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Abstract—Long number multiplications (n ≥ 128-bit) are a 

primitive in most cryptosystems. They can be performed better by 
using Karatsuba-Ofman technique. This algorithm is easy to 
parallelize on workstation network and on distributed memory, and 
it’s known as the practical method of choice. Multiplying long 
numbers using Karatsuba-Ofman algorithm is fast but is highly 
recursive. In this paper, we propose different designs of 
implementing Karatsuba-Ofman multiplier. A mixture of sequential 
and combinational system design techniques involving pipelining is 
applied to our proposed designs. Multiplying large numbers can be 
adapted flexibly to time, area and power criteria. Computationally 
and occupation constrained in embedded systems such as: smart 
cards, mobile phones…, multiplication of finite field elements can be 
achieved more efficiently. The proposed designs are compared to 
other existing techniques. Mathematical models (Area (n), Delay (n)) 
of our proposed designs are also elaborated and evaluated on 
different FPGAs devices. 
 

Keywords—finite field, Karatsuba-Ofman, long numbers, 
multiplication, mathematical model, recursivity.   

I. INTRODUCTION 
INITE field multiplication in GF (2n) is one of the most 
important operations in cryptographic protocols (RSA, 

Diffie-Hellman key exchange, DSS, ECC …) [1, 8, 21]. That 
means the optimization on multiplication is critical for overall 
performance of cryptographic implementations. It is very 
costly in terms of Area and Delay performances. A lot of 
researches have been performed in designing performant 
multipliers (low Area occupation and high-speed 
computation). Several designs have been reported for 
multiplication on fields of characteristic two [16]. Efficient 
bit-parallel multipliers for both canonical and normal basis 
representation as well as hybrid multiplication have been 
proposed in literature [15]. All these algorithms exhibit a 
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space complexity of O (n2). However, there are some 
asymptotically faster methods for finite field multiplications, 
such as the Recursive Karatsuba-Ofman Algorithm [18]. 
Published in 1962, it was the first algorithm to accomplish 
polynomial multiplication in O (n1,58) operations [20]. The 
Karatsuba-Ofman Algorithm (KOA) can successfully be 
applied to polynomial multiplication step. The fundamental 
Karatsuba-Ofman multiplication (KM) for polynomial in GF 
(2n) is based on the idea of divide-and-conquer, since the 
operands are divided into two segments [3]. Compared to the 
well-known Schoolbook method, the KOA saves 
multiplications of the partial products at the cost of extra 
additions. Further work of hardware and software 
implementations of Karatsuba-Ofman multipliers in literature, 
was done to improve the KOA and to find bounds of the 
complexity. Several works detailed information on the usage 
of KOA in order to multiply with the least cost are provided 
[2, 22]. Multiplying long numbers (n ≥ 128-bit) using 
Karatsuba-Ofman algorithm is fast but the algorithm is highly 
recursive. Our work is related to Karatsuba-Ofman multiplier 
for large numbers. In this paper, we proposed and developed 
different Karatsuba-Ofman multiplier designs in GF (2n), 
intended to perform the design of the cryptographic protocols 
in embedded system such as smart card and mobile phone. 
Our design constraints are: the latency, the energy 
consumption and the area occupation.  

The remainder of this paper is organized as follows: The 
illustration of the efficiency of the multiplication arithmetic 
operator throughout the applications of cryptographic 
protocols for embedded systems is described in Section 2. 
Section 3 describes the Recursive Karatsuba-Ofman 
multiplication. In Section 4, we present new designs of 
adapted KOA, so that it can be implemented efficiently. Many 
approaches to Sequential and Parallel Recursive Karatsuba-
Ofman Multipliers (RKM) to optimize the designs are 
developed in this section. Experimental results of FPGA 
implementation (area, latency, power) are presented in Section 
5. Mathematical models (Area (n), Delay (n)) of our proposed 
Sequential/Parallel designs are also elaborated in Section 6. 
Section 7 concludes the paper. 

II. EFFICIENT CRYPTOGRAPHIC PROTOCOLS FOR EMBEDDED 
SYSTEM 

Embedded systems (such as : smart cards, mobile phones, 
Personal Digital Assistants, etc.), which ubiquitously are used 
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to capture, store, manipulate, and access data of a sensitive 
nature, pose several unique and interesting security challenges 
[12]. Therefore, providing security and trust in embedded 
systems raises important technological challenges. The 
cryptographic primitives and security protocols are hard to 
realize in embedded systems.  

