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Lagrangian method for solving unsteady gas
equation

Amir Taghavi, kourosh Parand, and Hosein Fani

Abstract—In this paper we propose, a Lagrangian method to solve
unsteady gas equation which is a nonlinear ordinary differential
equation on semi-infnite interval. This approach is based on Modified
generalized Laguerre functions. This method reduces the solution
of this problem to the solution of a system of algebraic equations.
We also compare this work with some other numerical results. The
findings show that the present solution is highly accurate.

Keywords—Unsteady gas equation, Generalized Laguerre func-
tions, Lagrangian method, Nonlinear ODE.

I. INTRODUCTION

Recently, spectral methods have been successfully applied
in the approximation of differential boundary value problems
defined in unbounded domains. We can apply different ap-
proaches using spectral methods to solve problems in semi-
infinite domains.

The first approach is using Laguerre polynomials [1-4]. Guo
[1] suggested a Laguerre-Galerkin method for the Burgers
equation and Benjamin-Bona-Mahony (BBM) equation on a
semi-infinite interval. It is shown that the Laguerre-Galerkin
approximations are convergent on a semi-infinite interval with
spectral accuracy.

Shen [2] proposed spectral methods using Laguerre func-
tions and analyzed elliptic equations on regular unbounded
domains. In [2] is shown that spectral-Galerkin approximations
based on Laguerre functions are stable and convergent with
spectral accuracy in the Sobolev spaces. Maday, et al. [3]
proposed a Laguerre type spectral method for solving par-
tial differential equations. Siyyam [4] applied two numerical
methods for solving initial value problem differential equations
using the Laguerre Tau method.

The second approach is reformulating the original problem
in semi-infinite domain to a singular problem in bounded
domain by variable transformation and then using the Jacobi
polynomials to approximate the resulting singular problem [5].

The third approach is replacing semi-infinite domain with
[0, K] interval by choosing K, sufficiently large. This method
is named domain truncation [6].

The fourth approach of spectral method is based on rational
orthogonal functions. Boyd [7] defined a new spectral basis,
named rational Chebyshev functions on the semi-infinite in-
terval, by mapping to the Chebyshev polynomials. Guo et al.
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[8] introduced a new set of rational Legendre functions which
is mutually orthogonal in L2(0,+∞). They applied a spectral
scheme using the rational Legendre functions for solving the
Korteweg-de Vries equation on the half line. Boyd et al. [9]
applied pseudospectral methods on a semi-infinite interval and
compared rational Chebyshev, Laguerre, and mapped Fourier
sine.

The authors of [10-12] applied spectral method to solve non-
linear ordinary differential equations on semi-infinite intervals.
Their approach was based on a rational Tau method. They
obtained the operational matrices of derivative and product of
rational Chebyshev, Legendre and Laguerre functions and then
applied these matrices together with the Tau method to reduce
the solution of these problems to the solution of a system of
algebraic equations.

This paper is arranged as follows:
In section 1 we describe Unsteady gas equation. In sec-
tion 2 we describe the formulation of generalized Laguerre
polynomials and modified generalized Laguerre functions re-
quired for our subsequent development. Then we obtained
the operational matrices of derivative of modified generalized
Laguerre functions and then we applied these matrices together
with the Lagrangian method to reduce the solution of this
problem to the solution of system of algebraic equation. In
Section 3 we compare our solutions with some well-known
results, comparisons show that the present solutions are highly
accurate. The conclusions are described in the final section.

A. Unsteady gas equation

In the study flow of gas through a semi-infinite porous
medium [13], [14] initially filled with gas at a uniform pressure
p0 ≥ 0, at time t = 0, the pressure at the outflow face is
suddenly reduced from p0 to p1 ≥ 0 (p1 = 0 is the case
of diffusion into a vacuum) and is, thereafter, maintained at
this lower pressure. The unsteady isothermal flow of gas is
described by a nonlinear partial differential equation. The non-
linear partial differential equation that describes the unsteady
flow of gas through a semi-infinite porous medium has been
derived by Muskat [15] in the form

∇2(P 2) = (2Φμ/k)
∂P

∂t
(1)

where P is the pressure within porous medium, Φ the porosity,
μ the viscosity, k the permeability, and t the time. New
variables were introduced by Kidder [13] and Davis [16] to
transform the nonlinear partial differential equation (1) to
the nonlinear ordinary differential equation. The nonlinear
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ordinary differential equation due to Kidder [13] given by
(unsteady gas equation)

y′′+2xy′/(1−αy)1/2 = 0, x > 0, 0 < α < 1(2)

