
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

724

Abstract—Colored Petri Nets (CPN) are very known kind of

high level Petri nets. With sound and complete semantics, rewriting
logic is one of very powerful logics in description and verification of
non-deterministic concurrent systems. Recently, CPN semantics are
defined in terms of rewriting logic, allowing us to built models by
formal reasoning. In this paper, we propose an automatic translation
of CPN to the rewriting logic language Maude. This tool allows
graphical editing and simulating CPN. The tool allows the user
drawing a CPN graphically and automatic translating the graphical
representation of the drawn CPN to Maude specification. Then,
Maude language is used to perform the simulation of the resulted
Maude specification. It is the first rewriting logic based environment
for this category of Petri Nets.

Keywords—Colored Petri Nets, Rewriting Logic, Maude,
Graphical Edition, Automatic Translation, Simulation.

I. INTRODUCTION
OLORED Petri Nets (CPN) are very known kind of high
level Petri nets. Rewriting logic has sound and complete
semantics [6] and it is considered as one of very powerful

logics in description and verification of non-deterministic
concurrent systems. Also, the rewriting logic language Maude
[7] is considered as one of very powerful languages in
specification, programming and verification of non-
deterministic concurrent systems. CPN semantics are defined
in terms of rewriting logic [8], allowing us to built models by
formal reasoning. Rewriting logic gives to CPN a simple,
more intuitive and practical textual version to analyze, without
loosing formal semantic (mathematical rigor, formal
reasoning).

However, Maude system offers textual way to the user to
create and deal with CPN system. Execution under Maude
system is done by using command prompt style. In this case,
we loose the graphical aspect of CPN formalism which is
important for the clarity, simplicity and readability of a system
description.

In this paper, we propose a simple tool for automatic
translation of CPN to Maude language. This tool includes also
graphical edition and simulation of CPN by using Maude. The
proposed tool is a simple tool to well exploit the advantages of
CPN formalism such as graphical aspect, simplicity and

Noura Boudiaf is with the University of Oum El Bouaghi, Algeria (e-mail:

boudiafn@gmail.com).
Abdelhamid Djebbar is with the University of la méditerranée, Marseille,

Marseille, France (e-mail: djb_abdelhamid@yahoo.fr)

readability that are important for preliminary description in
system development. This tool acts as follows : it allows to the
user to edit graphically a CPN and then converts the graphical
representation to its equivalent description in Maude.
Thereafter, the tool calls the Maude system for the execution
of the CPN and reconverts the resulting marking described in
Maude to a graphical representation. This step allows us to
perfectly exploit all advantages of Maude described above.
We notice that the integration of CPN in rewriting logic
facilitated the development of such environment. With the
help of a CPN example, we will compare the simulations of
the example under Maude system and our tool. One of the
objectives of this work is to fully exploit the power of this
logic and Maude language. Maude is simple, very expressive
and efficient [4].

Of course, in the context of Petri nets simulation and
analysis, many tools have been developed. Most of these tools
for CPN are implemented using the known imperative
languages like Java, C++. We mention here some much
known tools that are proposed for CPNs. CPN/Tools [2] is a
major redesign of the Design/CPN [9] tool for editing,
simulation and state space analysis of Colored Petri Nets.
CPN Tools [10] is a tool for editing, simulating and analyzing
Colored Petri Nets. The functionality of the simulation engine
and state space facilities are similar to the corresponding
components in Design/CPN.

Let’s note that these proposed environments are mature and
include many analysis tools. We can not compare our tool
with these environments in terms of services provided. But,
our tool is special because it is the first one which offers an
automatic translation of CPN to Maude. This integration
allows to the CPNs to get a sound and complete semantic
especially the true concurrency description. Our work
concerning graphic and edition and simulation of Petri nets
based Maude is not limited to just CPNs. We already
proposed the development of graphic simulator for ordinary
Petri nets and for another category of algebraic Petri nets
ECATNets by using Maude [3]. This work constitutes a way
of important investigation. We want to use, in fact, only one
platform (Maude) to allow the communication between
systems developed beforehand by using different kinds of
Petri nets. This can be carried out by an automatic generation
of Maude descriptions starting from ordinary Petri nets,
ECATNets, CPN and other Petri nets models which are
integrated in Maude.