Embedded systems are extremely resource constrained 
devices in terms of computing and communication 
capabilities, energy, power, chip and memory area, etc. 
Moreover, they generally have to work in harsh, uncontrolled, 
and even hostile surrounding conditions. The security is not 
only the addition of features, such as specific cryptographic 
algorithms and security protocols, to the system but also the 
elaboration of novel design principles, methods, algorithms, 
designs and techniques in order to efficiently and securely 
realize cryptographic primitives and security protocols for 
embedded systems [23], which are the building blocks for 
security, privacy, and trust. The implementation of 
cryptographic systems presents several requirements and 
challenges. First, the performance of the algorithms is often 
crucial. One needs encryption algorithms to run at the 
transmission rates of the communication links. Slow running 
cryptographic algorithms translate into consumer 
dissatisfaction and inconvenience. On the other hand, fast 
running encryption might mean high product costs since 
traditionally, higher speeds were achieved through custom 
hardware devices. Recently, ECCs are especially suited to 
smart cards because of the limited memory and computational 
power available on these devices. Another benefit of ECCs is 
that they can use a much shorter key length than other public 
key cryptosystems such as RSA to provide an equivalent level 
of security [5, 17]. For ECC systems, the most important 
operation is the scalar multiplication which is based on the 
finite field multiplication. For large integer, the efficiency of 
multiplication dominates the overall performance of ECC 
implementation [9, 10]. It was shown that as much as 85% of 
execution time is spent on multiplication for a typical point 
multiplication in ECC. (see figure 1).  

Multiplication  

Others 

 
Fig. 1   Distribution of area occupation in ECC point multiplication 

arithmetic 
 

Several techniques of multiplication were introduced in 
literature. The KOA is recommended for many cryptosystems. 
Therefore, the performance is primarily determinated by the 
efficient implementation of the arithmetic multiplication. In 
this context, new designs of Karatsuba-Ofman multiplication 
are necessary to achieve the following two goals: one goal is 
to design a high speed multiplier, the second goal is to reduce 

the area and the power consumption for large numbers (n ≥ 
64-bit) on embedded processors and constrained platforms. 

Hence, in order to improve time, area and power 
requirements of the ECC (on GF (2n) with n ≥ 163-bit), it is 
essential to have a variety of Karatsuba-Ofman multiplication 
designs with consideration to trade-offs between the 
application and platform requirements. 

III. RECURSIVE KARATSUBA-OFMAN MULTIPLICATION 
(RKM) 

In this section, we introduce the fundamental KOA which 
can successfully be applied to polynomial multiplication. The 
fundamental Karatsuba-Ofman multiplication for polynomial 
in GF (2n) is a recursive divide-and-conquer technique. It is 
considered as one of the fastest way to multiply long numbers 
[11]. For polynomial multiplication with original Karatsuba 
method both operands have to be divided into two equal parts. 
If the length of operands is odd, they have to be padded with 
leading ‘0’ [4]. Therefore, the KOA becomes recursive. A 
straightforward application of the KOA requires log2 (n) 
iteration steps for polynomials of degree (n-1). Let A = (a0, 
a1,…, an-1) and B = (b0, b1,…,bn-1), the binary 
representation of two long integers. The operands A and B can 
be decomposed into two equal-size parts A1A0 and B1B0  
respectively, which represent the n/2  higher and lower order 
bits of A and B. We can split them into two parts as follows: 
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So the product P(x) = A(x)*B(x) can be computed as follows: 
2/

10011100 )()()( nn xBABAxBABAxBxA +++=     (3) 
Equation 3 needs four (n/2-bits) multiplications to compute 

the product P(x). To improve the computation of P(x), 
Equation 3 can be modified to Equation 5 as follows: 

 

001101011001 )B+)(BA+(A BABABABA −−=+        
11001100 ()()( BABAxBABAxBxA n +++=   

                    2/
0101 ))B+)(BA+(A nx+       (5) 

The result is: 
nxCCxBxA 10)()( +=                (6)   

Field multiplication can be performed into two steps. 
Firstly, we perform an ordinary polynomial multiplication of 
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two field elements as shown in Equation 5. Secondly, a 
reduction operation with an irreducible polynomial is needed 
to be performed in order to obtain the (n - 1) degree 
polynomial. It is noticed that once the irreducible polynomial 
F(x) = xn + xk + 1 has been selected, the reduction step can be 
accomplished by using XOR gates only [3]. However, we 
want to focus on an efficient method based on KOA to 
calculate the polynomial multiplication. Figure 2 shows the 
procedure of KOA where A and B are two n-bit length 
polynomials. 

