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Abstract—We develop new nonlinear methods of 

immunofluorescence analysis for a sensitive technology of 
respiratory burst reaction of DNA fluorescence due to oxidative 
activity in the peripheral blood neutrophils. Histograms in flow 
cytometry experiments represent a fluorescence flashes frequency as 
functions of fluorescence intensity. We used the Shannon-Weaver 
index for definition of neutrophils’ biodiversity and Hurst index for 
definition of fractal’s correlations in immunofluorescence for 
different donors, as the basic quantitative criteria for medical 
diagnostics of health status. We analyze frequencies of flashes, 
information, Shannon entropies and their fractals in 
immunofluorescence networks due to reduction of histogram range. 
We found the number of simplest universal correlations for 
biodiversity, information and Hurst index in diagnostics and 
classification of pathologies for wide spectra of diseases. In addition 
is determined the clear criterion of a common immunity and human 
health status in a form of yes/no answers type. These answers based 
on peculiarities of information in immunofluorescence networks and 
biodiversity of neutrophils. Experimental data analysis has shown the 
existence of homeostasis for information entropy in oxidative activity 
of DNA in neutrophil nuclei for all donors.  
 

Keywords—blood and cells fluorescence in diagnostics of 
diseases, cytometric histograms, entropy and information in fractal 
networks of oxidative activity of DNA, long-range chromosomal 
correlations in living cells. 

I. INTRODUCTION 

  1. Neutrophils are the important components of the immune 
system. Immunity is connected with metabolic, geographical, 
ecological, information, genetical and migration networks of 
diverse populations of neutrophils in the human body. The 
nature of most of these networks is unknown. We observed 
new features of oxidative activity networks in neutrophils’ 
populations. We investigate the experimental data of DNA 
fluorescence in neutrophils nuclei of peripheral blood. DNA 
fluorescence is triggered by biochemical reactions of 
respiratory oxidative burst [1-3]. Oxidative activity of DNA is 
very important for aerobic organisms. Oxidative activity burst 
is visualized in fluorescence. Fluorescence statistics are 
presented in histograms.  Immunofluorescence histograms are 
obtained by flow cytometry method [4]. The method is based 
on registrations of large collections of photon count statistics 
for fluorescence cells, DNA and RNA. The measurement is 
performed at thousands cells per second rates. Flow cytometry 

 
    Author is with the Experimental Physics Department, Saint-.Petersburg 
State Polytechnic University, 195251, Saint-.Petersburg, Russia (e-mail: 
n.galich @ mail.ru).  

is a unique method for analysis of gene regulation, gene 
expression and their correlations in live population of cells. 
   2. Spatial resolution of the instrument in flow cytometry 
may be very high.  This fact is little known and poorly used. 
Resolution and sensibility of the instrument in flow cytometry 
measurement allows registering very small heterogeneities of 
neutrophils, with dimensions of the order of nanometers and 
smaller sizes, inaccessible of optical microscopy. Registration 
of typical fluorescence flash with duration ~10-9 s in the flow 
of blood flowing through the laser beam with the velocity ~1 
m/s provides measurement with spatial scales ~10-9 m. 
Synchronization and registration of short fronts ~10-12 s of 
fluorescence pulses gives an increasing of sensitivity and 
extending of lower limit of   measurements in the flow 
direction.  Registration of very small heterogeneities allows 
detecting new peculiarities of neutrophils in flow cytometry. 
Diversity of neutrophils must be larger than can be seen in the 
optical microscope. Definition of diversity of fluorescent cells 
also depends on the gradations of glow brightness in 
registration of flashes' intensity. Number of gradations of 
glow brightness is determined by the number of channels for 
fluorescence intensity measurements. These dependencies also 
are discussed in this paper. 
   3. Neutrophils come into the blood from different parts of 
the body. Neutrophils belong to different generations and 
different populations living under different conditions. The 
inhabitants of the Earth also exist in a heterogeneous 
hierarchical system.  Biodiversity of living beings on Earth 
decreases with the deterioration of the ecological situation. 
Neutrophils may to have the opposite trend. Diseases are 
accompanied by increasing of pathogenic factors, germs and 
bacteria. They affect on the immune system, immune response 
and on neutrophils in the organism. Neutrophils seek to 
participate in the fight against each infection. Therefore 
biodiversity of neutrophils in the blood may be increased with 
a deterioration of health, when increased the number of 
diseases or when increased the severity of the illness.  
   4. In this communication we analyze immunofluorescence 
characteristics in order to have quantitative criteria of general 
health status for clinical practice. These criteria can be 
interconnected with neutrophils’ biodiversity. We can 
consider the human organism as an ecological system. Bad 
ecology is equivalent of a disease. Good conditions for 
environment in ecology reflect rich diversity for flora and 
fauna. Quantitative measure of quality in ecology is based on 
Shannon-Weaver index of biodiversity [5,6]. Main interest is 
focused on the definition of quantitative parameters of 
neutrophils’ biodiversity in immunofluorescence. We used the 
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Shannon-Weaver index for definition of neutrophils’ 
biodiversity and Hurst index [7] for definition of fractal’s 
correlations in immunofluorescence, as the basic quantitative 
criteria. Irregular nature of immunofluorescece and fractals in 
fluorescence networks closely connected with genes’ 
expression [8].  

