], B2 Є [0.53, 0.57],
B3 Є [-6.49 E-4, -5.29 E-4] For RKM-

A11
architecture Virtex 2

A + B1 n+B2 n2 + B3 n3
B1 Є [16.88, 20.83], B2 Є [0.53, 0.57],

B3 Є [-6.39 E-4, -5.19 E-4]

Spartan 3 A + B1 n+B2 n2
B1 Є [6.43, 18.57], B2 Є [0.06, 0.09] For RKM-

A33
architecture Virtex 2 A + B1 n+B2 n2

B1 Є [6.79, 18.63], B2 Є [0.05, 0.09]

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:4, 2009

794

With: y0 the offset; A1 and A2 the amplitude; t1 and t2 decay
constant

 The model’s parameters are illustrated in Table 7.

0 50 100 150 200 250 300

10

20

30

40

50

60

70

D
el

ay

bit-length (n)

Delay (n)
Exponential Fit of delay (n)

Spartan 3

0 20 40 60 80 100 120 140
5

10

15

20

25

30

35

40

D
el

ay

bit-length (n)

 Delay (n)
 Exponential Fit of delay (n)

 Virtex 2

 (a) A11 design

0 50 100 150 200 250 300

0

100

200

300

400

500

600

D
el

ay

bit-length (n)

 Delay (n)
 Exponential Fit of Delay (n)

 Spartan 3

0 20 40 60 80 100 120 140

0

50

100

150

200

250

300

350

400
D

el
ay

bit-length (n)

 Delay (n)
 Exponential Fit of Delay (n)

Virtex 2

 (a) A33 design

Fig. 12 Mathematical model (Delay (n)) of RKM multiplier based on: (a) A11 design; (b) A33 design

VII. CONCLUSION
In this paper, we elaborated and presented RKM multiplier

designs for large numbers (n ≥ 64 bit). We explained that
there are various ways to implement RKM that depends on the
targeted platform and the goal aimed applications. For each
method, we detailed the hardware design and the performance
metrics (delay, area).

Furthermore, mathematical performance models, as know

delay (n) and area (n) of all proposed RKM designs are
elaborated and evaluated. A clear idea is available for FPGA’s
designer about area occupation and delay of RKM’s multiplier
for different bit range (n ≥ 64 bit).This feature is advantageous
to have suitable trade-offs between Area and Speed for
implementing cryptographic schemes in embedded systems.
The goal of our RKM design is crucial for achieving high
performance and energy efficient cryptographic protocols.
However, the effectiveness of based design depends on the
adopted design approaches.

Future works will focus on improving and applying our
RKM designs to prevent advanced attacks (Side Channel
Attacks such as: SPA, DPA).

REFERENCES
[1] D.V.Bailey, C.Paar, “Efficient Arithmetic in Finite Field Extensions

with Application in Elliptic Curve Cryptography,” Journal of
Cryptology, vol. 14, 2001, pp.153–176.

[2] N.S.Chang, C.H.Kim, Y.H .Park, J.Lim,“A non-redundant and efficient
design for Karatsuba-Ofman algorithm,” In ISC, Springer-Verlag Berlin
Heidelberg, 2005,pp. 288-299.

TABLE VII
 DELAY (N) MODEL PARAMETERS OF RKM A11 AND A33 DESIGNS

Parameters Mode Equation

Spartan 3
y0 + A1 exp (- n / t1) + A2 exp (- n / t2)
A1 Є [-43.4, -41.4], t1 Є [122.6, 150.6]

A2 Є [-35, -32.8], t2 Є [9.8, 11.4] RKM- A11
design

Virtex 2
y0 + A1 exp (- n / t1) + A2 exp (- n / t2)

A1 Є [-29.5, -27.7], t1 Є [56, 77.6]
A2 Є [18, 19], t2 Є [0.53, 0.57]

Spartan 3 y0 + A1 exp (- n / t1)
A1 Є [-884, -564], t1 Є [57.9, 196.5] RKM-

A33 design
Virtex 2 y0 + A1 exp (- n / t1)

A1 Є [-64.4, 399.4], t1 Є [-198.7, -21.3]

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:4, 2009

795

[3] L.S.Cheng, A.Miri, T.H.Yeap, “Improved FPGA implementations of
parallel Karatsuba multiplication over GF (2n),” In Proc. 23rd Biennial
Symposium on Communications conf, 2006.

[4] L.Dong-Ho, and O.Jong-Soo, “Multi-Segment GF (2m) Multiplication
and its Application to Elliptic Curve Cryptography),” in
Proc.GLSVLSI’07 conf. Stresa-Lago Maggiore, Italy, pp. 546-551.

[5] Z.Dyka, P. Langendoerfer,, “Area efficient hardware implementation of
elliptic curve cryptography by iteratively applying karatsuba’s method,”
in Proc. of the Design, Automation and Test in Europe conf, pp.70-75.

[6] W.El hadj youssef, M.Zghid, M.Machhout, B.Bouallegue, R.Tourki,
“Design and Performance testing of Arithmetic Operators Library for
Cryptographic Applications,” International Journal of Computer
Sciences and Engineering Systems (IJCSES), Vol.1, No.3, 2008,pp. 201-
212.

[7] M.Ernst, M.Jung, F.Madlener, S. Huss, R.Blumel, “A Reconfigurable
System on Chip Implementation for Elliptic Curve Cryptography over
GF(2n) ,”In CHES, LNCS 2523, 2002, pp. 381-399.

[8] F. U.S. Department of Commerce (2000) ‘Digital Signature Standard
(DSS)’, NIST /FIPS PUB 186-2, January.

[9] F.Rodriguez-Henriquez, N.A.Saqib, A.Diaz-Pérez, “A fast parallel
implementation of elliptic curve point multiplication over GF (2m)”,
Microprocessors and Microsystems, Vol.28, pp.329-339.

