
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:4, 2008

268

Local Error Control in the RK5GL3 Method
J.S.C. Prentice

Abstract—The RK5GL3 method is a numerical method for solving
initial value problems in ordinary differential equations, and is
based on a combination of a fifth-order Runge-Kutta method and
3-point Gauss-Legendre quadrature. In this paper we describe an
effective local error control algorithm for RK5GL3, which uses local
extrapolation with an eighth-order Runge-Kutta method in tandem
with RK5GL3, and a Hermite interpolating polynomial for solution
estimation at the Gauss-Legendre quadrature nodes.

Keywords—RK5GL3, RKrGLm, Runge-Kutta, Gauss-Legendre,
Hermite interpolating polynomial, initial value problem, local error.

I. INTRODUCTION

The RKrGLm method [1] for solving

y′ = f (x, y) y (x0) = y0 a � x � b (1)

is based on an explicit Runge-Kutta of order r (RKr) and

m-point Gauss-Legendre quadrature (GLm). The method has

a global error of order r + 1, which is the same order as

the local order of the underlying RKr method. In this paper

we consider the particular method RK5GL3, and describe an

effective algorithm for controlling the local error in RK5GL3.

II. TERMINOLOGY AND RELEVANT CONCEPTS

In this section we describe terminology and concepts rele-

vant to the paper, including a brief description of the RKrGLm
method.

A. Explicit Runge-Kutta methods

We denote an explicit RK method for solving (1) by

wi+1 = wi + hiF (xi, wi) (2)

where hi � xi+1− xi is a stepsize, wi denotes the numerical

approximation to y (xi), and F (x, y) is a function associated

with the particular RK method (indeed, F (x, y) could be

regarded as the function that defines the method).

B. Local and global errors

We define the global error in a numerical solution at xi by

∆i � wi − yi, (3)

and the local error at xi by

εi+1 � [yi + hiF (xi, yi)]− yi+1 (4)

In the above, yi is the true solution at xi. Note that the exact

value yi is used in the bracketed term in (4).

Note also that for the derivative y′ = f (x, y) we have

f (xi, wi) = f (xi, yi +∆i) = f (xi, yi) +∆ify (xi, ϑi) (5)

where ϑi ∈ (yi, yi +∆i) , so that an error of ∆i in wi results

in an error of O (∆i) in f (xi, wi) .

Justin Prentice is with the Department of Applied Mathematics, University
of Johannesburg, South Africa, email: jprentice@uj.ac.za

a=x0 x1 xm xp

RK GL

. . .

RK GL

xp+1 x2pxp+m. . .

H1 H2

b. . .

Fig. 1. RKGL algorithm for the first two subintervals H1 and H2 on
[a, b].

C. Gauss-Legendre quadrature

Gauss-Legendre quadrature on [u, v] with m nodes is given

by [2]

v∫

u

f (x, y) dx = h
m∑

i=1

Cif (xi, yi) +O
(
h2m+1

)
(6)

where the nodes xi are the roots of the Legendre polynomial

of degree m on [u, v]. Here, h is the average separation of the

nodes on [u, v], a notation we will adopt from now on, and

the Ci are appropriate weights. For GL3, the roots of the 3rd

degree Legendre polynomial on [−1, 1] are

x̃1 = −0.77459666924148
x̃2 = 0
x̃3 = 0.77459666924148

(7)

and are mapped to corresponding nodes xi on [u, v] via

xi =
1

2
[(v − u) x̃i + u+ v] . (8)

Also, the average node separation on [−1, 1] is 1/2, and so h
on [u, v] is given by

h =
1

2

(
v − u

2

)
, (9)

while the weights

C1 =
10

9
, C2 =

16

9
, C3 =

10

9
(10)

are constants on any interval of integration.

D. The RKrGLm algorithm

We briefly describe the general RKrGLm algorithm on the

interval [a, b], with reference to Figure 1.