We analyze Shannon-Weaver biodiversity and Hurst index 
for frequency distributions of immunofluorescence¸ for 
frequency distributions of information and information 
entropies of fluorescence under different histograms’ ranges 
or under different fluorescence networks’ scales. So we have 
spectra of different fluorescence networks and spectra of 
Shannon-Weaver biodiversity and Hurst index in these 
networks for each donor. 
   5. Each experiment for each individual donor gives 
correlations and statistical features of fluorescence for tens of 
thousands of young and old neutrophils in one cytometric 
histogram. These are no small statistics. Non-Gaussian 
exponential growth of central moments ),( kiM  of 
fluorescence intensity fluctuations i causes strong difficulties 
of experimental results analysis [2].  Statistical instabilities of 
local fluorescence intensity distributions are the main reason 
of difficulties. Three typical histograms are shown in Fig.1 
[8].  
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Fig. 1 Dependence of spontaneous fluorescence flashes number 

))256((IP on their intensity )256(I , non-dimensional variables; 
area under the final histograms normalized to unit; rhomb points 
correspond to bronchial asthma. Total number of flashes is  

766230 =N ; quadrate points correspond to healthy donor. 

Common number of flashes is 401090 =N ; triangle points 
correspond to oncology disease. Common number of flashes 
is 407520 =N .Common number of channels for fluorescence 

intensity )256(I  measurements is 256  
Average value of intensity is smallest than dispersion for all 

of histograms. Dispersion of intensity is smallest than 
asymmetry and others higher statistical moments of intensity 
fluctuations, as it is shown in Fig.2 for any histograms of 
iommunofluorescence. Therefore standard statistical methods 
failed. 
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Fig. 2 Logarithmic distributions of intensity central moments 

),( kiLnM  as function of moment’s number k , for histograms in 

Fig.1; ),(
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. Details are described in [8].    

   6. We develop a sequence of new nonlinear statistical 
methods to data analysis of immunofluorescence. Now we 
analyze evolution of different average values of 
immunofluorescence parameters with changes of columns in 
histograms and with variations of scales and of ranges for 
distributions of frequencies of flashes, information and 
information entropies. 
    We have many of meaningful information about condition 
of DNA in immunofluorescence histograms. Fragments of 
nuclear and mitochondrial DNA with oxidizing metabolism 
activity and oxidants determine the basic place for localization 
of the fluorescent dye [1-4,8,9].  Localization and distribution 
of fluorescence dye determine the intensity and statistics of 
fluorescence. The heterogeneous fluorescence of 
chromosomes reflects simultaneously the genetic special, 
individual features and immune response to the pathogenic 
actions.   
    We analyze Shannon entropies and fractals of 
immunofluorescence networks in order to found the simplest 
universal correlations for clear diagnostics of pathologies in 
wide spectra of diseases. 

II. PREPARATIONS AND MEASUREMENTS OF FLUORESCENCE 
   We present new statistical treatment approaches of the 
highly sensitive quantitative method [2] for registration the 
inflammatory reactions of organism founded on collective 
cytofluorescence features. The method based on the flow 
cytometrical measurement of the capability of the peripheral 
blood neutrophils for the reaction of respiratory burst or 
oxidizing explosion [1,3].   
   Experimental methods and procedures are described in 
[2,8,10,11]. Experiments based on respiratory burst or 
oxidizing explosion [1,3]. The volume of peripheral blood is 
V = (1 ... 2) ml. We used hydroethidine addition with 
concentration 150 μg/ml for fluorescence initiation. Small 
concentration 100 ng /ml additives of phorbol myristate 
acetate (PMA) to blood samples ensure the intensive staining 
of the cell nuclei of polymorph nuclear leukocytes. At the 
beginning hydroethidine is transformed in ethidium bromide 
as the results of chemical oxidative reactions in the blood 
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cells. Ethidium bromide binds with fragments of nuclear DNA 
and has strong red fluorescence excited by TEM00 mode 
radiation Argon laser light at 488 nm wavelengths. 
Intercalation of ethidium bromide in chromosome is 
determined by oxidative activity fragments of DNA. 
Fluorescence reflects the ability of cell to produce oxygen 
radicals, i.e. the respiratory burst activity.  Details of 
experimental procedures, preparations and tests are described 
in [8,10,11]. The rate of measurements is about (1-2)104 cells 
per min.  Mean time of the measurement of one model is 
about 2 min. This empirically selected regime is self-
consistent with noises level of various nature [10] and gives 
statistically stable and reproducible results. The inaccuracy 
and reproducibility for preparations and measurements 
procedures usually compose %2≈  . This inaccuracy and 
reproducibility level corresponds to unavoidable and 
irremovable noises and errors both physical and biological 
nature [10].   
   Results are represented in the form of immunofluorescence 
histograms as dependence the number of flashes on intensity 
of flashes for 256 channels of intensity measurements (see 
Fig.1). Typical common number of flashes is 0N  ~ 104… 105.  
Ranges of intensities I  vary from 1….14 to 256 
dimensionless units. These ranges of I correspond to numbers 
of channels l  for intensity measurements. Low boundary of 
intensities range 12~lowI usually constitutes 12 and in the 
general case is variable. The fluorescence with intensity less 
than lowest boundary is not considered. Lowest boundaries of 
intensities are limited by means of discriminator for 
interception of background noise. Background noise is cut off. 
Three typical examples of histograms are shown in Fig.1. 

