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Abstract—Colored Petri Nets (CPN) are very known kind of 

high level Petri nets. With sound and complete semantics, rewriting 
logic is one of very powerful logics in description and verification of 
non-deterministic concurrent systems.  Recently, CPN semantics are 
defined in terms of rewriting logic, allowing us to built models by 
formal reasoning. In this paper, we propose an automatic translation 
of CPN to the rewriting logic language Maude. This tool allows 
graphical editing and simulating CPN. The tool allows the user 
drawing a CPN graphically and automatic translating the graphical 
representation of the drawn CPN to Maude specification. Then, 
Maude language is used to perform the simulation of the resulted 
Maude specification. It is the first rewriting logic based environment 
for this category of Petri Nets. 
 

Keywords—Colored Petri Nets, Rewriting Logic, Maude, 
Graphical Edition, Automatic Translation, Simulation. 

I. INTRODUCTION 
OLORED Petri Nets (CPN) are very known kind of high 
level Petri nets. Rewriting logic has sound and complete 
semantics [6] and it is considered as one of very powerful 

logics in description and verification of non-deterministic 
concurrent systems. Also, the rewriting logic language Maude 
[7] is considered as one of very powerful languages in 
specification, programming and verification of non-
deterministic concurrent systems. CPN semantics are defined 
in terms of rewriting logic [8], allowing us to built models by 
formal reasoning. Rewriting logic gives to CPN a simple, 
more intuitive and practical textual version to analyze, without 
loosing formal semantic (mathematical rigor, formal 
reasoning). 

However, Maude system offers textual way to the user to 
create and deal with CPN system. Execution under Maude 
system is done by using command prompt style. In this case, 
we loose the graphical aspect of CPN formalism which is 
important for the clarity, simplicity and readability of a system 
description. 

In this paper, we propose a simple tool for automatic 
translation of CPN to Maude language. This tool includes also 
graphical edition and simulation of CPN by using Maude. The 
proposed tool is a simple tool to well exploit the advantages of 
CPN formalism such as graphical aspect, simplicity and 
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readability that are important for preliminary description in 
system development. This tool acts as follows : it allows to the 
user to edit graphically a CPN and then converts the graphical 
representation to its equivalent description in Maude.  
Thereafter, the tool calls the Maude system for the execution 
of the CPN and reconverts the resulting marking described in 
Maude to a graphical representation. This step allows us to 
perfectly exploit all advantages of Maude described above. 
We notice that the integration of CPN in rewriting logic 
facilitated the development of such environment. With the 
help of a CPN example, we will compare the simulations of 
the example under Maude system and our tool. One of the 
objectives of this work is to fully exploit the power of this 
logic and Maude language. Maude is simple, very expressive 
and efficient [4]. 

Of course, in the context of Petri nets simulation and 
analysis, many tools have been developed. Most of these tools 
for CPN are implemented using the known imperative 
languages like Java, C++.  We mention here some much 
known tools that are proposed for CPNs. CPN/Tools [2] is a 
major redesign of the Design/CPN [9] tool for editing, 
simulation and state space analysis of Colored Petri Nets. 
CPN Tools [10] is a tool for editing, simulating and analyzing 
Colored Petri Nets. The functionality of the simulation engine 
and state space facilities are similar to the corresponding 
components in Design/CPN. 

Let’s note that these proposed environments are mature and 
include many analysis tools. We can not compare our tool 
with these environments in terms of services provided. But, 
our tool is special because it is the first one which offers an 
automatic translation of CPN to Maude. This integration 
allows to the CPNs to get a sound and complete semantic 
especially the true concurrency description. Our work 
concerning graphic and edition and simulation of Petri nets 
based Maude is not limited to just CPNs. We already 
proposed the development of graphic simulator for ordinary 
Petri nets and for another category of algebraic Petri nets 
ECATNets by using Maude [3]. This work constitutes a way 
of important investigation. We want to use, in fact, only one 
platform (Maude) to allow the communication between 
systems developed beforehand by using different kinds of 
Petri nets. This can be carried out by an automatic generation 
of Maude descriptions starting from ordinary Petri nets, 
ECATNets, CPN and other Petri nets models which are 
integrated in Maude. 

