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High Accuracy Eigensolutions in Elasticity for
Boundary Integral Equations by Nyström Method

Pan Cheng, Jin Huang and Guang Zeng

Abstract—Elastic boundary eigensolution problems are converted
into boundary integral equations by potential theory. The kernels of
the boundary integral equations have both the logarithmic and Hilbert
singularity simultaneously. We present the mechanical quadrature
methods for solving eigensolutions of the boundary integral equations
by dealing with two kinds of singularities at the same time. The meth-
ods possess high accuracy O(h3) and low computing complexity. The
convergence and stability are proved based on Anselone’s collective
compact theory. Bases on the asymptotic error expansion with odd
powers, we can greatly improve the accuracy of the approximation,
and also derive a posteriori error estimate which can be used for
constructing self-adaptive algorithms. The efficiency of the algorithms
are illustrated by numerical examples.

Keywords—boundary integral equation, extrapolation algorithm, a
posteriori error estimate, elasticity.

I. INTRODUCTION

THE fundamental boundary eigenproblem for the planar
elasticity[1,2] is defined as follows: to find non-zero

deformation u = (u1, u2)T in the domain Ω and on the
boundary Γ satisfying:{

σij,j = 0, in Ω,

ti = λui, on Γ, k, l, i, j = 1, 2,
(1)

where Ω ⊂ R2 is a bounded, simply connected domain with
a smooth boundary Γ, t = (t1, t2)T is the traction vector on
Γ, σij is the stress tensor, and λ is the eigenvalue. Following
vector computational rules, the repeated subscripts imply the
summation from 1 to 2.

To obtain eigensolutions λ(l) and u(l) = (u(l)
1 , u

(l)
2 )T ,

we convert Eq.(1) into the following boundary integral
equations[3,4,5] (BIEs) by potential theory:

αij(y)u(l)
j (y) +

∫
Γ

k∗
ij(y, x)u(l)

j (x)dsx

= λ(l)

∫
Γ

h∗
ij(y, x)u(l)

j (x)dsx,

(2)

where αi(y) = θ(y)/(2π) is related to the interior angle θ(y)
of Ω at y ∈ Γ, especially when y is on a smooth part of the
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boundary Γ, αij = δij/2 with the Kronecker delta δij , and
the integral kernels⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

h∗
ij =

1
8πμ(1 − ν)

[
− (3 − 4ν)δij ln r + r·ir·j

]
,

k∗
ij =

1
4π(1 − ν)r

[ ∂r

∂n
((1 − 2ν)δij

+ 2r·ir·j) + (1 − 2ν)(nir·j − njr·i)
]
,

are Kelvin’s fundamental solutions[1,6], where μ is shear
modulus, ν is the Poisson ratio, r2 = (y1−x1)2 +(y2−x2)2,
and n = (n1, n2)T is the unit outward normal on Γ.

Equations (2) are obvious singular integral equations. In
particular, the second term of the left-hand side is the Hilbert
singularity and the term of the right-hand side is the logarith-
mic singularity. Thus, the key to achieve the eigensolutions
λ(l) and u(l) accurately is converted to approximate the
logarithmic and Hilbert singularity appropriately.

Once eigensolutions are obtained, u and t on Γ can be
solved from Eq.(2), and then the displacement vector in Ω
can be calculated[5,7] as following:

ui(y) =
∫

Γ

h∗
ij(y, x)tj(x)dsx

−
∫

Γ

k∗
ij(y, x)uj(x)dsx, ∀y ∈ Ω.