III. INFORMATION AND SHANNON ENTROPY                              FOR 
DISTRIBUTIONS OF FLASHES; BIODIVERSITY 

    We use centered random variables and their centered 
moments. This approach is necessary to the exception the 
uncontrollable and systematic errors, instabilities of 
algorithmic procedures and corresponding drift of averages. 
Let us consider the relative deflections of fluorescence flashes 
number from their average level 

)1()( −
><

×>=<><−=
N
NPPPn l ,                               (1)         

1
minmax )( −−>=< IIP , )(lNN =  ,                                                    
><×>=< PNN 0  , 0/)( NlNPl = , 256,...2,1=l  , 

where symbol >< ...   denotes statistical average of the 
fluorescence fluctuations for all 256 channels of intensity                                                                                                                       
measurement ; measurement ; 0/)( NlNPl =   is the 
probability distribution density of the  flashes number  ; 

)(lNN =  is the number of flashes with the assigned intensity 
lI =    for the dimensionless intensity  I  coincides with the 

number of channels l   ; 0N   is common number of flashes;  
average value of flashes number is ><×>=< PNN 0 . Mean 

probability value is 256/1)( 1
minmax =−>=< −IIP . 

     Central moment ),( knM  for relative fluctuations of 
flashes number n are defined as statistical 
average ),( knMnk >=< , where k  determines the order of 
moment ),( knM , symbol >< ... denotes statistical average for 
fluorescence fluctuations. 
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Fig. 3 Dependence of logarithm of central moments 

),( knMnk >=<  on moment’s number k  for histograms in Fig.1 
 
   Rates of decreasing of ),( knM  with growth of k  are 
different for different health statuses. We have the exponential 
growth of central moments for intensity 
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 in 

Fig.2. This is equivalent of the statistical instability for local 
intensity distributions. We have the exponential decreasing of 
central moments ),( knM , if k>2, in Fig.3. Therefore, 
distributions of relative value of the number of flashes may to 
have a probabilistic measure. Therefore function 

0/)( NlNPl = can be considered as density of probability for 
number of flashes. Then we can enter the information for the 
distribution of flashes  
                    
                              ll LnPJ −=                                             (2)                   

 Information entropy )(PS  for the distribution of the 
number of flashes lP  has the form 

           ∑
=

=

×−>==<
256

1

))256(((
l

l
lll LnPPJIPS                      (3)                   

Shannon entropy (3) is defined by the probability 
distribution of fluorescence flashes lP  in l’ channels for 
intensity measurements. Information (2) is defined by the 
probability of occurrence the fluorescence flash of neutrophil 
with specified intensity. Thus, immunofluorescence histogram 
visualizes the probability of occurrence of neutrophils with a 
specific oxidative activity. Therefore, Shannon entropy also 
characterizes the Shannon-Weaver index )(PS  [5,6] for the 
biological diversity of neutrophils. Distinctive features of 
neutrophils here are determined by different oxidative 
activities of DNA. Distinctions in neutrophil activity for 
oxygen metabolism interconnected with peculiarities of 
chromosomes structure and chromosomal correlations in 
nucleus of neutrophils. These correlations are reflected 
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networks of ethidium bromide in chromosomes due to 
oxidative activity of DNA. 

IV.  CHANGES OF INFORMATION AND ENTROPY WITH 
REDUCTION OF HISTOGRAM’S RANGE  

   How will be changing the information due to reduction of 
histogram’s range? Let us introduce integer R as the upper 
limit for the number of channels l=I during reduction of 
histogram’s range. Integers R define the total histogram range 
for every reduction of common number of histogram's 
columns. Then we obtain the dependence of the total 
information J 
 

                   ∑
=

=

=
Rm

m
mJRRPJ

1

)),((( ,  mm LnPJ −=              (4)                                            

on R ( see Fig.7). Changes of Shannon entropy )),(( RRPS due 
to reduction of range R is described by the ratio 
 

       ∑
=

=

=
Rm

m
mm PSRRPS

1

)()),((( , mmmm LnPPPS ×−=)(     (5)                 

where probability density due to reduction of range R is 

Rm NmNP /)(=  ,number RN  characterize total number of 
flashes in reduced histograms. Reduced total number of 

flashes RN  is defined by the condition that 1
1

=∑
=

=

Rm

m
mP . 

Dependence of  RN  on R is linear and )256/(0 RNN R ×= . 
Shannon entropy )),(( RRPS describes the Shannon-Waver 
index of biodiversity [5,6] for different range R ( see Fig.8).  
    Let us consider reduction of histogram’s ranges. 
Normalized frequency mP  and frequencies mJ , mS  change due 
to reduction of R as it shown in Figs.4, 5, 6 for distributions of 
flashes mP , information mJ  and entropy mS .  
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Fig. 4 Dependence of normalized spontaneous fluorescence flashes 
frequency mP  on intensity I; (a) histogram range R=32 (b) 
histogram range R=4; initial histograms see in Fig.1  
    Here reductions of histogram's range have analogies with 
averaged measurements and with decreasing the number of 
channels for measurements of fluorescence. Contribution of 

various-scale noise due to transition to large-scale histograms 
can be extraordinarily large and have a different, both positive 
and negative sign in the distribution of columns in final low-
range histograms, as shown in Figs.4b, 5b and 6b. 
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Fig. 5 Dependence of information frequency mm LnPJ −=  on 
intensity I; (a) histogram range R=256 (b) histogram range R=4; 
initial histograms see in Fig.1  
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Fig. 6 Dependence of entropy frequency mS on intensity I; (a) 
histogram range R=256 (b) histogram range R=4; initial histograms 
see in Fig.1  
    We observe qualitative changes for distributions of 
frequencies mP , mJ , mS  due to reduction of histogram’s range 
in Figs.4, 5, 6. Changes in low range (R=4) distributions for 
different health status in Figs.4, 5, 6, are very radical, in the 
contrast of qualitative similarity of different initial histograms 
in Fig.1 (R=256). We observe very strong stratification for 
short range (R=4) in the contrast from high range (R=256) 
distributions in the space of intensity. What it means for 
information about biodiversity?  
     Low range (R=4) distributions in Figs.4b, 5b and 6b give 
approximately concave and convex parabolas for different 
health status. Very clear qualitative difference in health status 
are reflected in the qualitative difference of concave/convex 
parabola for each of distribution of all frequencies mP , mJ , 