Subdivide [a, b] into N subintervals Hi. At the RK nodes

we use RKr :

wi+1 = wi + hiF (xi, wi) (11)

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:4, 2008

269

At the GL nodes we use m-point GL quadrature:

w2p = wp + h
m∑

i=1

Cif (xi, wi) (12)

Note that p � m+ 1.
The GL component is motivated by

x2p∫

xp

f (x, y) dx = y2p − yp ≈ h
m∑

i=1

Cif (xi, yi) (13)

⇒ y2p ≈ yp + h
m∑

i=1

Cif (xi, yi) . (14)

Of course, in RK5GL3 we have r = 5,m = 3 and p = 4
in the above. The RKrGLm algorithm has been shown to be

consistent, convergent and zero-stable [1].

E. Local error at the GL nodes

The local error at the GL nodes is defined in a similar way

to that for a one-step method:

x2p∫

xp

f (x, y) dx = yp+m+ 1︸ ︷︷ ︸
2p

− yp (15)

= h
m∑

i=1

Cif (xi, yi) +O
(
h2m+1

)
(16)

⇒ ε2p =

yp + h

p+m∑

i=p+1

Cif (xi, yi)

︸ ︷︷ ︸
exact values of y(x)

− y2p (17)

= O
(
h2m+1

)
. (18)

Note that in the upper limit of integration x2p = xp+m+1.
In RK5GL3, the local error at the GL nodes is O

(
h7
)
.

F. Implementation of RK5GL3

There are a few points regarding the implementation of

RK5GL3 that need to be discussed:

• If we merely sample the solutions at the GL nodes,

treating the computations at the RK nodes as if they

were the stages of an ordinary RK method, then RK5GL3

would be reduced to an inefficient one-step method. This

is not the intention behind the development of RK5GL3;
rather, RK5GL3 represents an attempt to improve the

efficiency of RK5, simply by replacing the computation at

every fourth node by a quadrature formula which does not

require evaluation of any of the stages in the underlying

RK5 method.

• Of course, it is clear from the above that on H1 the

RK nodes are required to be consistent with the nodes

necessary for GL quadrature. If, however, the RK nodes

are located differently (perhaps due to a local error

control mechanism, for example) then it is a simple

matter to construct a Hermite interpolating polynomial

of degree seven (which has order eight error) using the

solutions at the nodes {x0, . . . , x3} . Then, assuming x0
maps to −1 and x3 maps to the Legendre polynomial root

x̃3 on [−1, 1], the position of the other nodes {x∗1, x
∗

2}
suitable for GL quadrature may be determined, and the

Hermite polynomial may be used to find approximate

solutions of order eight at these nodes, thus facilitating

the GL component of RK5GL3. A similar process is

carried out on the next subinterval H2, and so on. Indeed,

as will be seen, the Hermite polynomial discussed here

will play an important part in our error control algorithm.

G. The Runge-Kutta methods used in the algorithm

The RK method used in RK5GL3 is an explicit fifth-order

method due to Fehlberg [3], which we denote RK5. The

explicit eighth-order method used as the tandem method for

error estimation in our error control algorithm is also due to

Fehlberg [4], [5], and is denoted RK8.

H. The Hermite interpolating polynomial

If the data {xi, yi, y
′

i : i = 1, . . . ,m} are available, then

a polynomial H (x) , of degree at most 2m − 1, with the

interpolatory properties

H (xi) = yi H′ (xi) = y
′

i (19)

for each i, may be constructed. If the nodes xi are distinct,

thenH (x) is unique. This approximating polynomial is known

as the Hermite interpolating polynomial [6], and has an

approximation error given by

y (x)−H (x) =
y(2m) (ξ (x))

(2m)!

m∏

i=1

(x− xi)
2

(20)

where x1 < ξ (x) < xm. If h is the average separation of the

nodes on [x1, xm] , it is possible to write x−xi = σih, where

σi is a suitable constant, and hence

y (x)−H (x) = O
(
h2m

)
. (21)