(3)

A considerable part of articles have researched on planar
elasticity. Parton and Perlin[8] introduced the eigenvalue λ
into the boundary conditions of the elasticity and obtained
some analytical solutions. Hadjesfandiari and Dargush[1,9,10]

gave the general theory of fundamental boundary eigenso-
lution for elasticity and potential problem. They also gave
the finite element method to solve the planar elasticity and
achieved the error estimate of the approximate solution. Cohen
et al.[11] presented perfectly matched layers for modeling
unbounded domains to construct a mixed formulation of a
spectral finite element approximation in the linear elasticity
system. Pavarino[12] introduced preconditioned mixed spectral
finite element methods for the indefinite elasticity systems
which showed that the convergence rate was independent of
the penalty parameter. Talbot and Crampton[13] approached
to 2D vibrational problems by a pseudo-spectral since the
governing partial differential equations were translated into
matrix eigenvalue problems which can be solved by col-
location method. Chen et al.[3] used collocation method to
research the degenerate scale problem in plane elasticity, and
they got the degenerate scale (or the eigenvalue) to avoid the
special geometry size resulting in a non-unique solution. Cai
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et al.[14,15] gave first-order system least-squares methods for
the solution of linear elastic problems about two dimensions
and three dimensions.

To solve the boundary integral equations (BIEs), mechanical
quadrature methods are constructed by using a new type of
numerical quadrature method. It preserves the advantage of
requiring less computational cost than projection methods
since each element in the discretization matrixes of integral
equations is evaluated directly by the mechanical quadra-
ture methods. An extrapolation algorithms (EAs) based on
asymptotic expansion of errors are pretty effective parallel
algorithms, which possess high accuracy degrees, good sta-
bility and almost optimal computational complexity. The EAs
have been applied to many problems, such as the numeri-
cal integrations, finite difference methods and finite element
methods[16,17,18].

We firstly use the Sidi’s quadrature rules[19,20] to calculate
weakly singular integrals and Hilbert singular integrals in
equations (2) simultaneously. Secondly, by Anselone’s col-
lective compact and asymptotically compact theory[16,21], we
prove the O(h3) convergence rate. Finally, basing on the
asymptotic expansion of error with an odd power, we establish
extrapolation algorithms (EAs). After h3−extrapolation, we
get the O(h5) convergence rate. Numerical examples support
our algorithms and show that the MQMs are fit for practice
in this paper.

II. INTEGRAL OPERATORS

We firstly define some boundary integral operators on Γ as
follows:⎧⎪⎪⎨
⎪⎪⎩

(Kijw)(y) =
∫

Γ

k∗
ij(y, x)w(x)dsx y ∈ Γ, i, j = 1, 2,

(Hijw)(y) =
∫

Γ

h∗
ij(y, x)w(x)dsx y ∈ Γ, i, j = 1, 2.

(4)

Thus Eq.(2) can be converted into the following operator
equations:

(
1
2I0 + K11 K12

K21
1
2I0 + K22

)(
u

(l)
1

u
(l)
2

)

=λ(l)

(
H11 H12

H21 H22

)(
u

(l)
1

u
(l)
2

)
, (5)

where I0 is an identity operator.
Assume that Γ can be described by a regular parame-

ter mapping x(s) = (x1(s), x2(s)) : [0, 2π] → Γ, sat-
isfying |x′(s)|2 = |x′

1(s)|2+ |x′
2(s)|2 > 0, and xi(s) ∈

C2m+1[0, 2π], i = 1, 2.
Define the integral operator on C2m+1[0, 2π]:

(A0ω)(t) =
∫ 2π

0
a0(t, τ)ω(τ)|x′(τ)|dτ

= c̄0

∫ 2π

0
ln |2e−1/2sin( t−τ

2 )|ω(τ)|x′(τ)|dτ,

(B0ω)(t) =
∫ 2π

0
b0(t, τ)ω(τ)|x′(τ)|dτ

= c̄0

∫ 2π

0
ln | x(t)−x(τ)

2e−1/2sin((t−τ)/2)
|ω(τ)|x′(τ)|dτ,

(Bijω)(t) =
∫ 2π

0
bij(t, τ)ω(τ)|x′(τ)|dτ

= c1

∫ 2π

0
(xi(t)−xi(τ))(xj(t)−xj(τ))