mS  , when range R=4 [11,12]. Concave parabola P(I(4)) 
corresponds to inflammations. Convex parabola P(I4)) 
corresponds to healthy people. Parabola with zero curvatures 
corresponds to autoimmune diseases. Preliminary results of 
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analysis of low range histograms and bifurcations of 
immunofluorescence distributions were discussed in [11,12]. 
This classification allows dividing any sets of histograms on 
three big groups for various health statuses and for different 
classes of diseases. We observed the inflammatory processes  
after different surgical interventions, appearance and flow of 
autoimmune processes with the post infection complications, 
neurological and heart complications after diphtheria, chronic 
inflammation with rheumatoid arthritis, inflammatory reaction 
with bronchial asthma, course of inflammatory events with the 
myocardial infarctions,  inflammations with system lupus 
erythematosis, hepatitis, peritonitis, purulent appendicitis, 
pneumonias, cardiovascular, oncology and other diseases. 
Some illustrations of this approach to diagnostics for the 
disturbance of oxidizing metabolism are shown in Fig.14,15.  
    More valuable results are based on the dependence of total 
parameters J, S on histogram’s range R in Fig.7, 8. These 
correlations give very versatile and precision tools for analyze 
the change of biodiversity and information at change of R. 
These correlations have of greatest interest for quantities’ 
diagnostics of health status and types of illness (see parts 5, 
8). 
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Fig.7 Dependence of information )),(( RRPJ  on range of histogram 
R; initial histograms see in Fig.1  
Dependence of information )),(( RRPJ  on R is linear and has 
different rates for different health status. Stratifications of 

)),(( RRPJ  for different diseases have the linear growth with 
increasing of R. Therefore we have a linear growth of 
diagnostic sensitivity of information with increasing of 
channels number.  
   We can expect a much more noticeable difference in the 
information )),(( RRPJ  of histograms reaching a difference 
of 300% for 4096 channels measuring the intensity, instead of 
20%  for 256 channels as in Fig.7. Increasing of a difference 
in the biodiversity of neutrophils with growth of R for various 
diseases is not so strong. 
 

y = 0,6675x - 0,3845
R2 = 0,9887

y = 0,8746x + 0,0713
R2 = 0,9998

y = 0,8433x + 0,0731
R2 = 0,9982

0

1

2

3

4

5

6

0 2 4 6

lnR

S
(P

(R
),R

))

 
 
Fig. 8 Dependence of Shannon-Weaver index )),(( RRPS for flashes 

distribution mP of immunofluorescence on logarithm of range R; 
initial histograms see in Fig.1 
    We observe richer biodiversity of neutrophils for oncology 
and poorer biodiversity for inflammatory disease in Fig.8. 
Difference in the Shannon-Weaver index for oncology and for 
asthma combined ≈  70% when R=256.   
   We have a logarithmic growth of diagnostic sensitivity of 
Shannon-Weaver biodiversity )),(( RRPS with increasing of 
channels number R.  

V. HURST INDEX FOR NETWORKS OF FLASHES IN 
IMMUNOFLUORESCENCE  

    Let us consider, briefly, fractal features of 
immunofluorescence for networks of flashes. Let us compare 
the brokenness for three typical histograms in Fig.1, using the 
Hurst exponent. Results are shown in Figs. 9. 
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Fig. 9 Total Hurst exponent ))(),(( RRPH  (a) Hurst exponent 

LnIrjLnIPH ∂∂= /)/())256(((  for R=256; initial histograms 

see in Fig.1 (b) Hurst exponents LnIrjLnIPH ∂∂= /)/())32(((  
for R=32; initial histograms see in Fig.4a 
 
     Hurst exponent HH  [7] is determined by means of 
regression equation  
          constLnIHrjLn +×=)/(                                         (6) 
where ( rj /  ) is rescaled range ( jr = ), j is range or maximal 
deviation of )(IP from local mean level, r is standard 
deviation of )(IP . Hurst index )),(( RRPH  for frequency of 
flashes mP  corresponds to fractal (Hausdorff) dimension HD  
[7] if 

                      HDH −= 2                                                 (7) 
    In particular, the H  exponent indicates persistent or 
correlated ( H  > ½) and anti-persistent or uncorrelated ( H < 
½) behavior of trend. Persistent behaviors are observed in 
Fig.9a for asthma, when H(R=256)=0.5435. Anti-persistent 
behaviors H(R=256)=0.1971 for healthy person and 
H(R=256)=0.4018 for oncology. Correspondence fractal 
dimensions are 1,4< HD <1,8. We have different Hurst 
exponent for different three groups of diseases. Therefore, 
fractal structures and fractal dimensions of fluorescence 
networks depend on health status. 
     Reduction of histogram’s range from R=256 in Fig.9a to 
R=32 in Fig.9b, shown changes of Hurst exponents. It means 
that we have different transformations of fractal networks for 
various health statuses with reductions of range. In Fig.9b we 
have only anti-persistent behaviors of H(R=32)<1/2 for any 
health status. Hurst index H(R=32) also depend on health 
status. More detail pictures about transformations of Hurst 
index due to reduction of range are shown in Figs.10. 
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Fig.10 Dependence of Hurst index )),(( RRPH  on range R (a) linear 
scales (b) double logarithmic scales; initial histograms see in Fig.1 
 