T1

T3

A*B

T1

T2

T3

2n-1

n/2 n/2-1n/2-1 1 n/2

0
n/2

1 A+xA =A 

0
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111 BA = T

)B+)(BA+(A = T 01012

003 BA = T

 
Fig. 2   Karatsuba-Ofman’s multiplication 

 
The multiplication over GF (2n) is computed by a single 

AND operation. After completion of these polynomial 
multiplications, the final value of the lower half of C0 as well 
as the upper half of C1 are determined. The KOA can be 
applied recursively to the three polynomial multiplications. 
Hence, we can postpone the computations of the polynomial 
products A0B0, A1B1 and (A1+A0)(B1+B0); and instead we 
can split again each one of these three factors into three 
polynomial products. By applying recursively this strategy, 
each polynomial multiplication is transformed into three 
polynomial multiplications with their degrees reduced to about 
half of its previous value [7]. This leads immediately to a 
recursive construction process of Karatsuba-Ofman 
Multiplication (RKM), which builds Combinational Karatsuba 
Multiplier (CKMs) of width n = 2i for arbitrary i Є N [13, 14]. 
(see figure 3).  
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Fig. 3 Recursive Karatsuba-Ofman multiplication (RKM) 
 

As can be concluded, parallel multipliers perform partial 
products in minimum clock cycle but require more area to be 
implemented. The area occupation metric becomes more and 
more important for n ≥ 64-bit. Therefore, we required new 
RKM designs to adjust their performances: delays; and 
especially area occupation.  

IV. PROPOSED RKM DESIGNS  
Multiplication can be implemented either in serially or 

parallel. In one side, serial multipliers require small area, less 
complex structure and high latency. In the other side, parallel 
multipliers perform the total operation in a minimum clock 
cycle but require more space to be implemented. When the 
operands are long (n ≥ 64-bit), the performances of the 
algorithm especially the area occupation, is deteriorated as 
will be shown in section 5.1. This problem is not noticed for 
little numbers (n < 64-bit). Hence, to ameliorate the 
performances of RKM with n ≥ 64-bit, we proposed new 
hybrid RKM designs that can be adapted to various 
performances as known: delay, area and power constraints for 
large finite field’s elements.  
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Fig. 4 Design of Recursive 128-bit Karatsuba-Ofman’s multiplication (RKM) 
 
A block diagram of 128-bit RKM’s design is developed as 

shown in Figure 4.  
The design includes the following units: 

• Architecture Unit (AU): Constituted by 64-bit, 32-bit 

and 16-bit RKM multipliers. It takes care of reading 
operands from a port operand memory. 

• Memory (RAM): is used to load initial operands. 
• Arithmetic Control Unit (ACU): generates control 
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signal for all other units and the memory. 
• Finite State Machine (FSM): determinates when 

enable, reset the multiplication process, accept input 
data and register output results in the memory. It 
decided when the result obtained is to be used or 
ignored. 

In order to optimize this design, we have developed and tested 
five new 64-bit RKM designs as shown in Figure 5 and 6. All 

these designs are based on Parallel and Sequential applications 
of RKM. The major purpose of these approaches is to obtain a 
reduced area consumption and power of the hardware designs. 
The second purpose is to keep the high speed performance of 
RKM hardware implementations.  
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Fig. 5 A proposed 64-bit RKMj designs using Three parallel 32-bit RKM with  (a) Three parallel 16-bit RKM; (b) Two parallel and one 

sequential 16-bit RKM; (c) Three sequential 16-bit  RKM 
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Fig. 6 A proposed 64-bit RKMj designs using Two parallel, one sequential 32-bit RKM with  (a) Three parallel 16-bit RKM;  (b) Two parallel 

and one sequential 16-bit RKM 
The proposed Parallel and Sequential 64-bit RKMj progress 

cycles are shown in Table 1. For two proposed designs, 
multitasks sequences functions are detailed. Table 1 shows all 

steps describing the Architecture Units activation and 
deactivation. For example, to perform 64-bit RKM using 
RKM1, three 16-bit multipliers are performed in parallel; all 
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16-bit AUs are active “ON”. Therefore, the three 32-bit 
RKMs required are consequently active “ON”. However, 
when applying RKM2, the two 16-bit AUs are done in parallel 
(active: “ON”). Next sub-step, 16-bit AU is performed 

sequentially; the other unit is deactivated (“OFF”) as shown in 
Table 2. Consequently, the three 32-bit RKMs are activated in 
parallel. 