The remainder of this paper is organized as follows: in
section 2, we present a short outline on the rewriting logic and

Towards an Automatic Translation
of Colored Petri Nets to Maude Language

Noura Boudiaf and Abdelhamid Djebbar

C

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

725

Maude. We give a brief introduction on CPN formalism and
their integration in rewriting logic in section 3 through a
simple example. Most important functionalities of our simple
application are illustrated in section 4. We show also in this
section how we run our application with the help of the
example. Software and hardware used in developing our
application are mentioned in section 5. Finally, section 6
concludes the paper.

II. REWRITING LOGIC REVIEW

In rewriting logic, each concurrent system is represented by
a rewrite theory ℜ = (Σ, E, L, R). Its static structure is
described by the signature (Σ, E), whereas its dynamic
structure is described by the set of labelled rewrite rules R,
which are applied modulo the equation E. An important
consequence of the rewriting logic definition is that a rewrite
theory ℜ = (Σ, E, L, R) can be viewed as an executable
specification of the concurrent system that it formalizes. In
this section we recall the basic definitions of the rewriting
logic.

A labelled rewrite theory ℜ is a 4-tuple ℜ = (Σ, E, L, R)
where (Σ, E) is a signature; Σ is the sorts set and operators
and E is a set of Σ-equations. The signature (Σ, E) is an
equational theory which describes the particular algebraic
structure of the states of a system (multiset, binary tree, etc.)
which are distributed according to this same structure. R ⊆ L
× (TΣ,E(X))2 is the set of pairs whose first component is a label
and the second is a pair of E-equivalence classes of terms,
with X = {x1,…,xn,…}a countable infinite set of variables.
The elements of R are called conditional rewrite rules. They
describe the elementary and local transitions in a concurrent
system. Each rewrite rule corresponds to an action being able
to occur, simultaneously, with other actions. The rewriting
will operate on equivalence classes of terms, modulo the set of
equations E. For a rewrite rule (r, ([t],[t’]),
([u1],[v1]),….,([uk],[vk])) we use the notation, r: [t]→[t’] if
[u1]→[v1] ∧…∧ [uk]→[vk], where [t] represents the
equivalence class of the term t. A rule r expresses that the
equivalence class containing the term t is changed to the
equivalence class containing the term t’ if the conditional part
of the rule, [u1]→[v1] ∧…∧ [uk]→[vk], is verified.

Given a labeled rewrite theory ℜ, we say that ℜ entails a
sequent r: [t]→[t’], or that r: [t]→[t’] is a (concurrent) ℜ-
rewrite and write ℜ |- r : [t] → [t’] iff [t]→ [t’] is derivable
from the rules in ℜ by a finite application of the deduction
rules (reflexivity, transitivity, congruence, and replacement) of
rewriting logic.

A rewrite theory is a static description of a concurrent
system. Its semantics is defined by a mathematical model
which describes its behavior. The model for a given labelled
rewriting theory ℜ = (Σ, E, L, R) is a category τℜ(X) whose
objects (states) are equivalence classes of terms [t]∈TΣ,E(X)
and whose morphisms (transitions) are equivalence classes of
proof-terms representing proofs in rewriting deduction .

• Reflexivity. For every][t ∈ TΣ,E(X) :
][][tt →

• Congruence. For every f ∈ Σn, n ∈ N :

)],...,([)],...,([
][][...][][

''
11

''
1

nn

nnn

ttfttf
tttt

→

→→

• Replacement. For every rewriting rule
)],...,('[)],...,([: 11 nn xxtxxtr → in R,

)]/'('[)]/([

]'[][...]'[][1
−−−−

→

→→

xwtxwt

wwww nnn , such that

)/(
−−
xwt indicates the simultaneous substitution of iw for

ix in t .

• Transitivity.
][][

][][][][

31

3221

tt
tttt

→
→→

A. Maude Language
Maude is a specification and programming language based

on rewriting logic. Maude is simple, expressive and efficient.
It is rather simple to program with Maude, considering that it
belongs to the declarative programming languages. It is
possible to describe using Maude different types of
applications, from prototyping ones to high concurrent
applications. Maude is a competitive language in terms of
execution and simulation with imperative programming
languages [4]. Three types of modules are defined in Maude.
The functional modules, the system modules and the object-
oriented modules which can, in fact, be reduced to system
modules. Because we do not need object-oriented modules
here, so we do explain only system and functional modules.