The algorithm for determining the coefficients of H (x) is

linear, as in

c =A−1
b (22)

where c is a vector of the coefficients of H (x), A is the

relevant interpolation matrix, and b is a vector containing yi
and y′i. The details of these terms need not concern us here;

rather, if an error O (∆) exists in each of yi and y′i, then an

error of O (∆) will exist in each component of c. Moreover,

since H (x) is linear in its coefficients, then an error of O (∆)
will also exist in any computed value of H (x) . Consequently,

we may write

y (x)−H (x) = O
(
h2m

)
+O (∆) (23)

where the O (∆) term arises from errors in yi and y′i. We have

assumed, of course, that the errors in yi and y′i are of the same

order, which is the situation that we will encounter later.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:4, 2008

270

III. LOCAL ERROR CONTROL IN RK5GL3

A. The order of the tandem method

The idea behind the use of a tandem method is that it

must be of sufficiently high order such that, relative to the ap-

proximate solution generated by RK5GL3, the tandem method

yields a solution that may be assumed to be essentially exact.

This solution is propagated in both RK5GL3 and the tandem

method itself, and the difference between the two solutions

is taken as an estimate of the local error in RK5GL3. This

amounts to so-called local extrapolation and is not dissimilar

in spirit to error estimation techniques employed using Runge-

Kutta embedded pairs [7], [8].

To decide on an appropriate order for the tandem method

we consider the local error at the GL nodes

ε2p = yp + h

p+m∑

i=p+1

Cif (xi, yi)− y2p

=

wp,t −∆p,t + h

p+m∑

i=p+1

Cif (xi, wi,t −∆i,t)

− (w2p,t −∆2p,t) (24)

where wk,t is the solution from the tandem method at xk, and

∆k,t is the global error in wk,t. Expanding the term in the

sum in a Taylor series gives

ε2p = wp,t + h

p+m∑

i=p+1

Cif (xi, wi,t)−w2p,t

−∆p,t +∆2p,t

+h

p+m∑

i=p+1

Cify
(
xi, ζi,t

)
∆i,t (25)

and so

wp,t + h

p+m∑

i=p+1

Cif (xi, wi,t)−w2p,t

= ε2p +∆p,t −∆2p,t

−h

p+m∑

i=p+1

Cify
(
xi, ζi,t

)
∆i,t (26)

The sum on the rhs is of higher order than ∆p,t − ∆2p,t,
because of the multiplication by h, and since we cannot expect,

in general, that ∆p,t−∆2p,t = 0, the term in parentheses must

be O (hq) , where q is the global order of the tandem method.

Since ε2p = O
(
h7
)

in the RK5GL3 method, we require q > 7
in order for

wp,t + h

p+m∑

i=p+1

Cif (xi, wi,t)−w2p,t ≈ ε2p (27)

to be a good (and asymptotically (h→ 0) correct) estimate

for the local error in RK5GL3. The first two terms on the lhs

of (27) arise from RK5GL3 with the tandem solution as input,

while w2p,t is the tandem solution at x2p.
The implication, then, is that the tandem method must

have a global order of at least eight. Hence, we have chosen

the Fehlberg method mentioned earlier (RK8) as the tandem

method for use with RK5GL3. We remind the reader that RK5

and RK8 used here are independent, and are not an embedded

pair. There may be practical reasons relating to efficiency that

could suggest the use of a suitable embedded pair, but we

will address this issue at a later stage. We also acknowledge

that our choice of q differs from conventional wisdom (which

would choose q = 7 so that the local order of the tandem

method is eight), but it is clear from (26) that the propagation

of the tandem solution requires the global order of the tandem

method to be greater than the order of ε2p. Of course, at the

RK nodes the local order is six, so the tandem method RK8

is more than suitable at these nodes.

B. The error control algorithm

We describe the error control algorithm on the first subinter-

val H1 = [x0(= a), x4] (see figure 1). This process is repeated

on subsequent subintervals.

