
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2705

Abstract—Use of the Internet and the World-Wide-Web

(WWW) has become widespread in recent years and mobile agent
technology has proliferated at an equally rapid rate. In this scenario
load balancing becomes important for P2P systems. Beside P2P
systems can be highly heterogeneous, i.e., they may consists of peers
that range from old desktops to powerful servers connected to
internet through high-bandwidth lines. There are various loads
balancing policies came into picture. Primitive one is Message
Passing Interface (MPI). Its wide availability and portability make it
an attractive choice; however the communication requirements are
sometimes inefficient when implementing the primitives provided by
MPI. In this scenario we use the concept of mobile agent because
Mobile agent (MA) based approach have the merits of high
flexibility, efficiency, low network traffic, less communication
latency as well as highly asynchronous. In this study we present
decentralized load balancing scheme using mobile agent technology
in which when a node is overloaded, task migrates to less utilized
nodes so as to share the workload. However, the decision of which
nodes receive migrating task is made in real-time by defining certain
load balancing policies. These policies are executed on PMADE (A
Platform for Mobile Agent Distribution and Execution) in
decentralized manner using JuxtaNet and various load balancing
metrics are discussed.

Keywords—Mobile Agents, Agent host, Agent Submitter,
PMADE.

I. INTRODUCTION
OAD balancing [1, 2] is a active technology that provides
the art of shaping, transforming and filtering the network

traffic then routing and load balancing it to the optimal node.
By adding the concept of load balancer we can distribute the
traffic for preventing from failure in any case by having
capabilities such as scalability, availability, easy to use, fault
tolerant, quick response time. Mobile agent technology offers
a new computing paradigm in which an autonomous program
can migrate under its own or host control from one node to
another in a heterogeneous network. In other words, the
program running at a host can suspend its execution at an
arbitrary point, transfer itself to another host, or request the
host to transfer it to its next destination and resume execution
from the point of suspension is called mobile agent MA [3].

MA supports a variety of web based distributed applications
namely: systems and distributed information Management [4]

Neeraj Nehra is with School of Computer Science and Engineering, Shri

Mata Vaishno Devi University, Katra (J&K), India (e-mail:
nehra04@yahoo.co.in).

R. B. Patel is with Computer Engineering Department, M.M.Engineering
College, Mullana (Ambala), Haryana, India (e-mail: patel_r_b@yahoo.com).

V. K. Bhat is with School of Applied Physics and Mathematics, Shri Mata
Vaishno Devi University, Katra (J&K), India (e-mail:
vijaykumarbhat2000@yahoo.com).

and information retrieval [5]. Other areas where MAs are seen
as offering potential advantages are Wireless or mobile
computing [6, 7] dynamic deployment of code, thin clients or
resource limited devices, personal assistants, and MA-based
parallel processing [8, 9]. Traditional load balancing
approaches are implemented based on message passing
paradigm [1, 10]. MA technology provides a new solution to
support load balancing in heterogeneous network.

Moreover, a mobile agent based approach is flexible to
incorporate new load balancing polices for various systems.
MAs produce low network traffic. In message-passing based
approaches, the nodes have to exchange messages of load
information periodically in order to make decisions on load
balancing. The mod_backhand [11] is such a load-balancing
module for the Apache web server. The message exchanges
result in high communication latency and thus deteriorate the
performance of the system. Differently, a MA can migrate to a
target server and interact to specified objects on the site.

The network traffic and communication latency can be
largely reduced. MAs support asynchronous and autonomous
operations. The nodes can dispatch MAs individually that
travel independently between the nodes to perform various
operations. A MA can encapsulate load balancing policies and
travel to other node where it can make decision on load
distribution according to the up-to-date state. Due to the
merits of low network traffic and quick response time, MAs
can strengthen the scalability of a system. In this paper we
will execute the various load balancing policies for Peer-to-
Peer system on PMADE (A Platform for Mobile Agent
Distribution and Execution)[3,12]. These load balancing
policies can achieve better performance than the message
passing based approaches.

Rest of the paper is organized as follows. Overview of
PMADE is provided in Section II, Section III discuses
architecture for load balancing, policies decision, Section IV
gives selection of policies, Section V gives selection of
agents, Section VI presents performance study; Section VII
gives related works, Section VIII concludes the article and
future work.

II. OVERVIEW OF PMADE
Fig. 1 shows the basic block diagram of PMADE. Each

node of the network has an Agent Host (AH), which is
responsible for accepting and executing incoming autonomous
Java agents and an Agent Submitter (AS)[13], which submits
the MA on behalf of the user to the AH. A user, who wants to
perform a task, submits the MA designed to perform that task,
to the AS on the user system. The AS then tries to establish a
connection with the specified AH, where the user already

Load Balancing in Heterogeneous P2P Systems
using Mobile Agents

Neeraj Nehra, R. B. Patel, and V. K. Bhat

L

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2706

holds an account. If the connection is established, the AS
submits the MA to it and then goes offline. The AH examines
the nature of the received agent and executes it. The execution
of the agent depends on its nature and state. The agent can be
transferred from one AH to another whenever required. On
completion of execution, the agent submits its results to the
AH, which in turn stores the results until the remote AS
retrieves them for the user. The AH is the key component of
PMADE. It consists of the manager modules and the Host
Driver. The Host Driver lies at the base of the PMADE
architecture and the manager modules reside above it. It is the
basic utility module responsible for driving the AH by
ensuring proper co-ordination between various managers and
making them work in tandem.