|x(t)−x(τ)|2 ω(τ)|x′(τ)|dτ,

(C0ω)(t) =
∫ 2π

0
c0(t, τ)ω(τ)|x′(τ)|dτ

= c2

∫ 2π

0
{(n1r·2 − n2r·1)/r}ω(τ)|x′(τ)|dτ,

(Miiω)(t) =
∫ 2π

0
mii(t, τ)ω(τ)|x′(τ)|dτ

= c3

∫ 2π

0
{[ ∂r

∂n [(1−2v)+2r·ir·i]/r}ω(τ)|x′(τ)|dτ,

(Mijω)(t) =
∫ 2π

0
mij(t, τ)ω(τ)|x′(τ)|dτ

= c3

∫ 2π

0
{ ∂r

∂n (2r·ir·j)/r}ω(τ)|x′(τ)|dτ i �= j,

where c̄0 = −(3 − 4ν)/[8πμ(1 − ν)], c1 = 1/[8πμ(1 − ν)],
c2 = −(1−2ν)/[4π(1−ν)], c3 = −1/[4π(1−ν)]. As t → s,
depending on the properties of the kernels and using Taylor
expansion, we know that A0 is the logarithmic weak singular
operator, and C0 is the Hilbert singularity operator since

nir·j − njr·i
r

= (−1)i 1 + O(t − s)
(t − s) + O(t − s)

i �= j. (6)

And B0, Bij , Mij are smooth operators.
Then Eq.(5) is equivalent to⎧⎪⎪⎨

⎪⎪⎩
(
1
2
I + C + M)u(l) = λ(l)(A + B)u(l),

‖u(l)‖2
0,Γ =

∫ 2π

0

|u(l)(s)|2|x′(s)|ds = 1,
(7)

where

I =
(

I0 0
0 I0

)
, A =

(
A0 0
0 A0

)
,

B =
(

B0 + B11 B12

B21 B0 + B22

)
,

C =
(

0 C0

−C0 0

)
, M =

(
M11 M12

M21 M22

)
.

III. MECHANICAL QUADRATURE METHODS

Let h = π/n, (n ∈ N) be the mesh width and tq = qh,
(q = 0, 1, · · · , 2n − 1) be the nodes. Since B0, Bij , Mij

are smooth integral operators with the period 2π and ω(t) ∈
C2m+1[0, 2π], we can obtain the highly accurate Nyström’s
approximation by the midpoint or the trapezoidal rule[17,19].
For example, the Nyström’s approximation operator Bh

0 of B0

can be defined as:

(Bh
0 ω)(t) = h

2n−1∑
j=0

b0(t, τj)ω(τj), (8)

and the error is

(B0ω)(t) − (Bh
0 ω)(t) = O(h2m). (9)

The Nyström’s approximation Bh
ij of Bij and Mh

ij of Mij can
be defined similarly.

For the logarithmic weak singular operator A0, the contin-
uous approximation of its kernel an(t, τ) is defined as:

an(t, τ) =

{
a0(t, τ), for |t − τ | ≥ h,

c̄0h ln |e−1/2h/(2π)|, for |t − τ | < h.
(10)
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By Sidi’s quadrature rules[19], its Nyström’s approximation
operator Ah

0 can be defined as:

(Ah
0ω)(t) = h

2n−1∑
j=0

an(t, τj)ω(τj)|x′(τj)|, (11)

which has the following error estimate:

(A0ω)(t) − (Ah
0ω)(t)

= 2
m−1∑
μ=1

ς
′
(−2μ)
(2μ)!

ω(2μ)(t)h2μ+1 + O(h2m),
(12)

where ς ′(t) is the derivative of Riemann zeta function.
Because C0 is a Hilbert singular operator, its Nyström’s

approximation operator Ch
0 can be defined by Sidi’s quadrature

rules[19]:

(Ch
0 ω)(ti) =2c2a1(ti, ti)

h
2n−1∑
j=0

cot((tj − ti)/2)ω(tj)|x′(tj)|εij ,
(13)

where

a1(t, s) =
1

(t − s) + O(t − s)
tan((t − s)/2)

1/2
,

and
εij =

{
1, if |i − j| is odd number
0, if |i − j| is even number . (14)

The Nyström’s approximation has the following error
bounds:[19]

(C0ω)(ti) − (Ch
0 ω)(ti) = O(h2m). (15)