    We observe changes of hierarchy in Hurst exponents or in 
fractal dimensions of immunofluorescence for different range 
of networks. Good health corresponds to anti-persistent 
behavior of H<1/2 for any range number R. Unhealthy people 
corresponds to persistent behavior of H>1/2 for range number 
R> 64. From this point of view the dominant of anti-persistent 
immune behavior for healthy people gives richer spectra 
responses of immunity than more poor reaction of unhealthy 
people.  
    Dynamics of changes for Hurst exponents )),(( RRPH with 
reduction of histogram’s ranges R can give very clear criterion 
for estimation of health. Let us consider dependence of Hurst 
exponent H on double logarithm of range lnlnR in Fig.10b. 
We observe qualitative changes of trend of Hurst index 
distributions for healthy and unhealthy people in Fig.10b. We 
have the negative trend of H for good health and the positive 
trend for illness with the increasing of R, i.e. we have opposite 
trends in the evolutions of immunofluorescence networks with 
different ranges for health and for illness. 
    Details of oxidative activity of DNA for nets of bridges, 
percolations and correlations between flashes in their 
interconnections with local placements in chromosomes are 
unknown. Different assumptions can to lead to regressions as 
in Fig.10b. For instance, linear regressions in Fig.10b are the 
same linear regressions in [13] (see Fig.5 in [13]) for 
combined networks of metabolism, interaction, regulation and 
expression in a particular for composite motifs in the design of 
molecular networks. More general reason of positive and 
negative trends in Fig.10b may be connected with peculiarities 
of information dynamics in large scale networked systems 
(see true and false distributions in [14]). 
     Actually, we determine the clear criterion of a common 
immunity and human health status in a form of yes/no answers 
type. Negative sign of trend in the dependence H(R) on R in 
double logarithmic scale lnlnR in Fig.10b is equivalent of 
health. In opposite trend we observe different diseases. These 
simplest answers give the structural changes of 
immunofluorescence networks with different ranges. 
    Here reductions of histogram's range have analogies with 
averaged measurements and with decreasing the number of 
channels of measurements. Changes in low range distributions 
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(R=4) with variations of health status in Figs.4, 5, 6, are much 
more radical than changes in initial histograms in Fig.1 for 
bigger range (R=256). Radical changes in low range 
distributions (R=4) for different health status depend on a 
brokenness and irregularity of histograms. Peculiarities of 
long-range correlations and properties of immunofluorescence 
noise are described in [9]. Contribution of noise in large-scale 
histograms, with R=4, can be extraordinarily large. This 
contribution gives positive and negative curvatures for 
approximations of frequency distributions mP  in histograms 
(see Fig.14b,15b). We have different structures of large-
scale’s and small-scale’s noises [9]. Therefore we have 
different structures of large-scale and small-scale 
immunofluorescence networks. This is reflected in the change 
of magnitude and character of Hurst exponents in averaged 
distributions of fluorescence, with different scales of 
averaging in Fig.10. Here Hurst exponents characterize fractal 
brokenness of histograms and fractal structure of 
immunofluorescence networks. 
     We have different Hurst exponents for frequencies of 
flashes mP , information mJ  and Shannon-Weaver index mS . 
These differences reflect peculiarities of variations in the 
structure of networks for flashes, information and entropy.  

VI. HURST INDEX FOR NETWORKS OF INFORMATION                              
ENTROPY IN IMMUNOFLUORESCENCE  

    Let us consider, briefly, fractal features of 
immunofluorescence for networks of information entropy. Let 
us compare the brokenness for three typical histograms in 
Fig.1, using the Hurst exponent. Results are shown in Figs. 
11. 
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Fig.11 Total Hurst exponent ))),((( RRPSH  Hurst exponent for 
range R=256; initial histograms see in Fig.6a 
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    Fig.12 Dependence of Hurst index ))),((( RRPSH  on range R 
(a) linear scales (b) double logarithmic scales; initial histograms see 
in Fig.6a 

Hurst index ))),((( RRPSH  for frequency distribution of 
entropy mS  corresponds to fractal (Hausdorff) dimension   
DH(H(S(P(R),R) in Eqn. (7). Differences between peculiarities 
in Fig.10 and Fig.12 reflect differences between fractal 
peculiarities of networks for mP and for mS .  

We observe only anti-persistent behavior of Hurst 
exponents for entropy distributions ))),((( RRPSH  in 
Figs.11,12 for any health status in the contrast from  Hurst 
exponents for flashes distributions )),(( RRPH in Figs.9,10. 
We observe more uncorrelated behavior of information 
entropy fluctuations than fluctuations of flashes number, i.e. 

))),((( RRPSH < )),(( RRPH for any health status. Finally, we 
have unchangeable sign of trends in the dependencies of 

))),((( RRPSH on Rlnln  in Fig.12. Therefore, fractal 
structure of entropy networks is more conservative than 
structure of networks for flashes when is changed a state of 
health. 
    Ratio of  Hurst index (H(S(P(R),R) for asthma H(S,asthma) 
is more than Hurst index  for oncology H(S,oncology) and 
more than Hurst index H(S, healthy) for healthy man. Ratio 
H(S,asthma)/ H(S,healthy) is close to 5.  Ratio H(S,asthma)/ 
H(S,healthy) is close to 3.  These ratios are rather stable when 
R>64.Thus, the fractal structure of frequency distributions of 
Shannon-Weaver biodiversity mS has noticeable and stable 
stratifications for different health statuses. These 
stratifications give a clear estimation of differ between 
different health statuses and illnesses. 