TABLE I 
CYCLE PROGRESS OF 64-BIT RKM1 DESIGN 

TABLE II 
 CYCLE PROGRESS OF 64-BIT RKM2 DESIGN 

32-bit RKM 32-bit RKM 32-bit RKM 64-bit  
RKM2 16-bit  

RKM 
16-bit  
RKM 

16-bit  
RKM 

16-bit  
RKM 

16-bit  
RKM 

16-bit  
RKM 

1.1 ON ON ON ON ON ON 
ON OFF ON OFF ON OFF Step 1 1.2 

ON ON ON 
Step 2  Result Ready 

In the following, we note Aij with i the number of 128-bit 
RKMs (i Є [1, 3]) and j the number of 64-bit RKM applied (j 

Є [1, 5]). So, we have fourteen 128-bit RKM designs. The 
detailed proposed designs are shown in Figure 7.  
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                    (a) 128-bit RKM1 : Three paralle 64-bit RKMj            (b) 128-bit RKM2 : Two paralle and one sequential 64-bit RKMj 
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Fig.7 Three proposed 128-bit RKM designs 
Table 3 presents the cycle number of 128-bit RKM designs.  

TABLE III 
 CYCLE REQUIREMENTS OF 128-BIT RKM’S DESIGN  

Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
Design  A11 A21 A31 A12 A32 A14 A24 A34 A15 A25 A35 A13 A23 A33 
Cycle number 13 28 42 25 78 26 52 78 48 96 144 34 70 105 

As can be seen, the design A11 needs 13 cycles to perform a 
full 128-bit multiplication. So, it’s the fastest proposed design.  

V. IMPLEMENTATION AND COMPARISONS RESULTS  
In this section we present the results obtained from fourteen 

proposed 128-bit RKM’s designs and we give some 
recommendations for RKM designs with focus on the cell-
based design techniques. The different proposed designs are 
implemented in the Very High Speed Integrated Circuit 
Description Language -VHDL by using the Model 

Technology’s ModelSim Simulator. The VHDL codes of the 
different design are synthesized placed and routed using three 
target devices: Xilinx Virtex II 2v2000ff896-6, Xilinx Virtex 
E XCV2000Efg860-6 and Spartan 3s2000fg900-5 FPGAs. 
The designs were simulated for verification of the correct 
functionality.  

According to the required performances design, 
performance metrics such as area occupation (slices), speed 
(ns) and power consumption (mW) are used. As can be seen, 
the 32-bit RKM design as know A1 (three 16-bit RKM are 
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applied in parallel) is four time faster (154,163 ns) than the 
32-bit RKM design as know A2 (three 16-bit RKM are 
applied sequentially) on two platforms. As concluded, when 
applying (A2), we obtain a profit of (26%) in speed with a 
little waste in area occupation by only (3%). Furthermore, the 
design (A1) takes (5 %) of the total number of CLB slices 
available in the same platform. Table 4 presents detailed 
results for 32 bit-RKM design. Still, the latency is the main 
metric of RKM algorithm when n ≤32-bit. 

A. 64-bit RKMj Implementation Results 
The implementation results of the five 64-bit RKMj designs 

developed in the previous section are shown in Figure 8.  
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Fig. 8 Sensitivity tests: (a) Delay (ns); (b) Area occupation (Slices); 
(c) Power consumption (mW) for five 64-bit RKMij’s designs on 

Virtex 2 

As can be noticed the 64-bit RKM1 design presents the best 
results in speed (30, 88 ns), however the area occupation is 
about 3263 slices and the power consumption 83,05mW. We 
can divide the five proposed 64-bit RKMj design in three 
groups: the high latency group (RKM1) and the low area 
occupation group (RKM5). The third group is composed by 
medium latency and medium occupation (RKMj with j Є [2, 
4]). The 64-bit RKM3 design can be adopted as the optimal 
solution. The important point is to conserve the speed of the 
RKM, which is much more important than the waste in the 
area occupation. In the subsection below, we present the 
efficiency of the 128-bit RKM based on 64-bit RKMj designs. 