The typical boundary conditions imposed by the physical
properties are

y(0) = 1, y(∞) = 0. (3)

A substantial amount of numerical and analytical work has
been invested so far [13], [17] on this model. The main reason
of this interest is that the approximation can be used for many
engineering purposes. As stated before, the problem (2) was
handled by Kidder [13] where a perturbation technique is
carried out to include terms of the second order. Recently
Wazwaz[18] applied the modified decomposition method for
solving this nonlinear equation.. The base of his approach
is modification of the Adomian decomposition method. The
diagonal Pade approximants are effectively used in the analysis
to capture the essential behavior of y(x) and to determine the
initial slope y′(0).

II. PROPERTIES OF MODIFIED GENERALIZED LAGUERRE
FUNCTIONS

This section is devoted to the introduction of the basic no-
tions and working tools concerning orthogonal Modified gen-
eralized Laguerre functions. More specifically, we presented
some properties of Modified generalized Laguerre functions.

A. Modified generalized Laguerre functions

The Laguerre approximation has been widely used for
numerical solutions of differential equations on infinite in-
tervals. Lα

n(x) (generalized Laguerre polynomial) is the nth
eigenfunction of the Sturm-Liouville problem [19], [20], [21]:

x
d2

dx2
Lα

n(x) + (α + 1 − x)
d
dx

Lα
n(x) + nLα

n(x) = 0,

x ∈ I = [0,∞), n = 0, 1, 2, .... .

The generalized Laguerre polynomials are defined with the
following recurrence formula:

Lα
0 (x) = 1, Lα

1 (x) = 1 + α − x,

nLα
n(x) = (2n − 1 + α − x)Lα

n−1(x)
−(n + α − 1)Lα

n−2(x), n ≥ 2.

these are orthogonal polynomials for the weight function
wα = xαe−x. The generalized Laguerre polynomials satisfy
the following relation:

∂xLα
n(x) = −

n−1∑
k=0

Lα
k (x). (4)

We define Modified generalized Laguerre functions (which we
denote (MGL) functions) φj as follows:

φj(x) = exp(−x/(2L))L1
j (x/L), L > 0. (5)

This system is an orthogonal basis [22], [23] with weight
function w(x) = x

L and orthogonality property:

< φn, φm >w=
∫ ∞

0

φn(x)φm(x)w(x)dx =(
Γ(n + 2)

L2n!

)
δnm,

where δnm is the Kronecker function. Boyd [6], [7], [9] offered
guidelines for optimizing the map parameter L where L > 0
is the scaling parameter .
On a semi-infinite domain, there is always a parameter that
must be determined experimentally. For example, if domain
truncation to a domain x ∈ [0, K] is employed, then one must
choose K. If one knows the rate at which y(x) decays for
large x, one can choose K so that y(K) < delta where delta
is some user-chosen tolerance. But then one is still faced with
choosing the grid spacing h so that the error in solving the
differential equation on x ∈ [0, K] is small. If h is small, the
error in solving the ODE may be very much less than delta,
in which case one has made a bad choice of K because the
domain truncation error is dominant, and one would have been
better choosing a larger K.
Numerical results deponed smoothly on constant parameter L,
and therefore are not very sensitive to L because the dError

dL =
0 at the minimum itself, so the error varies very slowly with
L around the minimum. A little trial and error is usually
sufficient to find a value that is nearly optimum. In general,
there is no way to avoid a small amount of trial and error in
choosing L when solving problems on an unbounded domain.
Experience and the asymptotic approximations of Boyd [7]
can help, but some experimentation is always necessary as he
explain in his book [6].
Lagrangian interpolants of generalized Laguerre polynomials
(we denoted GLP) of order p at the Gauss-Radau-Laguerre
quadrature points in R+ is [24]:

�j(x) =
xLα

N (x)
ηj

d
dxLα

N (ηj)
1

x − ηj
, j = 1, ..., N, (6)

and

�0(x) =
Lα

N (x)
Lα

N (0)
,

ηj , j=1,2..,N, are the N GLP-Radau points.
derivative operator of GLP is:

dij = �
′
j(ηi),

moreover for any polynomial p of degree at most N , one gets:

p
′
(ηi) =

N∑
j=0

dijp(ηj).
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Funaro [24] obtained derivative matrix of GLP(DN ):

dij(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ηi
d

dx Lα
N (ηi)