VII. EMPIRICAL INVARIANTS FOR INFORMATION ENTROPY IN 
OXIDATIVE ACTIVITY OF DNA IN NEUTROPHILS 

    For stability living of human and animal is required 
homeostasis. For example, a healthy human characterizes 
homeostasis in the body temperature, heart rate and other 
parameters. Is it possible to define a homeostasis of oxidative 
activity of DNA?  Is it possible to define the invariant for the 
Shannon-Weaver index? In other words, what manifestations 
of activity of DNA can give the identical conditions of life for 
all of neutrophils, for any people?  When, under what 
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circumstances, Shannon-Weaver index may to have 
practically the same value for neutrophils of all living persons, 
regardless of health status? For what parameters observed 
biological monotony?   This question interconnected with the 
fact that belonging to the human species is not dependent on 
nationality, age, gender and geography. All people breathe air. 
We are aerobic organisms. Is there anything similar to the 
homeostasis in the oxidative activity of DNA? Let us change 
the probabilistic measure in the determination of Shannon 
entropy. Let us introduce entropy )),(( RRJS for probability 
distribution of information 

∑
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m
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where m
nJ  defines normalized distribution for flashes of 

information    
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We observe the universality of )),(( RRJS in Fig.13. 
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    Fig.13 Dependence of Shannon-Weaver index )),(( RRJS  for 

information distribution m
nJ  of immunofluorescence on logarithm 

of range R; initial histograms see in Fig.1 
    In Fig.13 we observe invariance in identical dependencies 
of entropy on range R for any state of health and for different 
people. Coincidence is not absolutely perfect and is 
determined by experimental errors ~ 2% .We have such a 
coincidence for all patients (see also part 8). May be this a 
clear sign of homeostasis in oxidant activity of DNA in living 
cells for all living people? 

VIII.  EXPERIENCE AND APPLICATIONS  IN TREATMENT AND IN 
NATURAL CONDITIONS  

   Preliminary experiments had shown the usage opportunities 
of proposed approach for the solution of various medical 
problems (see part 4 and [9]). 
   We analyzed wide spectrum of different inflammatory and 
autoimmune diseases, which include several ten designations. 

Analysis of immunofluorescence histograms shows the cases 
previously undetected diseases. 
   Let us consider examples of proposed criteria for control of 
health status in medical treatment and in natural conditions.  
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Fig.14 Dependence of normalized spontaneous fluorescence flashes 
frequency ))(( RIP on intensity )(RI , for one, invariably healthy, 
donor at different times. Rhomb points correspond to the total flashes 
number 30832N0 = , analysis time is 19 July (first year); triangle 

points correspond to the total flashes number 38758N0 = , 
analysis time is 11 July (next year); square points correspond to the 
total flashes number 40109N0 = ,analysis time is 03 June, before 
11 July  (a) histogram range 256=R  (b) histogram range 4=R , 
initial histograms see in Fig.14a 
   We observe rather stable character of distributions for 
frequencies of flashes mP  in Fig.14b. It means stability of 
immunity for given healthy donor during one year. 
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Fig.15 Dependence of normalized spontaneous fluorescence flashes 
frequency ))(( RIP on intensity )(RI , for one donor with oncology 
disease; symbol rhomb relates to analysis date 05 November, 
N0=43752; symbol quadrate corresponds to 15 December, after 
treatment of hepatitis B, N0=26265; triangle points correspond to 
N0=45142, analysis time is 21 March next year; cross-points 
correspond to the total number of flashes N0=45981, analysis time is 
11 July next year, after trying the treatment of oncology diseases (a) 
histogram range 256=R  (b) histogram range 4=R , initial 
histograms see in Fig.15a 
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    Let us examine some example in Figs.15 for oncology sick. 
In the medical treatment process the patient was infected by 
hepatitis B. Standard medical treatment against the hepatitis 
leads to decreasing of inflammation, i.e. common number of 
flashes N0=43752 down to N0=26265. In Fig.15b 
approximation’s distribution mP  of concave parabola for 
rhomb points transforms to convex parabola for quadrate 
points.  Concave parabola characterizes an inflammation 
[11,12]. This means the dominant of hepatitis, while standard 
biochemical tests have shown that hepatitis suppressed. 
Further degradation of the patient’s health leads to concave 
parabola for triangle points in Fig.15b. Next medical treatment 
is described the convex parabola for cross-points in Fig.15b. 
We have a complex combination of incurable diseases of 
inflammatory and autoimmune nature. Sequential treatment of 
only one disease leads to deterioration in the presence of a 
second disease. Convex/concave parabolas in Fig.15b 
describe stability/instability of immune responses [12]. A 
quantitative description of histograms for information )(RJ , 
information entropies and Hurst indices is shown in Fig.16-
19. 
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Fig.16 Dependence of information )),(( RRPJ  on range of 
histogram R; initial histograms see in Fig.15; variability in oncology   
  We observe variations of )),(( RRPJ during treatments of 
oncology and hepatitis for the sequence of events in Fig.15. 
Comparisons of Figs. 16 and 7 show the range of 
modifications the information in the course of treatments. 
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Fig. 17 Dependence of Shannon-Weaver index )),(( RRPS for 

flashes distribution mP of immunofluorescence on logarithm of 
range R; initial histograms see in Fig.15; variability in oncology 
   We observe stratifications of Shannon-Weaver index 