B. 128-bit RKMij Implementation Results 
Figure 9, shows the computation time (ns), area occupation 

(slices) and power consumption (mW) required by our 
proposed 128-bit RKMs designs. 
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Fig. 9 Sensitivity tests: (a) Delay (ns); (b) Area occupation (Slices);  
(c) Power consumption (mW) for fourteen 128-bit RKMij’s designs 

on Spartan 3, Virtex 2 and Virtex E 
 
From figure 9.a, we remark that each design have a 

different computing time on three FPGAs devices.  However, 
the design number 1 (A11) provides the least computing time 
to perform a 128-bit multiplication in all platforms. In figure 

TABLE IV   
DELAY AND AREA PERFORMANCES OF 32-BIT A1 AND A2 DESIGNS ON 

TWO PLATFORMS 
 

Designs A1 (Parallel) A2  (Sequential) 
Spartan 3 40,7 154,163 Delay 

(ns) Virtex 2 24,31 113,264 
Spartan 3 5 % 2 % Area 

(Slices%) Virtex 2 6 % 4 % 
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9.b, area performances are given in terms of total numbers of 
slices necessary for the implementation. The design (A11) has 
the worst area occupation on the three platforms. The design 
number 14 (A33) introduces the best area performances. As 
can be noticed, the proposed design number 14 (A33) requires 
the least power consumption on all targeted devices compared 
to the other proposed designs.  

We conclude from figure 9.c, that independently of targeted 
FPGA devices, the 128-bit RKM’s designs (A11) and (A33) 
can be adapted respectively to obtain a minimum delay and 
least area occupation. The different RKM’s designs and 
circuits have to be adapted in order to take full advantage of 
the corresponding logic block resources of FPGAs. The 
choice of the adequate RKM design depends on the platform 
targeted and the goal aimed application.  
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Fig. 10 Delay, Area and Power criteria for fourteen 128-bit RKMij’s 
designs on: (a) Spartan 3;   (b) Virtex 2 (c); Virtex E 

These figures can be adapted for user as a reference to 
choose the ideal RKM’s design for a targeted FPGA platform. 
A study is also made on the adapted FPGA for all proposed 
RKM’s designs in order to give to the designers the flexibility 
to make trade-offs between speed, area and power criteria. So 
to implement an RKM in a constrained platform, one need to 
consider trade-offs between these parameters and the user can 
get all advantages of his FPGA as depicted in Figure 10.  

C. Comparisons results  
Table 5 shows the performance results obtained by the 

Xilinx project synthesizer of our proposed RKM designs. A 
comparison performance result for the hardware 
implementations against each other is not straight forward. 
This is because, in literature large numbers (for n≥128-bit) 
karatsuba multiplication are not treated. Furthermore, different 
proposed multiplier designs performances (delay (ns) and area 
occupation (Slices)) deduced from this study are compared 
with our previous work on multipliers as know booth and 
hybrid multiplier with 128-bit length [6]. Furthermore, Table 
5 compares our designs with other works recently reported in 
literature [19] in terms of 240-bit karatsuba multipliers, using 
the Virtex II reconfigurable hardware platform.  

 
TABLE V  

COMPARISON RESULTS OF MULTIPLIER DESIGNS ON VIRTEX-II OVER GF (2128) 
AND GF (2240) 

Ref. Design Delay (us) Area 
(Slices) 

Booth 2,183 4% Our previous  work 
[6] 

GF(2128) 
Hybrid  

multiplier 0,280 92% 

Hybrid  
karatsuba 

0,378 
 14% [19] 

GF(2240) classical 
karatsuba 

0,523 
 15% 

A31 0,153 37% 
A32 0,205 30% 
A23 0,250 39% 

This work 
GF(2128) 

A33 0,378 23% 
This work 
GF(2240) RKM 0.29 45% 

 
In order to have a fair evaluation, we choose the (A31), 

(A32), (A23) and (A33) RKM designs because of optimal 
performances. We can see from Table 5 that the (A31) design 
is able to operate at a delay of 153, 93 ns, which is 14,267-
times faster than the booth method. However, it occupied 
(33%) slices besides. Compared to hybrid multiplier, the 
(A23) design runs approximately at the same delay. In other 
side, it consumes (53%) slices less of the total platform area.  
The focus of [19] was to implement karatsuba in classical and 
hybrid karatsuba method for 240-bit length using the Virtex II 
as a target. We notice that our proposed RKM multiplier 
occupied more area occupation (+3332 and +3225 slices) 
compared to the hybrid and classical karatsuba methods 
developed in [19]. In the other side, our proposed RKM 
design is respectively 0.09us and 0.233us faster. 
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VI. RKM DESIGNS MODELING 
The objective of this section is to present mathematical 

models (Area (n), Delay (n)) of the proposed 128-bit RKM 
designs. They enabled us to establish the basis of a 
mathematical formalism of the RKM designs.  