ηj
d

dx Lα
N (ηj)

1
ηi−ηj

i, j = 1, ..., N, i �= j,
1−α+ηi

2ηi
i = j = 1, ..., N,

d
dx Lα

N (ηi)

Lα
N (0) i = 1, ..., N, j = 0,

− Lα
N (0)

η2
j

d
dx Lα

N (ηj)
j = 1, ..., N, i = 0,

− N
α+1 i = j = 0,

(7)

The second derivative operator is obtained either by squaring
DN either by evaluating �

′′
j (ηi) :

�
′′
ij(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

((1−α+ηi)(ηi−ηj)−2ηi)
d

dx Lα
N (ηj)(ηi−ηj)2

1
ηj

d
dxLα

N (ηi) i, j = 1, ..., N, i �= j,
(ηi−α)2

3η2
i

− N−1
3ηi

i = j = 1, ..., N,

−α+1−ηiL
α
N (0)

d
dx Lα

N (ηi)ηi
i = 1, ..., N, j = 0,

− 2(N+α+1) d
dx Lα

N (x)

Lα
N (0)η3

i (α+1)
i = 1, ..., N, j = 0,

N(N−1)
(α+1)(α+2) i = j = 0,

(8)

Laguerre polynomials are not suitable for computations [24],
and also Lagrangian interpolation of Laguerre polynomials is
not suitable for solving some differential equations, such as
Lane-Emden equations because of their boundary conditions.
So we use Lagrangian interpolation of (MGL) functions.
At first we must find Lagrangian interpolants and derivative
operators of (MGL) functions.

Lemma 1: Let ηi be a root of Lα
N (x) and Γα

N (x) =
e−x/2Lα

N (x), then
d

dx
Γα

N (ηi) = e−ηi/2 d

dx
Lα

N (ηi).
Proof.

d

dx
Γα

N (x) =
d

dx
e−x/2Lα

N (x) =

−1
2

e−x/2Lα
N (x) + e−x/2 d

dx
Lα

N (x).

And with substitution x = ηi Lemma 1 is proved.
Lemma 2: Lagrangian interpolant of Γα

N (x) =
e−x/2Lα

N (x) is,

�̂i(x) = �i(x)
e−x/2

e−ηi/2
, (9)

which �j(x) are Lagrangian interpolant of Laguerre polyno-
mials.

Proof. Suppose γ
x�α

N (x)
x−ηj

is Lagrangian interpolant and using
Lemma 1 we can find constant γ,

�̂i(ηi) = 0,

lim
x→ηj

γ
x�α

N (x)
x − ηj

= γ( lim
x→ηj

�α
N (x) + x

d

dx
�α
N (x)) = 1

⇒ γ =
1

ηje−ηi/2 d
dxLα

N (ηi)
,

so

�̂i(x) =
1

ηje−ηi/2 d
dxLα

N (ηi)
x�α

N (x)
x − ηj

, (10)

and with comparison of (6) and (10) Lemma 2 is proved.
By Eq. (9) derivative operator of Γα

N (x) = e−x/2Lα
N (x) (we

denote by D̂N ) is:

d̂ij = dij
e−ηj/2

e−ηi/2
− 1/2δij , i, j = 1, ..., N. (11)

Where matrix dij is defined in Eq. (7). As pointed out in before
the second derivative operator is obtained either by squaring
D̂N either by evaluating �̂

′′
j (ηi). For evaluating �̂

′′
j (ηi) we can

use the following relation:

�̂′′
ij(ηj) =

1
4
δij − dij

e−ηj/2

e−ηi/2
+

e−ηj/2

e−ηi/2
�
′′
ij(ηj), (12)

i, j = 1, ..., N,

and �
′′
ij(ηj) is defined in Eq. (8). It is obvious that (MGL)

functions is Γ(x/L), so Lagrangian interpolant of (MGL)
functions is �̂i(x/L), and derivative operators can be obtained
easily.