)),(( RRJS  during treatments of oncology and hepatitis for 
the sequence of events in Fig.15. These stratifications reflect 
the sensitivity of registration of quantitative changes in DNA 
oxidative activity for neutrophils’ populations during medical 

treatments. Actually, it is hopelessly ill person as can be seen 
from constantly of positive sign of trends to increasing of 
Hurst indices in Fig. 18.  
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Fig.18 Dependence of Hurst index )),(( RRPH  on range R in the 
double logarithmic scale; oncology, initial histograms see in Fig.15a 
 
    We observe positive trends of Hurst index )),(( RRPH and 
slight variations of these trends in Fig18. Comparisons of Figs. 
18 and 10b show the range of modifications of positive trends 
during medical treatments. Constantly of positive sign of 
trends means fluctuations of health states in the frame of 
continuing incurable illnesses for this case of oncology and 
hepatitis. 
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Fig.19 Dependence of Shannon-Weaver index )),(( RRJS  for 

information distribution mJ 0  of immunofluorescence on logarithm 
of range R; initial histograms see in Fig.15; variability in oncology 
  We observe of invariants of )),(( RRJS  during treatments of 
oncology and hepatitis for the sequence of events in Fig.15.  
We observe the same pictures in Fig.13,10 for different 
donors and in Fig.20 for healthy donor.  
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Fig. 20 Dependence of Shannon-Weaver index )),(( RRJS  for 

information distribution mJ 0  of immunofluorescence on logarithm 
of range R; initial histograms see in Fig.14; variability in good health 
    We have coincides of Shannon-Weaver indices S(J(R),R)  
for information mJ 0 in Fig.13,19,20 for any donors with any 
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health status. Therefore, we observe invariant of S(J(R),R) for 
any neutrophils’ populations and for all living people. 
    Others correlations for histograms of healthy donor are 
shown in Fig.21-23. 
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Fig. 21 Dependence of information )),(( RRPJ  on range of 

histogram R; initial histograms see in Fig.14; variability in good 
health 
     We observe no strong variations of )),(( RRPJ  for healthy 
person for the sequence of events in Fig.14. We observed 
differences in the rate of trends in Fig.7, Fig.16 for oncology 
and hepatitis during treatments and in Fig.21 for healthy donor 
in natural conditions. 
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Fig. 22 Dependence of Shannon-Weaver index )),(( RRPS for 

flashes distribution mP of immunofluorescence on logarithm of 
range R; initial histograms see in Fig.14; variability in good health 

Variations of Shannon-Weaver index S(P(R),R) for healthy 
donor in Fig.22, for the sequence of events in Fig.14, are 
practically neglectable. Good immune system of this healthy 
donor gives constantly stable populations of neutrophils. 
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Fig. 23 Dependence of Hurst index )),(( RRPH  on range R in 

the double logarithmic scale; healthy donor, initial histograms see in 
Fig.14a 
    We observe negative trends and slight variations of these 
trends in Fig23. Comparisons of Figs.23 and 10b show the 

range of modifications of negative trends for healthy donor. 
Constantly of negative sign of trends means fluctuations of 
health states in the frame of continuing good health. 
    Dependencies of Hurst index )),(( RRPH  on range R for 
healthy and unhealthy donors in Figs.23 and 18 are the same 
dependencies in Fig.10a for different health statuses.  
    Only two types of regressions for Hurst indices 

)),(( RRPH with positive and negative trends as in Fig.10b 
have observed in double logarithmic scales lnlnR for any 
donors. Positive trends in Fig.18 are typical for illness. 
Negative trends in Fig.23 are typical for health. Therefore, 
increasing or decreasing of fractal dimensions of 
immunofluorescence networks due to range reduction gives 
clear answer about general health status of donor. This 
manifests the role of multifractal structures in the organization 
of networks’ hierarchy for oxidative metabolism and for 
health. First type of hierarchy networks of flashes corresponds 
to increasing of Hausdorff dimension HDH −= 2 with 
growth of R in Fig.23 for healthy donor. Second type of 
hierarchy networks of flashes corresponds to decreasing of 
Hausdorff dimension HDH −= 2 with growth of R in Fig.18 
for oncology and hepatitis. In the last case we observe a 
negative Hurst index or abnormal 2>HD if 16<R ; these 
situations interconnected with bad self feeling. The same 
abnormal Hausdorff dimension 2>HD  we observe in Fig.10 
for bronchial asthma.  
   We observe noticeable changes for distributions of 
Shannon-Weaver index of biodiversity )),(( RRPS  due to 
reduction of histogram’s range in Fig.17,18. This means 
essential changes of biodiversity of neutrophils in medical 
treatment of oncology and hepatitis. Stratification of 
dependencies )),(( RRPS  on R in Fig. 17 has shown that 
biodiversity can give very sensitive criterion for estimations of 
health status and variability of health. Slow variability of 
immunofluorescence networks for healthy donor, as shown in 
Figs.20-23, characterizes very stable immune system of given 
person with good health.  
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Fig. 24 Dependence of Hurst index ))),((( RRPSH  on range R (a) 
healthy donor; initial histograms see in Fig.14a (b) oncology; initial 
histograms see in Fig.15a 
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  Changeability of Hurst indices ))),((( RRPSH for 
frequencies of Shannon-Weaver index mS in Fig.24a didn’t 
has radical variations in natural condition during one year; 
donor with good health has stable networks of information 
entropy. Medical treatment of oncology and hepatitis brings 
more noticeable changes of Hurst indices ))),((( RRPSH  in 
Fig.24b. Strong variations of ))),((( RRPSH for radical 
different health statuses in Fig.12a differ from changes of 

))),((( RRPSH in Fig.24b. This means that medical treatments 
of oncology and hepatitis were not very successful. These 
treatments influenced on the positive change of immune 
response (see Fig.15b) and prolonged the life of donor. 