The remainder of this paper is organized as follows: in 
section 2, we present a short outline on the rewriting logic and 
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Maude. We give a brief introduction on CPN formalism and 
their integration in rewriting logic in section 3 through a 
simple example. Most important functionalities of our simple 
application are illustrated in section 4. We show also in this 
section how we run our application with the help of the 
example. Software and hardware used in developing our 
application are mentioned in section 5. Finally, section 6 
concludes the paper. 

II. REWRITING LOGIC REVIEW 

In rewriting logic, each concurrent system is represented by 
a rewrite theory ℜ = (Σ, E, L, R). Its static structure is 
described by the signature (Σ, E), whereas its dynamic 
structure is described by the set of labelled rewrite rules R, 
which are applied modulo the equation E. An important 
consequence of the rewriting logic definition is that a rewrite 
theory ℜ = (Σ, E, L, R) can be viewed as an executable 
specification of the concurrent system that it formalizes. In 
this section we recall the basic definitions of the rewriting 
logic. 

A labelled rewrite theory ℜ is a 4-tuple ℜ = (Σ, E, L, R) 
where (Σ, E) is a signature;  Σ is the sorts set and operators 
and E is a set of Σ-equations. The signature (Σ, E) is an 
equational theory which describes the particular algebraic 
structure of the states of a system (multiset, binary tree, etc.) 
which are distributed according to this same structure. R ⊆ L 
× (TΣ,E(X))2 is the set of pairs whose first component is a label 
and the second is a pair of E-equivalence classes of terms, 
with X = {x1,…,xn,…}a countable infinite set of variables. 
The elements of R are called conditional rewrite rules. They 
describe the elementary and local transitions in a concurrent 
system. Each rewrite rule corresponds to an action being able 
to occur, simultaneously, with other actions. The rewriting 
will operate on equivalence classes of terms, modulo the set of 
equations E. For a rewrite rule (r, ([t],[t’]), 
([u1],[v1]),….,([uk],[vk]) ) we use the notation, r: [t]→[t’] if 
[u1]→[v1] ∧…∧ [uk]→[vk], where [t] represents the 
equivalence class of the term t. A rule r expresses that the 
equivalence class containing the term t is changed to the 
equivalence class containing the term t’ if the conditional part 
of the rule, [u1]→[v1] ∧…∧ [uk]→[vk], is verified. 

Given a labeled rewrite theory ℜ, we say that  ℜ entails a 
sequent r: [t]→[t’], or that r: [t]→[t’] is a (concurrent) ℜ-
rewrite and write ℜ |- r : [t] → [t’]  iff  [t]→ [t’] is derivable 
from the rules in ℜ by a finite application of the deduction 
rules (reflexivity, transitivity, congruence, and replacement) of 
rewriting logic. 

A rewrite theory is a static description of a concurrent 
system. Its semantics is defined by a mathematical model 
which describes its behavior. The model for a given labelled 
rewriting theory ℜ = (Σ, E, L, R) is a category τℜ(X) whose 
objects (states) are equivalence classes of terms [t]∈TΣ,E(X) 
and whose morphisms (transitions) are equivalence classes of 
proof-terms representing proofs in rewriting deduction .  

• Reflexivity. For every ][t  ∈ TΣ,E(X) : 
][][ tt →

 

• Congruence. For every f  ∈  Σn, n ∈ N : 
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A. Maude Language 
Maude is a specification and programming language based 

on rewriting logic.  Maude is simple, expressive and efficient. 
It is rather simple to program with Maude, considering that it 
belongs to the declarative programming languages. It is 
possible to describe using Maude different types of 
applications, from prototyping ones to high concurrent 
applications. Maude is a competitive language in terms of 
execution and simulation with imperative programming 
languages [4]. Three types of modules are defined in Maude. 
The functional modules, the system modules and the object-
oriented modules which can, in fact, be reduced to system 
modules. Because we do not need object-oriented modules 
here, so we do explain only system and functional modules. 