Thus we obtain the numerical approximate equations of
Eq.(7),⎧⎪⎪⎪⎨

⎪⎪⎪⎩
(
1
2
I + Ch + Mh)u(l)

h = λ
(l)
h (Ah + Bh)u(l)

h ,

h

2∑
i=1

2n−1∑
j=0

(u(l)
ih (tj))2|x′(tj)| = 1,

(16)

where Ah, Bh, Ch and Mh are discrete matrices of order 4n
corresponding to the operators A ,B, C and M , respectively.
λ

(l)
h and u

(l)
h are the approximate solution of eigenvalue λ(l)

and eigenvector u(l), respectively.
From Eq.(1), u(l) is a trivial solution as λ(l) = 0, and if

λ(l) �= 0, we have λ
(l)
h �= 0. Let γ

(l)
h = 1/λ

(l)
h and also suppose

that the eigenvalues of (1
2I + C)−1M and ( 1

2I + Ch)−1Mh

do not include −1, then the Eqs.(7) and (16) can be rewritten
as follows: find γ(l) and u(l) ∈ V (0) satisfying

γ(l)u(l) = Lu(l),

with ‖u(l)‖2
0,Γ =

∫ 2π

0

|u(l)(s)|2|x′(s)|ds = 1
(17)

and find γ
(l)
h and u

(l)
h satisfying

γ
(l)
h u

(l)
h = Lhu

(l)
h ,

with h
2∑

i=1

2n−1∑
j=0

(u(l)
ih (tj))2|x′(tj)| = 1,

(18)

where Lh = [I +( 1
2I +Ch)−1Mh]−1( 1

2I +Ch)−1(Ah +Bh),
and L = [I + ( 1

2I + C)−1M ]−1( 1
2I + C)−1(A + B), and the

space V (m) = C(m)[0, 2π] × C(m)[0, 2π], m = 0, 1, 2, ....
According to Anselone’s collective compact and

asymptotically compact theory[16,21], we know that Bh
0

is collectively compact convergent to B0, Bh
ij is collectively

compact convergent to Bij and the approximate operator
{Ah

0} is asymptotically compact convergent to A0 as n → ∞
so we obtain the Theorem 1.

Theorem 1.[16,17] The approximate operator sequence {Lh}
is the asymptotically compact sequence and convergence to L
in V (0), i,e.

Lh a.c→ L, (19)

where a.c→ means the asymptotically compact convergence.

Following the error estimates in Eqs.(12) and (15) by the
mechanical quadrature methods, we also have the conclusion:

Theorem 2. Under the hypotheses of Theorem 1, there exist
constants d1, d2 and vector functions wi1, wi2 ∈ V (5), i =
1, · · · , χ1, independent of h, such that

λ
(l)
h − λ(l) = d1h

3 + d2h
5 + O(h7), (20)

u
(l)
(i)h − u

(l)
(i) = wi1h

3 + wi2h
5 + O(h7). (21)

IV. EXTRAPOLATION ALGORITHMS

Let (λ(l)
h , u

(l)
h ) and (λ(l)

h/2, u
(l)
h/2) be the solutions of Eq.(18)

according to mesh widths h and h/2, respectively. From
Eqs.(20) and (21), the h3-Richardson extrapolations of the
eigenvalue

λ̃
(l)
h = (8λ

(l)
h/2 − λ

(l)
h )/7, (22)

and the eigenvector

ũ
(l)
(i)h(sj) = (8u

(l)
(i)h/2(sj) − u

(l)
(i)h(sj))/7,

sj = jh, j = 0, · · · , 2n − 1.
(23)

They have the error estimates |λ̃(l)
h − λ(l)| = O(h5) and

||ũ(l)
(i)h(sj) − u

(l)
(i)(sj)|| = O(h5), respectively. The extrapola-

tions algorithm is very effective to improve the error accuracy,
although it is not very complicated.