IX. CONCLUSION                                      
    Flow cytometric measurements of respiratory burst manifest 
not only genomic features for alone DNA, but also the 
complete set of working chromosomes. 
    We have introduced various integrated parameters such as 
Shannon entropies and Hurst indices for information and 
fractal structures in immunofluorescence based on 
distributions of flashes mP , information mJ  and entropy mS . 
Using of these integrated parameters are shown in Figs.4b,5b, 
6b,7, 8, 10,12,14b,15b,16-18,21-24 for clear and sustainable 
statistical differences of immunofluorescence histograms in 
medical diagnostics. 
    In this work we have shown that structural changes in 
information networks due to range reduction for histograms of 
multi-channel measurements is a novel characteristic for 
information of multi-channel fluorescence distributions. For 
example, diagnostics of health or illness status are depending 
on sign of trend for changes of Hurst index )),(( RRPH with 
histograms’ range reduction, as it is shown in Figs.10b, 18, 
and 23. Therefore, we have the clear general criterion of a 
common health/illness status in a form of yes/no answers type. 
    Only two types of regressions for Hurst indices 

)),(( RRPH with positive and negative trends as in Fig.10b 
have observed in double logarithmic scales lnlnR for any 
donors. Positive trends as in Fig.18 are typical for illness. 
Negative trends as in Fig.23 are typical for health. Therefore, 
increasing or decreasing of fractal dimensions of 
immunofluorescence networks due to range reduction gives 
clear answer about general health status of donor. This 
manifests the role of multifractal structures in the organization 
of networks’ hierarchy for oxidative metabolism and for 
health. First type of hierarchy networks of flashes corresponds 
to increasing of Hausdorff dimension HDH −= 2 with 
growth of R in Figs.10b and 23for healthy donor. Second type 
of hierarchy networks of flashes corresponds to decreasing of 
Hausdorff dimension HDH −= 2 with growth of R in 
Figs.10b (asthma and oncology) and in Fig.18 (oncology and 
hepatitis) for any illness.  In the last case we observe a 
negative Hurst index or abnormal Hausdorff dimension 

2>HD if range 16<R ; these situations interconnected with 
bad self-feeling.  

   We introduce information )(RJ  and frequencies of 
information mJ   for distributions of immunofluorescence. A 
quantitative description of information due to reduction of 
histograms’ range R gives various regular trends of )(RJ  for 
different health status as in Figs. 7, 16 and 21. Information 

)(RJ  has stratification and variations of trends for different 
diseases. Information )(RJ  has a linear growth with 
increasing the number of channels R as in Fig.7. We show that 
information )(RJ  can give a regular criterion for estimations 
of health status and variability of health in natural conditions 
and in medical treatment as in Figs.16 and 21.   
   We introduce Shannon information entropy S for different 
probabilistic measure of immunofluorescence. Shannon 
entropy )),(( RRPS for frequency of flashes mP defines 
Shannon-Weaver index of biodiversity for neutrophils. 
Shannon-Weaver biodiversity )),(( RRPS  has stratification 
for different diseases and has a logarithmic growth with 
increasing the number of channels R as in Fig.8. We show that 
biodiversity can give very sensitive criterion for estimations of 
health status and variability of health in natural conditions and 
in medical treatment as in Figs.8 and 17.  
   We introduce Shannon entropy )),(( RRJS  for frequency of 
information mJ .We always observed, within experimental 
error, nearly the same dependence of )),(( RRJS on R at all 
Figs.13,19,20 for any donors, regardless of time and health. 
This means the presence of homeostasis for information 
entropy )),(( RRJS  in oxidative activity of DNA for all 
neutrophils’ populations in all living people. 
    We haven’t met a Gaussian statistics in oxidative activity of 
DNA. We have a complex insufficiently multi-scales and 
multifractal networks in immunofluorescence based on 
distributions of flashes mP , information mJ  and entropy mS .   
Standard statistical methods failed. For instance, the 
difference in histograms in Fig.14a is determined by the 
statistical instability of local distributions of fluorescence (see 
the exponential growth for moments of intensity fluctuations 

),( kiM  in Fig.2) and cannot serve as an example of 
significant changes in populations of neutrophils or in health 
statuses for one given donor. Selection, isolation and differs 
only in central regions of histograms for the evidence of their 
difference has no legitimate basis.  
    Brokenness of histograms and corresponding fractal 
networks of immunofluorescence are more important than the 
characteristics of averages <I>, <(I-<I>)2> and so on. For 
example, stratifications of Hurst indices ))),((( RRPSH for 
frequencies of Shannon-Weaver index mS  in Fig.12 clearly 
define strong differences in the health of donors. 
    We observe the negative Hurst index H(P(R),R) for 
frequencies of flashes mP  and negative Hurst index H(S(R),R) 
for frequencies of  entropy mS in the case of  low level of R in 
Figs.10,12,18 and 24. These situations correspond to 
abnormal Hausdorff dimension 2>HD  and negative 
multifractal spectra [15]. Therefore, a complexity of 
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immunofluorescence networks and interlocking hierarchies 
with different scales is higher than descriptions of hierarchy 
networks for oxidative metabolisms in textbooks.  
   Immunofluorescence reflects simultaneously the genetic 
special, individual features and immune response to the 
pathogenic actions. Immunofluorescence data analysis is 
important for general estimation of health statuses and early 
diagnostics of diseases. Spectrum of medical applications is 
considerably wider, because of wide prevalence of oxidative 
abnormality as the reason of various illnesses and aging. 
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