Functional Modules. The functional modules define data

types and related operations, which are based on equations
theory. By using equations like simplification rules, each
expression called term could be evaluated to its reduced form
called canonical representation. All the equal terms by means
of equations form an equivalence class. The canonical form
represents all the terms of the same equivalence class. The set
of all the equivalence classes of the ground (i.e, variable-free)
terms constitutes a denotational model for a functional module
(initial algebra). Equations in a functional module are
oriented. They are used from left to right and the final result
of the simplification of an initial term is unique independently
of the order in which these equations are applied. In addition
to equations, this type of modules supports membership’s
axioms. These axioms impose constraints so that a term is of a
particular type if a certain condition is satisfied. This
condition is a conjunction of equations and unconditional tests
of memberships.

System Modules. The system modules define the dynamic

behavior of a system. This type of module augments the
functional modules by the introduction of rewriting rules. This
type of module offers a maximum degree of concurrency. A
system module describes a “rewriting theory” which includes
kinds, operations and three types of statements: equations,
memberships and rewriting rules. These three types of
statements can be conditional. A rewriting rule specifies a
“local concurrent transition” which can proceed in a system.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

726

The execution of such transition, specified by the rule, can
take place when the left part of a rule matches to a portion of
the global state of the system and the condition of the rule is
valid.

III. COLORED PETRI NETS
Colored Petri nets (CPN) are very known and we can find

easily their definition in the literature. Among these
definitions we have the following one : a CPN is a tuple CN
= [P, T, F, ψ, A, m0] such that :

1. [P, T, F] is a net, i.e. P and T are finite and disjoint
sets called places and transitions, respectively, and F
is a relation F ⊆ (P×T)∪(T×P), the elements of which
are called arcs;

2. ψ assigns a countable set of colors to every element
of P∪T;

3. A assigns to every [x, y] ∈ F a mapping which in
turn assigns a finite semi-positive multiset over ψ(p)
to every color in ψ(t) where p is the place of x and y
and t is the transition of x and y;

m0 is a marking which assigns a finite semi-positive multi-set
over ψ(p) to every p ∈ P. m0 is called the initial marking.

A. Representation of CPN in Maude
In this section, we will explain through a very simple

example how to express a CPN in Maude language according
to [8]. For domains of colors C1 = {A, B}and C2 = {C, D},
we have the simple CPN in the figure 1.

Fig. 1 Example of CPN

Let’s take an initial marking such that M0(p1) = 2A+2B and

M(P2) is empty. In the sequel, we describe how to obtain the
equivalent Maude code of this CPN example. First we create
a sort MS to describe a general multi-set, the constant empty
for an empty multi-set and the operation without name (__)
(the underlines indicate the two parameters of this operation).
This operation is commutative, associative and has as an
element identity empty. This operation allows the construction
of any multi-set including empty multi-set (empty).

mod BASIC is
 sort MS .
 op empty : -> MS .
 op __ : MS MS -> MS [assoc comm. id: empty] .
endm

In fact, the marking of CPN is just a multi-set, so we define

for C1 (resp. C2) a sort of the same name and we declare that
C1 (resp. C2) is a sub-sort of MS. So C1 and C2 are multi-
sets. Now, we can declare that A and B are elements of sort
C1, C and D are elements of sort C2. Each place P of CPN is
represented by an operation in Maude. The domain of P is its
domain color C and its co-domain also. In this case, P
contains only colors belonging to its domain, then we can
write P(r) when r is a color which belongs to C. In Maude
code describing the previous CPN example, we have the
marking P1(A) P1(B) which denotes that the place P1
contains two colors A and B. A transition in CPN is
represented by a rewriting rule in Maude, we have in our
example the transition T1 which is represented by a rewriting
rule of the same label. This rewriting rule describes how the
marking (multi-set) P1(A) P1(B) is transformed to the
marking P2(C) P2(D). The unlimited rewriting of an initial
marking P1(A) P1(A) P1(B) P1(B) gives us the marking
P1(A) P1(A) P2(C) P2(D) as showed in the figure 2.

mod CPN is
 pr BASIC .
 sorts C1 C2 .
 subsort C1 < MS . subsort C2 < MS .
 ops A B : -> C1 . ops C D : -> C2 .
 op P1 : C1 -> C1 . op P2 : C2 -> C2 .
 rl [T1] : P1(A) P1(B) => P2(C) P2(D) .
endm
rew P1(A) P1(A) P1(B) P1(B) .

B. Execution of CPN Example under Maude System
We find an example of initial state and the result of its
unlimited rewriting in figure 2.

Fig. 2 Execution of the CPN example under Maude system

IV. STEPS OF CPN SIMULATOR MAUDE-BASED
As described in figure 3, most principal steps in this tool are
given. Trough the previous example, we explain in following
sections the main options of the application.