Solutions w1,5 and w1,8 are obtained at x1 using RK5 and

RK8, respectively. We assume

|w1,5 − y1| = L1h
6
0 ≈ |w1,5 −w1,8| (28)

where h0 � x1 − x0 and L1 is a local error coefficient (we

will discuss the choice of a value for h0 later). The exponent

of six indicates the order of the local error in RK5. We then

demand that ∣∣∣∣
w1,5 − y1
y1

∣∣∣∣ ≈

∣∣∣∣
w1,5 −w1,8

w1,8

∣∣∣∣ � εR (29)

⇒ |w1,5 − w1,8| � εR |w1,8| (30)

where εR is a user-defined tolerance. If this inequality is

violated we assume we can find a new stepsize h∗0 such that

L1 (h
∗

0)
6
= εR |w1,8| ⇒ h∗0 = 0.9

(
εR |w1,8|

L1

) 1

6

(31)

and then find new solutions w1,5 and w1,8 using h∗0. The factor

0.9 in (31) is a ‘safety factor’ allowing for the fact that w1,8
is not truly exact. To cater for the possibility w1,8 ≈ 0 we

actually demand

|w1,5 −w1,8| � max {εA, εR |w1,8|} (32)

where εA is a user-defined ‘absolute’ tolerance. We then set

h1 = h∗0 and proceed to the node x2, where the error control

process is repeated, and similarly for x3. The process of

recalculating a solution using a new stepsize is known as a

step rejection.

In the event that the condition in (32) is satisfied, we still

calculate a new stepsize h∗0 (which would now be larger than

h0) and set h1 = h∗0, on the assumption that if h∗0 satisfies (32)

at x1, then it will do so at x2 as well (however, we also place

an upper limit on h∗0 of 2h0, although the choice of the factor

two here is somewhat arbitrary). In the worst-case scenario we

would find that h1 is too large and a new, smaller value h∗1
must be used. The exception occurs when |w1,5 −w1,8| = 0.
In this case we simply set h1 = 2h0 and proceed to x2.

The above is nothing more than well-known local relative

error control in an explicit RK method using local extrapola-

tion. It is at the GL node x4 that the algorithm deviates from

the norm.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:4, 2008

271

Once error control at x1, x2 and x3 has been effected (which

necessarily defines the positions of x1, x2 and x3 due to

stepsize modifications that may occur), the location of x4
must be determined such that the local relative error at x4
is less than max {εA, εR |w4,8|} . To this end, we utilize the

map (8), demanding that x0 (= u) corresponds to −1 and

x3 corresponds to the Legendre polynomial root x̃3 in (7).

This allows x4 (= v) to be found, where x4 corresponds to

1, and new nodes x∗1 and x∗2 to be determined such that

{x∗1, x
∗

2, x3} are consistent with the GL quadrature nodes on

[x0, x4] . We seek to perform GL quadrature on [x0, x4] using

the nodes {x∗1, x
∗

2, x3} ; however, we do not have solutions

w∗1,8 and w∗2,8 at x∗1 and x∗2. Hence, we construct the Hermite

interpolating polynomial H (x) on [x0, x3] using the nodes

{x0, x1, x2, x3} and the solutions that have been obtained at

these nodes; of course, the derivative of y (x) at these nodes

is given by f (x, y) . We use the eighth-order solutions that

are available, so that we expect the approximation error in

H (x) to be O
(
h8
)
, as shown in (5) and (23). The solutions

at x∗1 and x∗2 are then obtained from H (x∗1) and H (x∗2) . GL

quadrature then gives w4 with local error O
(
h7
)
, as per (17).

The tandem method RK8 is used to find w4,8, and |w4 −w4,8|
is then used for error control: we know that the local error in

w4 is O
(
h7
)
, where h here is the average node separation

on [x0, x4] ; if the local error is too large then a new average

node separation h∗ is determined; using h∗, a new position for

x4, denoted x∗4, is found from x∗4 = x0+4h
∗; if x∗4 > x3, we

redefine the nodes {x∗1, x
∗

2, x3} , find eighth-order solutions at

these new nodes using H (x) , and then find solutions at x∗4
using GL quadrature and RK8; if x∗4 � x3, we reject the GL

step since there is now no point in finding a solution at x∗4.
After all this, the node x∗4 or x3 (if x∗4 � x3) defines the

endpoint of the subinterval H1; the stepsize h is set equal to

the largest separation of the nodes on H1, and the entire error

control procedure is implemented on the next subinterval H2.
Note also that it is the eighth-order solution at the endpoint

of H1 that is propagated in the RK solution at the next node.