 
Functional Modules. The functional modules define data 

types and related operations, which are based on equations 
theory. By using equations like simplification rules, each 
expression called term could be evaluated to its reduced form 
called canonical representation. All the equal terms by means 
of equations form an equivalence class. The canonical form 
represents all the terms of the same equivalence class. The set 
of all the equivalence classes of the ground (i.e, variable-free) 
terms constitutes a denotational model for a functional module 
(initial algebra). Equations in a functional module are 
oriented. They are used from left to right and the final result 
of the simplification of an initial term is unique independently 
of the order in which these equations are applied. In addition 
to equations, this type of modules supports membership’s 
axioms. These axioms impose constraints so that a term is of a 
particular type if a certain condition is satisfied. This 
condition is a conjunction of equations and unconditional tests 
of memberships. 

 
System Modules. The system modules define the dynamic 

behavior of a system. This type of module augments the 
functional modules by the introduction of rewriting rules. This 
type of module offers a maximum degree of concurrency. A 
system module describes a “rewriting theory” which includes 
kinds, operations and three types of statements: equations, 
memberships and rewriting rules. These three types of 
statements can be conditional. A rewriting rule specifies a 
“local concurrent transition” which can proceed in a system. 
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The execution of such transition, specified by the rule, can 
take place when the left part of a rule matches to a portion of 
the global state of the system and the condition of the rule is 
valid. 

III. COLORED PETRI NETS 
Colored Petri nets (CPN) are very known and we can find 

easily their definition in the literature. Among these 
definitions we have the following one : a CPN is a  tuple CN 
= [P, T, F, ψ, A, m0] such that : 

1. [P, T, F] is a net, i.e. P and T are finite and disjoint 
sets called places and transitions, respectively, and F 
is a relation F ⊆ (P×T)∪(T×P), the elements of which 
are called arcs; 

2. ψ assigns a countable set of colors to every element 
of P∪T; 

3. A assigns to every [x, y] ∈ F a mapping which in 
turn assigns a finite semi-positive multiset over ψ(p) 
to every color in ψ(t) where p is the place of x and y 
and t is the transition of x and y; 

m0 is a marking which assigns a finite semi-positive multi-set 
over ψ(p) to every p ∈ P. m0 is called the initial marking. 

A.  Representation of CPN in Maude 
In this section, we will explain through a very simple 

example how to express a CPN in Maude language according 
to [8].  For domains of colors C1 = {A, B}and C2 = {C, D}, 
we have the simple CPN in the figure 1. 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1 Example of CPN 

 
Let’s take an initial marking such that M0(p1) = 2A+2B and 

M(P2) is empty. In the sequel, we describe how to obtain the 
equivalent Maude code of this CPN example.  First we create 
a sort MS to describe a general multi-set, the constant empty 
for an empty multi-set and the operation without name (__) 
(the underlines indicate the two parameters of this operation). 
This operation is commutative, associative and has as an 
element identity empty. This operation allows the construction 
of any multi-set including empty multi-set (empty). 
 
mod BASIC is 
 sort MS . 
 op empty : -> MS .  
 op __ : MS MS -> MS [assoc comm. id: empty] . 
endm 

 
In fact, the marking of CPN is just a multi-set, so we define 

for C1 (resp. C2) a sort of the same name and we declare that 
C1 (resp. C2) is a sub-sort of MS. So C1 and C2 are multi-
sets. Now, we can declare that A and B are elements of sort 
C1, C and D are elements of sort C2. Each place P of CPN is 
represented by an operation in Maude. The domain of P is its 
domain color C and its co-domain also. In this case, P 
contains only colors belonging to its domain, then we can 
write P(r) when r is a color which belongs to C. In Maude 
code describing the previous CPN example, we have the 
marking P1(A) P1(B) which denotes that the place P1 
contains two colors A and B. A transition in CPN is 
represented by a rewriting rule in Maude, we have in our 
example the transition T1 which is represented by a rewriting 
rule of the same label. This rewriting rule describes how the 
marking (multi-set) P1(A) P1(B) is transformed to the 
marking P2(C) P2(D). The unlimited rewriting of an initial 
marking P1(A) P1(A) P1(B) P1(B) gives us the marking 
P1(A) P1(A) P2(C) P2(D) as showed in the figure 2. 
 