These models are available to designers before hardware 
and software embedded system implementation. So, a clear 
idea is available for FPGA designers about the delay and the 
area occupation of the RKM multiplier for different bit rang 
(n=64, 128,256...).  

Mathematical performances models of all proposed designs 
are elaborated on two platforms. In the following, we 

presented mathematical modeling of two designs as know 
(A11) and (A33) ones.  

Figure 11 shows that the two Area variation’s curves of 
RKM designs have approximately a polynomial pace. 
However, in this figure they have no ideal pace because of 
peaks. To perform a polynomial fit on the active data plot, a 
Polynomial Fit Analysis is needed. In this operation, a number 
of points are drawn in the fit curve. The fit equation model of 
the Kth order is stated: 

K
K XBXBXBXBAY +++++= ...3

3
2

21    (7) 

With: A and Bi are the parameters.  
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        (a)  A11 design.                     
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(b) A33 design.                     

Fig. 11 Mathematical model (Area (n)) of RKM multiplier based on:(a) A11 design; (b) A33 design 
 

 

 
 

We conclude that the Area (n) occupation of RKM 
multiplier bases on (A11) and (A33) designs are presented in 
Section 3 has respectively a third and second polynomial 
order. The model’s parameters of the Area (n) are illustrated 
in Table 6.  

 From Figure 12, we conclude that Delay (n) performance 
of RKM multiplier bases on (A11) and (A33) designs has 
respectively a second and first exponential order. The 
exponential fitting equation is as follows:  

21
210

t
x

t
x

eAeAyy
−−

++=            (8) 

TABLE VI 
 AREA (N) MODEL PARAMETERS OF RKM A11 AND A33 DSIGNS 

 
Parameters Mode Equation 

Spartan 3 
A + B1 n+B2 n2 +  B3 n3  

B1 Є [16.84,  20.78], B2 Є [0.53,  0.57],  
B3 Є [-6.49 E-4, -5.29 E-4] For RKM- 

A11 
architecture Virtex 2 

A + B1 n+B2 n2 +  B3 n3  
B1 Є [16.88,  20.83], B2 Є [0.53,  0.57],  

B3 Є [-6.39 E-4,  -5.19 E-4] 

Spartan 3 A + B1 n+B2 n2  
B1 Є [6.43,  18.57], B2 Є [0.06,  0.09] For RKM- 

A33 
architecture Virtex 2 A + B1 n+B2 n2  

B1 Є [6.79,  18.63], B2 Є [0.05,  0.09] 
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With:  y0 the offset; A1 and A2 the amplitude; t1 and t2 decay 
constant 

 The model’s parameters are illustrated in Table 7.  
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Fig. 12 Mathematical model (Delay (n)) of RKM multiplier based on: (a) A11 design; (b) A33 design 

 

VII. CONCLUSION 
In this paper, we elaborated and presented RKM multiplier 

designs for large numbers (n ≥ 64 bit). We explained that 
there are various ways to implement RKM that depends on the 
targeted platform and the goal aimed applications. For each 
method, we detailed the hardware design and the performance 
metrics (delay, area). 

Furthermore, mathematical performance models, as know  
 

 
delay (n) and area (n) of all proposed RKM designs are 
elaborated and evaluated. A clear idea is available for FPGA’s 
designer about area occupation and delay of RKM’s multiplier 
for different bit range (n ≥ 64 bit).This feature is advantageous 
to have suitable trade-offs between Area and Speed for 
implementing cryptographic schemes in embedded systems. 
The goal of our RKM design is crucial for achieving high 
performance and energy efficient cryptographic protocols. 
However, the effectiveness of based design depends on the 
adopted design approaches.  

Future works will focus on improving and applying our 
RKM designs to prevent advanced attacks (Side Channel 
Attacks such as: SPA, DPA).  
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