C. Initial stepsize

To find a stepsize h0 to begin the calculation process, we

assume that the local error coefficient L1 = 1 and then find

h0 from

h0 = (max {εA, εR |y0|})
1

6 . (33)

Solutions obtained with RK5 and RK8 using this stepsize then

enable a new, possibly larger, h0 to be determined, and it is

this new h0 that is used to find the solutions w1,5 and w1,8 at

the node x1.

D. Final node

We keep track of the nodes that evolve from the stepsize

adjustments, until the end of the interval of integration b has

been exceeded. We then backtrack to the node on [a, b] closest

to b (call it xf−1), determine the stepsize hf−1 � b− xf−1,
and then find wb,5 and wb,8, the numerical solutions at b using

RK5 and RK8, with hf−1, xf−1 and wf−1,8 as input for both

RK5 and RK8. This completes the error control procedure.

IV. COMMENTS ON EFFICIENCY

Our intention has been to develop an effective local error

control algorithm for RK5GL3, and we believe that the above-

mentioned algorithm achieves this objective. However, we do

acknowledge that our procedure is probably not as efficient

as it could be. For example, it would be less computationally

expensive to use an embedded RK pair instead of independent

RK5 and RK8 methods. Such a pair, known as DOPRI853,

does in fact exist, and is due to Dormand and Prince [9].

In our algorithm, RK5 is a six stage method, and RK8 is

a 13 stage method, implying at least 19 stage evaluations at

each RK node. DOPRI853, on the other hand, is a 12 stage

method containing both fifth-order and eighth-order methods.

This suggests a ratio of computational effort of 12/19=63%,

so that using DOPRI853 might require only about two-thirds

of the effort of the tandem algorithm. Regrettably, at the time

of writing, DOPRI853 had not been tested in this error control

capacity.

Nevertheless, we will show in the next section by way of

two numerical examples that our error control algorithm is

certainly an effective one.

V. NUMERICAL EXAMPLES

By way of example, we solve

y′ =
1

1 + x2
− 2y2 (34)

on [0, 5] with y (0) = 0, and

y′ =
y

4

(
1−

y

20

)
(35)

on [0, 30] with y (0) = 1. The first of these has a unimodal

solution on the indicated interval, and we will refer to it as

IVP1. The second problem is one of the test problems used

by Hull et al [10], and we will refer to it as IVP2. These

problems have solutions

IVP1: y (x) = x
1+x2

IVP2: y (x) = 20
1+19e−x/4

(36)

In Table 1 we show the results of implementing our local error

control algorithm in solving both test problems. The absolute

tolerance εA was always 10−10, except for IVP1 with εR =
10−10, for which εA = 10

−12 was used.

Table 1: Performance data for error control algorithm applied to

IVP1 and IVP2

IVP1

εR 10−4 10−6 10−8 10−10

RK step rejections 2 2 0 2
GL step rejections 2 5 10 19
nodes 12 20 37 79
RKGL subintervals 4 6 12 25

IVP2

εR 10−4 10−6 10−8 10−10

RK step rejections 2 2 4 5
GL step rejections 2 3 5 9
nodes 10 19 39 87
RKGL subintervals 3 6 11 24

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:4, 2008

272

In this table, RK step rejections is the number of times a

smaller stepsize had to be determined at the RK nodes; GL step

rejections is the number of times that x∗4 � x3, as described

in the previous section; nodes is the total number of nodes

used on the interval of integration, including the initial node

x0; and RKGL subintervals is the total number of subintervals

H used on the interval of integration. It is clear that as εR
is decreased so the number of nodes and RKGL subintervals

increases (consistent with a decreasing stepsize), and so there

is more chance of step rejections. There are not many RK

step rejections for either problem. When εR = 10−10 the

GL step rejections for IVP1 are 19 out a possible 25 (almost

80%), but for IVP2 the GL step rejections number only about

38%). In both cases the GL step rejections arise as a result of

relatively large local error coefficients at the GL nodes, which

necessarily lead to relatively small values of h, the average

node separation, so that the situation x∗4 � x3 is quite likely

to occur.