[10] Z.Guitouni, W.El hadj youssef, M.Machhout, R.Tourki,
“Implementation of Elliptic Curve Point Multiplication in Projective
Systems over GF(2m)”, In Proc.Fourth International Multi-Conference
on Systems, Signals & Devices (SSD’07), March.

[11] J.Großschadl, R.M.Avanzi, E.Sava, S. Tillich,”Energy-Efficient
Software Implementation of Long Integer Modular Arithmetic,” In
CHES 2005, LNCS 3659, pp. 75–90.

[12] P.Kocher, L.Ruby, G.McGraw, A.Raghunathan, R.Srivaths, “Security as
a New Dimension in Embedded System Design,” In Proc. DAC 2004,
June, San Diego, California, USA.

[13] L. A. B.Kowada, R.Portugal, C.M.H.Figueiredo,”Reversible Karatsuba’s
Algorithm,” Journal of Universal Computer Science, Vol. 12, no. 5,
pp.499-511.

[14] N.Nedjah, L.M.Mourelle, “Fast Less Recursive Hardware for Large
Number Multiplication Using Karatsuba-Ofman’s Algorithm,” In Proc.
ISCIS 2003, LNCS 2869, pp. 43-50.

[15] N.Nedjah, L.M.Mourelle,”A Review of Modular Multiplication Methods
and Respective Hardware Implementations,” Informatica, Vol. 30,
pp.111-129.

[16] P.L.Montgomery, “Five, Six, and seven-Term Karatsuba-Like
Formulae,” IEEE Transactions on Computers, Vol. 54, No. 3, pp. 362-
69.

[17] W.Qingxian, “The application of elliptic curves cryptography in
embedded systems,” In Proc. Second International Embedded Software
and Systems Conf., pp.16-18.

[18] S.Peter, P.Langendorferv, “An Efficient Polynomial Multiplier in GF
(2m) and its Application to ECC Designs,” In Proc. DATE0 Conf EDAA.

[19] J.Von zur Gathen, J.Shokrollahi, “Efficient FPGA-based Karatsuba
multipliers for polynomials over F2,” In Proc.SAC 2005 conf, LNCS
3897, pp. 359-369.

[20] J.Von zur Gathen, J.Shokrollahi, “Fast arithmetic for polynomials over
F2 in hardware,” In Proc. IEEE Information Theory Workshop, Punta
del Este, Uruguay.

[21] LC.Washington.,”Elliptic Curves: Number Theory and Cryptography,”In
Chapman & Hall New York CRC Press.

[22] Weimerskirch, A. and Paar, C. (2003) ‘Generalizations of the Karatsuba
Algorithm for Efficient Implementations’, Ruhr-Universitat-Bochum,
Germany, Tech. Rep.

[23] T.Wollinger, G.Guajardo, C.Paar ,“Cryptography in Embedded Systems:
An Overview,” In Proc. of the Embedded World 2003 Exhibition and
Conference, Design & Elektronik, Nuernberg, Germany, February, pp.
735-744.

Mohsen. Machhout was born in Jerba, on January 31 1966. He received MS
and PhD degrees in electrical engineering from University of Tunis II,
Tunisia, in 1994 and 2000 respectively. Dr Machhout is currently Assistant
Professor at University of Monastir, Tunisia. His research interests include
implementation of standard cryptography algorithm, key stream generator and
electronic signature on FPGA.

Medien. Zeghid received his M.S. degree in Electronic Materials and
Dispositifs from the Science Faculty of Monastir, Tunisia, in 2005. Currently,
he is a PhD student. His research interests include Security Networks,
implementation of standard cryptography algorithm, Multimedia Application,
Network on Chip: NoC. He is working in collaboration with LESTER
Laboratory, Lorient, France.

Wajih. El Hadj Youssef was born in Monastir, on May 06 1979. He received
MS in Informatique industrielle et automatique from National Instituted of
Applied Sciences and Technology of Tunis, Tunisia, in 2005. Currently, he
is a PhD student. His research interests include implementation of
cryptography algorithm, key stream generator and electronic signature on
FPGA, security of embedded system,

Belgacem. Bouallegue received his MSc in Physic Microelectronic and his
DEA in Electronic Materials and Dispositifs from the Science Faculty of
Monastir, Tunisia, in 1998 and 2000, respectively. Currently, he is a PhD
student. His research interests include High Speed Networks, Multimedia
Application, Network on Chip: NoC, flow and congestion control,
interoperability and performance evaluation. He is working in collaboration
with LESTER Laboratory, Lorient Cedex France.

Adel. Baganne born in 1968 is presently an Associate Professor at the UBS
University and member of the LESTER Lab. He received his Ph.D. degree in
Signal Processing and Telecommunications at the University of Rennes,
France,in 1997 and the Engineer degree in Electronics from the National
Superior Engineering School in Angers (ESEO), France, in 1993. His research
interests include communication synthesis, codesign, co-simulation, computer
architecture, VLSI design and CAD tools.

Rached. Tourki was born in Tunis, on May 13 1948. He received the B.S.
degree in Physics (Electronics option) from Tunis University, in 1970; the
M.S. and the Doctorat de 3eme cycle in Electronics from Institut
d'Electronique d'Orsay, Paris south University in 1971 and 1973 respectively.
From 1973 to 1974 he served as microelectronics engineer in Thomson CSF.
He received the Doctorat d'etat in Physics from Nice University in 1979. Since
this date he has been professor in Microelectronics and Microprocessors with
the physics department, Faculty of Sciences of Monastir. His current research
interests include: Digital signal processing and hardware software codesign
for rapid prototyping in telecommunications.