mod CPN is  
 pr BASIC .  
 sorts C1 C2 .  
 subsort C1 < MS . subsort C2 < MS . 
 ops A B : -> C1 . ops C D : -> C2 .  
 op P1 : C1 -> C1 . op P2 : C2 -> C2 . 
 rl [T1] : P1(A) P1(B) => P2(C) P2(D) . 
endm 
rew P1(A) P1(A) P1(B) P1(B) . 
 

B.  Execution of CPN Example under Maude System 
We find an example of initial state and the result of its 
unlimited rewriting in figure 2. 
 

 
Fig. 2 Execution of the CPN example under Maude system 

 

IV. STEPS OF CPN SIMULATOR MAUDE-BASED 
As described in figure 3, most principal steps in this tool are 
given. Trough the previous example, we explain in following 
sections the main options of the application. 

C+D 

A+B 

C2 

t1 

p2 

p1 C1 
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Fig. 3  Methodical view on CPN Simulator based Maude 
 

A. Graphical User Interface 
 In this step, user can create his own CPN system. In the 
figure 4, we find principal window, on what the previous 
example of CPN is created. In this interface, we show that our 
application contains from left to right the following options: 
ToolBar, New, Open, Save, Print, Code Generation and Exit. 
So, New to create new file containing new CPN, Open to open 
existent file, Save to save current file, Print for printing 
current file and Exit to close the tool.  In addition to these 
options, we find two other options ToolBar and Code 
Generation. ToolBar includes necessary options to create 
CPN, in the tool bar ‘Draw’, we have :  

- Circle to create new place, rectangle to create new 
transition, arcs to create new arcs linking places and 
transitions; 

- D for Delete : to delete a place, a transition or an arc; 
- S for Sub-domain : to create or modify a  
- sub-domain for a selected place; 
- M for Marking : to create or modify a marking in a 

selected place; 
- C for Arc Condition : to create or modify condition 

arc. 
After creating graphically a CPN, user can click on the icon 

of Code Generation to generate the corresponding Maude 
code. 
 

In this figure, we find in the right of the place P1 the set A, 
B which is the color domain of this place and the multi-set 
2A+2B which represents the current marking of P1 (initial 
marking in this case). 
 

 
Fig. 4 Application Main Menu with CPN Example  

 
 

B. Automatic Translating CPN Graphical Representation 
to Maude Description 
 This step has the graphical representation of CPN model as 
input. It consists of translating this representation into an 
equivalent Maude description. In fact, this representation 
contains on one hand the structure of the CPN and on the 
other hand, the initial state of this CPN. The output of this step 
is two elements: an equivalent code in Maude of CPN 
structure and an initial state in Maude syntax. After clicking 
on ‘code generation’ option, another new menu occurs (figure 
5). By clicking on the option code generation, we get the 
generated code equivalent in Maude to CPN according to the 
translation proposed in [8]. We have to click on ‘watch code’ 
option to get the Maude code displayed on the right of the 
screen as depicted in the figure 5.  
 

 
Fig. 5 Automatic generated Maude code for CPN example 

 

C. Simulation 
 The output of the previous step is the input of this one. To 
do simulation, the simulator needs from the user the initial 
state of the CPN. Simulation consists of transforming this 
initial state to another by doing one or many rewriting actions. 