C+D

A+B

C2

t1

p2

p1 C1

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

727

Fig. 3 Methodical view on CPN Simulator based Maude

A. Graphical User Interface
 In this step, user can create his own CPN system. In the
figure 4, we find principal window, on what the previous
example of CPN is created. In this interface, we show that our
application contains from left to right the following options:
ToolBar, New, Open, Save, Print, Code Generation and Exit.
So, New to create new file containing new CPN, Open to open
existent file, Save to save current file, Print for printing
current file and Exit to close the tool. In addition to these
options, we find two other options ToolBar and Code
Generation. ToolBar includes necessary options to create
CPN, in the tool bar ‘Draw’, we have :

- Circle to create new place, rectangle to create new
transition, arcs to create new arcs linking places and
transitions;

- D for Delete : to delete a place, a transition or an arc;
- S for Sub-domain : to create or modify a
- sub-domain for a selected place;
- M for Marking : to create or modify a marking in a

selected place;
- C for Arc Condition : to create or modify condition

arc.
After creating graphically a CPN, user can click on the icon

of Code Generation to generate the corresponding Maude
code.

In this figure, we find in the right of the place P1 the set A,
B which is the color domain of this place and the multi-set
2A+2B which represents the current marking of P1 (initial
marking in this case).

Fig. 4 Application Main Menu with CPN Example

B. Automatic Translating CPN Graphical Representation
to Maude Description
 This step has the graphical representation of CPN model as
input. It consists of translating this representation into an
equivalent Maude description. In fact, this representation
contains on one hand the structure of the CPN and on the
other hand, the initial state of this CPN. The output of this step
is two elements: an equivalent code in Maude of CPN
structure and an initial state in Maude syntax. After clicking
on ‘code generation’ option, another new menu occurs (figure
5). By clicking on the option code generation, we get the
generated code equivalent in Maude to CPN according to the
translation proposed in [8]. We have to click on ‘watch code’
option to get the Maude code displayed on the right of the
screen as depicted in the figure 5.

Fig. 5 Automatic generated Maude code for CPN example

C. Simulation
 The output of the previous step is the input of this one. To
do simulation, the simulator needs from the user the initial
state of the CPN. Simulation consists of transforming this
initial state to another by doing one or many rewriting actions.

Errors
Final state
in Maude

CPN/Maude-

SPEC

Result in

graphical

notation

Graphical

presentation

of CPN

Creation
of

graphical
CPN

Translation
to Maude-

SPEC
Simulation

Interpretation
in graphical

notation

Interpretation
of result on
graphical
notation

Error
Handler

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

728

Therefore, in addition to initial state, the user may give to the
simulator the number of rewriting steps if (he/she) wants to
check intermediary states. If this number is not given, the
simulator continues the rewriting operation until reaching
final state. In figure 5, we asked the application to perform the
simulation on the previous initial marking without indicating
the number of rewriting steps. The Result (final state) of the
simulation is given in the same manner as initial one. We
notice that infinite case is possible. Let’s go back to the
example, after displaying the Maude code equivalent to CPN,
we can now execute the code by clicking ‘code execution’
option. In our case, the unlimited rewriting of the example
gives the result in the figure 6. Let’s note that we exposed the
result marking in graphical manner (on the CPN) and in
textual way in Maude language.

Fig. 6 Application Main Menu with CPN Example

D. Interpretation of the Result in a Graphical Notation
 In the case of no errors have been detected, the user obtains
(his/her) the result in a box like the case of initial marking.
This result is one returned by Maude after being reinterpreted
in our description (figure 6).

E. Errors Handler
 Our tool deals with errors at different levels. For instance, if
the user draws an isolated arc, so when the user asks the tool
to generate the code, the application displays that there are
mistakes before generating Maude code. In case of some
errors have been detected in the level of Maude code, we give
to the user by the errors generated by Maude.

V. TECHNICAL ASPECT OF THE CPN SIMULATOR
This tool is implemented under MS-Windows XP with the

following tools: the programming language Flash MX of
Macromedia is used for implementing the graphical editor,
Delphi 7.0 for the translation of graphical representation of a
CPN to its equivalent Maude description and the version 2.0.1
of Maude system is used for the simulation of the generated
description of the CPN. For graphic modelling reason, we held

the Flash MX language of Macromedia with regard to the
other languages for its graphics power, its capacity to
manipulate objects and its compatibility with the other
languages. However, it is insufficient for an easy development
of this kind of application because it is poor in matter of
system interactions as the creation of text files. So, we have
needed the use of a hidden module built in Delphi 7 of
Borland. As regards to the choice of Delphi for the
interactions system for two reasons, the first one it is because
it is rich in terms of the interactions system and the second it is
for that compatibility with the Flash MX.