From the error estimates Eqs.(22) and (23), we can derive
the following posteriori error estimates

|λ(l)
h/2 − λ(l)| ≤ |8/7λ

(l)
h/2 − 1/7λ

(l)
h − λ

(l)
h/2| + O(h5)

≤ 1/7|λ(l)
h/2 − λ

(l)
h | + O(h5)

and
||u(l)

(i)h/2(sj) − u
(l)
(i)(sj)||

≤ ||8/7u
(l)
(i)h/2(sj) − 1/7u

(l)
(i)h(sj) − u

(l)
(i)h/2(sj)|| + O(h5)

≤ 1/7||u(l)
(i)h/2(sj) − u

(l)
(i)h(sj)|| + O(h5). (24)

Note that this equation can be used to construct self-adaptive
algorithms.
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V. NUMERICAL EXAMPLES

Let eh
l = |λ(l)

h − λ(l)|, rh
l = eh

l /e
h/2
l , and ẽh

l be the error
after EAs, and ph

l be the posteriori error estimate.

Example 1: Consider a circular isotropic elastic body with
radius a in the plane strain deformation. Parton and Perlin[8]

presented some analytic solutions about eigenvalues for this
problem as follows:

λl =
2 μ l

a
, l = 1, 2, · · · . (25)

Setting circular plane strain deformation problem with a =
1 and the material properties μ = 1.0 and ν = 0.3, we compute
the boundary numerical eigensolutions by Eq. (18) and list the
results in Table 1.

TABLE I

THE ERRORS eh
l , ẽh

l AND A POSTERIORI ERROR

ESTIMATE ph
l , WHERE l = 1, ..., 4.

n 24 48 96 192 384
eh
1 4.53E-4 5.65E-5 7.06E-6 8.82E-7 1.10E-7

rh
1 8.02 8.00 8.00 8.00

ẽh
1 1.30E-7 4.58E-9 1.5E-10 4.9E-12

ph
1 5.66E-5 7.06E-6 8.82E-7 1.10E-7

eh
2 7.29E-3 9.06E-4 1.13E-4 1.41E-5 1.76E-6

rh
2 8.05 8.02 8.00 8.00

ẽh
2 6.29E-6 2.61E-7 9.16E-9 3.0E-10

ph
2 9.06E-4 1.13E-4 1.41E-5 1.76E-6

eh
3 3.71E-2 4.60E-3 5.72E-4 7.15E-5 8.93E-6

rh
3 8.05 8.02 8.00 8.00

ẽh
3 4.79E-5 2.60E-6 9.86E-8 3.35E-9

ph
3 4.65E-3 5.75E-4 7.16E-5 8.93E-6

eh
4 1.51E-4 1.88E-5 2.35E-6 2.94E-7 3.67E-8

rh
4 8.00 8.00 8.00 8.00

ẽh
4 5.12E-9 1.7E-10 5.7E-12 1.8E-13

ph
4 1.88E-5 2.35E-6 2.94E-7 3.67E-8

From Table 1, we can numerically see rh
l ≈ 23 and

ẽh
l /ẽ

h/2
l ≈ 25, which agrees with Theorem 2 very well and

shows that the convergent rate of λh is O(h5) after using
the EAs. Moreover, since ẽh

l /ẽ
h/2
l ≈ 25, we can apply the

EAs again to obtain higher accuracy orders of approximations.

Example 2: Consider an elliptical elastic body
x2/a2 + y2/b2 ≤ 1 with a = 3, b = 2 in plane strain
deformation, where the material properties μ = 1.0
and v = 0.3. we compute the boundary numerical
eigensolutions by Eq.(18) and list the approximate eigenvalues
as λ1 = 0.17292249292766 . . ., λ2 = 0.81236868516390 . . .,
λ3 = 1.2185529275728 . . .. Here we use the same notation
as the previous example.

From Table 2, we can numerically see that the convergent
rate of λh is O(h3), and is O(h5) after the EAs, which
coincides with Theorem 2. It also verifies the accuracy of the
approximate eigenvalues.