B. Function Approximation
We define the interpolant approximation of y(x) by

INy(x) =
N∑

j=0

bj �̂j(x/L). (13)

Where �̂j(x) is defined in Eq. (10). The bj’s are the expansion
coefficients associated with the family {�̂j(x/L)}. A semilog-
arithmic plot of abs(bj) versus j is also useful to determine a
good choice of L when the exact solution for y(x) is unknown.
One can run the code for several different L and then plot the
coefficients from each run on the same graph. The best L is the
choice that gives the most rapid decrease of the coefficients.[6]
Therefore,

INy(�j) = bj , j = 1, ..., N. (14)

where �j = Lηj are the zeroes of �̂j(x/L). So derivative
operator of(MGL) functions is (we denote by D̂LN ):

d̂Lij =
1
L

�̂
′
j(�i/L) =

1
L

�̂
′
j(ηi) =

1
L

d̂ij , (15)

and the second derivative operator is

d̂
(2)
L ij =

1
L2

�̂
′′
j (�i/L) =

1
L2

�̂
′′
j (ηi), (16)

The relationship between the derivative d
dxINy(x) and INy(x)

at the collocation points �i, i = 1, ..., N can be obtained by
differentiation. the result is as:

d

dx
INy(�k) =

N∑
j=0

bj d̂Lkj , (17)

and

d

d2x
INy(�k) =

N∑
j=0

bj d̂
(2)
L kj . (18)

III. SOLVING UNSTEADY GAS EQUATION

To apply Lagrangian interpolant of (MGL) functions to the
Unsteady gas Equation introduced in Eq. (2) with boundary
conditions Eq. (3), at first we multiply both side of Eq. (2) in
(1 − αy)1/2, so we have:

y′′(1 − αy)1/2 + 2xy′ = 0, x > 0, 0 < α < 1, (19)



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:11, 2009

1019

Fig. 1. Unsteady gas equation graph obtained by MGL function Lagrangian
method (circles) and Wazwaz method (dotted line)

TABLE I
COMPARISON OF INITIAL SLOPE y′(0) FOR α = 0.5.

N MGL function method Padé[2,2] Padé[3,3]
6 −1.37310852 −1.37317809 −1.02552970
7 −1.37317352 −1.37317809

then with Eq. (13) we expand y(x), as follows:

INy(x) =
N∑

j=0

bj �̂j(x/L).

To find the unknown coefficients bj’s, we substitute the
truncated series into the Eq. (19) and boundary condition in
Eq. (3). So we have:

N∑
j=0

bj d̂
(2)
L ij(1 − αbi) + 2�i

N∑
j=0

bj d̂Lij = 0, (20)

i = 1, ..., N.

And for boundary condition:

b0 = 1 (21)

we have N equations in Eq. (20), that generates a set of
N +1 nonlinear equations with boundary equation in Eq. (21).

Fig. 1 shows comparison of Unsteady gas equation graph
obtained by MGL function Lagrangian method and Wazwaz
method.

Table 1 shows the comparison of the y′(0), between (MGL)
functions for N = 6, 7, L = 0.87 and Padé approximation
used by [18].

Table 2 shows the approximations of y(x) for standard
unsteady gas with α = 0.5 obtained by the method proposed
in this paper for N = 7 and L = 0.87, the perturbation method
used by [13] and Padé approximation by Wazwaz [18].

IV. CONCLUSION

The fundamental goal of this paper has been to construct
an approximation to the solution of nonlinear Unsteady gas
equation. A set of orthoghonl functions are proposed to pro-
vide an effective but simple way to improve the convergence of
the solution by Lagrangian method. In this method with a few

TABLE II
VALUES OF y(x) FOR α = 0.5 FOR x = 0.1 TO 1.0

x MGL function method Perturbation Padé[2,2] Padé[3,3]
0.1 0.90931873 0.88165883 0.86330606 0.89791670
0.2 0.81748763 0.76630768 0.73012623 0.79852282
0.3 0.71522344 0.65653800 0.60330541 0.70411297
0.4 0.60982075 0.55440240 0.48488987 0.61650379
0.5 0.51632348 0.46136503 0.37616039 0.53705338
0.6 0.41932385 0.37831093 0.27773116 0.46656257
0.7 0.40982377 0.30559765 0.18968434 0.40624260
0.8 0.31999068 0.24313255 0.11171052 0.35608017
0.9 0.20820285 0.19046237 0.04323673 0.31799666
1.0 0.21991074 0.15876898 0.01646751 0.29002550

number of points we approximate the solution of unsteady gas
equation. With this method we can approximate some well-
known differential equations like unsteady gas, blasius and
lane-emden with highly accurate.
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