Figures 2 and 3 show the RK5GL3 local error for IVP1 and

IVP2. The curve labelled tolerance in each figure is εR |yi| ,
which is the upper limit placed on the local relative error.

x

0 1 2 3 4 5

E
rr

o
r

10 -9

10 -8

10 -7

10 -6

tolerance

actual error

IV P1

Fig. 2. RKGL local error for IVP1, with εR = 10
−6.

In figure 2 we have used εR = 10
−6, and in figure 3 we have

used εR = 10−8. It is clear that in both cases the tolerance

has been satisfied, and the error control algorithm has been

successful. In figure 4, for interest’s sake, we show the stepsize

variation as function of node index (#) for these two problems

.

REFERENCES

[1] J.S.C. Prentice, “The RKGL method for the numerical solution of initial-
value problems”, Journal of Computational and Applied Mathematics,

213, 2 (2008) 477.
[2] D. Kincaid and W. Cheney, Numerical Analysis: Mathematics of Scien-

tific Computing, 3rd ed., Pacific Grove: Brooks/Cole, 2002, pp492−498.
[3] E. Hairer, S.P. Norsett, and G. Wanner, Solving ordinary differential

equations I: Nonstiff problems, Berlin: Springer-Verlag, 2000, p177.
[4] E. Hairer, S.P. Norsett, and G. Wanner, Solving ordinary differential

equations I: Nonstiff problems, Berlin: Springer-Verlag, 2000, p180.
[5] J.C. Butcher, Numerical methods for ordinary differential equations,

Chichester: Wiley, 2003, p192.
[6] R.L. Burden and J.D. Faires, Numerical analysis, 7th ed., Pacific Grove:

Brooks/Cole, 2001, pp133− 135.
[7] E. Hairer, S.P. Norsett, and G. Wanner, Solving ordinary differential

equations I: Nonstiff problems, Berlin: Springer-Verlag, 2000, pp165−
185.

x

0 5 10 15 2 0 25 3 0

E
rr

o
r

1 0 -9

1 0 -8

1 0 -7

actual erro r

tole rance

IV P 2

Fig. 3. RKGL local error for IVP2, with εR = 10
−8.

#

0 5 10 15 20 25 30 35 40

h

0.0

0.2

0.4

0.6

0.8

1.0

1.2

IV P1

IV P2

Fig. 4. Stepsize h vs node index (#) for IVP1 and IVP2.

[8] J.C. Butcher, Numerical methods for ordinary differential equations,
Chichester: Wiley, 2003, pp181− 196.

[9] J.R. Dormand and P.J. Prince, “A family of embedded Runge-Kutta
formulae”, Journal of Computational and Applied Mathematics, 6 (1980)
19. Note that DOPRI853 is actually an embedded triple (8th-order, 5th-
order and 3rd-order) but it is only the fifth- and eighth-order components
that interest us here.

[10] T.E. Hull, W.H. Enright, B.M Fellen, and A.E. Sedgwick, “Comparing
numerical methods for ordinary differential equations”, SIAM Journal
of Numerical Analysis, 9, 4 (1972) 603.

Justin Steven Calder Prentice is currently a Senior Lecturer in the De-
partment of Applied Mathematics at the University of Johannesburg in South
Africa. He holds doctoral degrees in both Physics and Applied Mathematics.
The bulk of his research has been in the field of computational photovoltaics,
and he has only recently turned his attention to numerical methods. His current
interests are radial basis function approximation, and methods for initial value
problems.