VI. CONCLUSION
In this paper, we proposed a simple rewriting logic based

tool for CPN edition and simulation. This application includes
tasks like: edition, automatic translation of CPN to Maude and
simulation. The editor allows the user to draw a CPN
graphically; the automatic translator allows translating the
graphical representation of the drawn CPN to a Maude
specification. Then the rewriting logic language Maude is
used to perform the simulation of the resulted Maude
specification. We think that the power of Maude in terms of
specification, programming, simulation and verification in
plus of the CPN integration in Maude, implies that there is no
need to translate CPN to several languages for such
requirements. Therefore, we avoid any mistranslation of CPN
in several languages and thus any risks about their semantic
loss.

The CPN’s tool will be extended by adding other tools. The
tools planned to be integrated in this application will be
developed under Maude system. This tool may be enriched by
all already proposed tools for Maude including coherence
checker for system modules [5] or and inductive theorem
prover [1] to check functional properties modules’ properties.
The objective of the integration of such tools is making easy
the utilization of these tools.

Our work concerning graphic and edition and simulation of
Petri nets based Maude is not limited to just CPNs. We
already proposed the development of graphic simulator for
ordinary Petri nets and for another category of algebraic Petri
nets ECATNets by using Maude [3]. This work constitutes a
way of important investigation. We want to use, in fact, only
one platform (Maude) to allow the communication between
systems developed beforehand by using different kinds of
Petri nets. This can be carried out by an automatic generation
of Maude descriptions starting from ordinary Petri nets,
ECATNets, CPN and other Petri nets models which are
integrated in Maude.

Let’s note that in the same paper [8], authors propose also
an integration of algebraic Petri nets (AP¨N) in rewriting
logic. In this way, we plan also performing a graphic interface
of this kind of Petri Nets with an automatic translation of APN
to Maude language for simulation.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

729

REFERENCES
[1] D. Basin, M. Clavel, and J. Meseguer, “Rewriting logic as a metalogical

framework”. In S. Kapoor and S. Prasad, editors, FST TCS 2000, pages
55–80. Springer LNCS, 2000.

[2] M. Beaudouin-Lafon and al., “CPN/Tools: A Tool for Editing and
Simulating Coloured Petri Nets - ETAPS Tool Demonstration Related to
TACAS”. In: LNCS 2031: Tools and Algorithms for the Construction
and Analysis of Systems, pages 574-pp. Springer Verlag, 2001.

[3] N. Boudiaf, “Développement des Outils Basés Maude pour les
ECATNets. Domaine d’Application : Analyse des Programmes Ada,”.
Phd Thesis, University of Constantine, 2007.

[4] M. Clavel and aL,” Maude Manual (Version 2.2)”, Internal report, SRI
International, December 2007.

[5] Francisco Durán, "Coherence Checker and Completion Tools for Maude
Specifications”. Manuscript. University of Málaga. July 2000.

[6] J. Meseguer, ''Rewriting Logic as a Semantic Framework of
Concurrency: a Progress Report”, Springer-Verlag, Lecture Notes in
Computer Science, 119, pp. 331-372, 1996.

[7] J. Meseguer, “Rewriting logic and Maude: a Wide-Spectrum Semantic
Framework for Object-based Distributed Systems”, In S. Smith and C.L.
Talcott, editors, Formal Methods for Open Object-based Distributed
Systems, (FMOODS’2000), p. 89-117, 2000.

[8] Mark-Oliver Stehr, José Meseguer, Peter Csaba, “Rewriting Logic as a
Unifying Framework for Petri Nets”, Lecture Notes in Computer
Science, volume 2128, 2001.

[9] Meta Software Corporation., “Design/CPN Tutorial for X–Windows :
Version 2.0”, Cambridge, England, 1993.
http://www.daimi.au.dk/designCPN/man/

[10] L. Wells, “CPN–Tools : Computer Tool for Coloured Petri Nets” ,
Version 2, Fri 06 Dec 2002 Department of Computer Science University
of Aarhus, Denmark, 2002. http://www.daimi.au.dk/CPNTools/