TABLE II

THE ERRORS eh
l , ẽh

l AND A POSTERIORI ERROR

ESTIMATE ph
l , WHERE l = 1, 2, 3.

n 24 48 96 192 384
eh
1 3.35E-5 4.17E-6 5.21E-7 6.51E-8 8.14E-9

rh
1 8.03 8.01 8.00 8.00

ẽh
1 1.68E-8 4.7E-10 1.4E-11 4.1E-13

ph
1 4.19E-6 5.21E-7 6.51E-8 8.14E-9

eh
2 1.03E-2 1.27E-3 1.58E-4 1.97E-5 2.47E-6

rh
2 8.13 8.04 8.01 8.00

ẽh
2 2.30E-5 8.24E-7 2.76E-8 8.7E-10

ph
2 1.29E-3 1.59E-4 1.98E-5 2.47E-6

eh
3 5.35E-2 6.47E-3 8.02E-4 9.99E-5 1.25E-5

rh
3 8.27 8.08 8.02 8.01

ẽh
3 2.51E-4 8.62E-6 2.91E-7 9.62E-9

ph
3 6.72E-3 8.10E-4 1.00E-4 1.25E-5

VI. CONCLUSION

Generally, there are two main advantages of the MQMs:
(1) Evaluating each element of discretization matrices is

very simple and straightforward, which does not require any
singular integrals;

(2) The algorithm has a high accuracy order O(h3) and
an asymptotic expansion of the errors with odd powers.
Harnessing the Richardson extrapolation algorithms, a higher
accuracy order O(h5) can be obtained.

(3)The extrapolations algorithm is very effective to improve
the error accuracy, although it is not very complicated.

ACKNOWLEDGMENT

The project is supported by the National Natural Science
Foundation of China (10871034)

REFERENCES

[1] A.R.Hadjesfandiari, G.F.Dargush, Boundary eigensolutions in elasticity
1: theoretical development, J.Solids Structure, 38(2001), 6589-6625.

[2] P.K.Banerjee, The boundary element methods in engineering, McGraw-
Hill, London, 1994.

[3] Y.Z.Chen, Z.X.Wang, X.Y.Lin, Eigenvalue and eigenfunction analy-
sis arising from degenerate scale problem of BIE in plane elasticity,
Eng.Anal.Bound. Element, 31(2007), 994-1002.

[4] P.M.Anselone, Singularity subtraction in the numerical solution of integral
equations, J.Austral.Math.Soc. (Series B), 22(1981), 408-418.

[5] C.A.Brebbia, S.Walker, Boundary elements techniques in engineering,
Butter worth and Co., Boston, 1980.

[6] M.Willian, Strongly elliptic systems and boundary integral equations,
Cambridge University Press, 2000.

[7] G.H.Paulino, G.Menom, S.Mukherjee, Error estimation using hyper-
singular integrals in boundary element methods for linear elasticity,
Engineering Analysis with Boundary Elements, 25(2001), 523-534.

[8] V.Z.Parton, P.I.Perlin, Integral equations in elasticity, Mir Publishers,
Moscow, 1977.

[9] A.R.Hadjesfandiari, G.F.Dargush, Boundary eigensolutions in elasticity
II. Application to computational mechanics, J.Solids Structure, 40(2003),
1001-1031.

[10] A.R.Hadjesfandiari, G.F.Dargush, Computational mechanics based on
the theory of boundary eigensolutions, Int.J.Numer.Mech.Eng., 50(2001),
325-346.

[11] G.Cohen, S.Fauqueux, Mixed spectral finite elements for the linear
elasticity system in unbounded domains, SIAM J.Numer.Anal., 3(2005),
864-884.



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:5, No:2, 2011

136

[12] L.F.Pavarino, Preconditioned mixed spectral element methods for elas-
ticity and stokes problems, SIAM J. Sci. Comput., 6(1998), 1941-1957.

[13] C.J.Talbot, A.Crampton, Application of the pseudo-spectral method
to 2D eigenvalue problems in elasticity, Numer.Algortihms, 38(2005),
95C110.

[14] Z.Cai, T.A.Manteuffel, S.F.Mccormick, First-order system least squares
for the stokes equations with application to linear elasticity, SIAM
J.Numer.Anal., 5(1997), 1727-1741.

[15] Z.Cai, G.Starke, Least-squares methods for linear elasticity , SIAM J.
Numer. Anal., 2(2004), 826-842.
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