Errors 
Final state 
in Maude 

CPN/Maude- 
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Result in 

graphical 

notation 
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Therefore, in addition to initial state, the user may give to the 
simulator the number of rewriting steps if (he/she) wants to 
check intermediary states. If this number is not given, the 
simulator continues the rewriting operation until reaching 
final state. In figure 5, we asked the application to perform the 
simulation on the previous initial marking without indicating 
the number of rewriting steps. The Result (final state) of the 
simulation is given in the same manner as initial one. We 
notice that infinite case is possible. Let’s go back to the 
example, after displaying the Maude code equivalent to CPN, 
we can now execute the code by clicking ‘code execution’ 
option. In our case, the unlimited rewriting of the example 
gives the result in the figure 6. Let’s note that we exposed the 
result marking in graphical manner (on the CPN) and in 
textual way in Maude language. 
 

 
Fig. 6 Application Main Menu with CPN Example 

 
 

D.  Interpretation of the Result in a Graphical Notation 
 In the case of no errors have been detected, the user obtains 
(his/her) the result in a box like the case of initial marking. 
This result is one returned by Maude after being reinterpreted 
in our description (figure 6).  
 

E. Errors Handler 
 Our tool deals with errors at different levels. For instance, if 
the user draws an isolated arc, so when the user asks the tool 
to generate the code, the application displays that there are 
mistakes before generating Maude code.  In case of some 
errors have been detected in the level of Maude code, we give 
to the user by the errors generated by Maude. 
 

V. TECHNICAL ASPECT OF THE CPN SIMULATOR 
This tool is implemented under MS-Windows XP with the 

following tools: the programming language Flash MX of 
Macromedia is used for implementing the graphical editor, 
Delphi 7.0 for the translation of graphical representation of a 
CPN to its equivalent Maude description and the version 2.0.1 
of Maude system is used for the simulation of the generated 
description of the CPN. For graphic modelling reason, we held 

the Flash MX language of Macromedia with regard to the 
other languages for its graphics power, its capacity to 
manipulate objects and its compatibility with the other 
languages. However, it is insufficient for an easy development 
of this kind of application because it is poor in matter of 
system interactions as the creation of text files. So, we have 
needed the use of a hidden module built in Delphi 7 of 
Borland. As regards to the choice of Delphi for the 
interactions system for two reasons, the first one it is because 
it is rich in terms of the interactions system and the second it is 
for that compatibility with the Flash MX.  

VI. CONCLUSION 
In this paper, we proposed a simple rewriting logic based 

tool for CPN edition and simulation. This application includes 
tasks like: edition, automatic translation of CPN to Maude and 
simulation. The editor allows the user to draw a CPN 
graphically; the automatic translator allows translating the 
graphical representation of the drawn CPN to a Maude 
specification. Then the rewriting logic language Maude is 
used to perform the simulation of the resulted Maude 
specification. We think that the power of Maude in terms of 
specification, programming, simulation and verification in 
plus of the CPN integration in Maude, implies that there is no 
need to translate CPN to several languages for such 
requirements. Therefore, we avoid any mistranslation of CPN 
in several languages and thus any risks about their semantic 
loss.  

The CPN’s tool will be extended by adding other tools. The 
tools planned to be integrated in this application will be 
developed under Maude system. This tool may be enriched by 
all already proposed tools for Maude including coherence 
checker for system modules [5] or and inductive theorem 
prover [1] to check functional properties modules’ properties. 
The objective of the integration of such tools is making easy 
the utilization of these tools. 

Our work concerning graphic and edition and simulation of 
Petri nets based Maude is not limited to just CPNs. We 
already proposed the development of graphic simulator for 
ordinary Petri nets and for another category of algebraic Petri 
nets ECATNets by using Maude [3]. This work constitutes a 
way of important investigation. We want to use, in fact, only 
one platform (Maude) to allow the communication between 
systems developed beforehand by using different kinds of 
Petri nets. This can be carried out by an automatic generation 
of Maude descriptions starting from ordinary Petri nets, 
ECATNets, CPN and other Petri nets models which are 
integrated in Maude. 

Let’s note that in the same paper [8], authors propose also 
an integration of algebraic Petri nets (AP¨N) in rewriting 
logic. In this way, we plan also performing a graphic interface 
of this kind of Petri Nets with an automatic translation of APN 
to Maude language for simulation.  
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