Details of the managers and their functions are provided in
[12]. PMADE provides weak mobility to its agents and allows
one-hop, two-hop and multi-hop agents [14]. PMADE has
focused on Flexibility, Persistence, Security, Collaboration,
and Reliability [3].

Mobile Agent’s Result

Mobile Agent with Task

User Agent
Submitter

Manager Modules
Host Driver

Agent Host

Fig. 1 Block Architecture of PMADE

III. ARCHITECTURE FOR LOAD BALANCING
The architecture for load balancing consisting of following

components namely Interface, policy, and agents. Interface is
used to communicate with the external world using PMADE.
Policies are to be executed by the corresponding agent. We
use the concept of virtual servers [15] for load balancing. A
virtual server looks like a single peer, but each physical node
can be responsible for more than one virtual server. The key
advantage of splitting load into virtual servers is that we can
move a virtual server from any node to any other node in the
system. This operation looks like a leave followed by a join.
Even though splitting load into virtual servers will increase
the path length on the overlay, we believe that the flexibility
to move load from any node to any other node is crucial to
any load-balancing scheme. We have identified certain
policies and agents for the architecture, which will be
discussed next.

IV. POLICY
In this section, we present three simple load-balancing

schemes. All these schemes try to balance the load by
transferring virtual servers from heavily loaded nodes to
lightly loaded nodes. The key difference between these three

schemes is the amount of information required to make the
transfer decision. In the simplest scheme, the transfer decision
involves only two nodes, while in the most complex scheme,
the transfer decision involves a set consisting of both heavy
and light nodes. We first define the notion of heavy and light
nodes.

(a) Heavy and Light Nodes: Let Li denote the load of node i ,
where Li represents the sum of the loads of all virtual servers
of node i. We assume that every node also has a target load
(Ti). A node is considered to be heavy if Li › Ti, and is light
otherwise. The goal is to decrease the total number of heavy
nodes in the system by moving load from heavy nodes to light
nodes.

(b) Virtual Server Transfer: The fundamental operation
performed for balancing the loads is transferring a virtual
server from a heavy node to a light node. Given a heavy node
h and a light node l, we define the best virtual server to be
transferred from h to l as the virtual server v, the transfer of
which satisfies the following constraints:

• Transferring v from h to l will not make l heavy.
• v is the lightest virtual server that makes h light.
• If there is no virtual server whose transfer can make h

light, transfer the heaviest virtual server v from h to l.

(c) Splitting of Virtual Servers: If no virtual server in a heavy
node can be transferred in its entirety to another node, then a
possibility is to split it into smaller virtual servers and transfer
a smaller virtual server to a light node. While this would
improve the time taken to achieve balance and possibly reduce
the total load transferred, there is a risk of excessively
fragmenting the identifier space. Hence, a scheme to
periodically merge virtual servers would be needed to
counteract the increase in the number of virtual servers caused
by splitting. Further policies are classified into

 One-to-One: The first policy is based on a one-to-one
mechanism, where two nodes are picked at random. A virtual
server transfer is initiated if one of the nodes is heavy and the
other is light. This policy is easy to implement in a distributed
fashion. Each light node can periodically pick a random task
and then perform a lookup operation to find the node that is
responsible for that task. If that node is a heavy node, then a
transfer may take place between the two nodes. In this scheme
only light nodes perform probing; heavy nodes do not perform
any probing. There are three advantages of this design choice.
First, heavy nodes are relieved of the burden of doing the
probing second, when the system load is very high and most
of the nodes are heavy, there is no danger of either
overloading the network or thrashing. Third, if the load of a
node is correlated with the length of the space owned by that
node, a random probe performed by a light node is more likely
to find a heavy node.
 One-to-Many: Unlike the first scheme, this scheme allows
a heavy node to consider more than one light node at a time.
Let h denote the heavy node and let l1,l2,l3, …,lk be the set of

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2707

light nodes considered by h. For each pair (hi,li) we pick a
virtual server vi . Among the virtual servers that this procedure
gives, we choose the lightest one that makes heavy node h
light. If there is no such a virtual server, we pick the heaviest
virtual server among the virtual server vi (1≤ i≤ k) to transfer.
We implement these policies by defining the role of each
mobile agent, which is to be discussed in coming sections.
 Many-to-Many: This scheme is a logical extension of the
first two schemes. While in the first scheme we match one
heavy node to a light node and in the second scheme we
match one heavy node to many light nodes, in this scheme we
match many heavy nodes to many light nodes. Our goal is to
bring the loads on each node to a value less than the
corresponding target. To allow many heavy nodes and many
light nodes to interact together, we use the concept of a global
pool of virtual servers, an intermediate step in moving a
virtual server from a heavy node to a light node. The pool is
only a local data structure used to compute the final allocation.

The policy consists of three phases:

1. Unload: In this phase, each heavy node h transfers its

virtual servers greedily into a global pool till it becomes
light. At the end of this phase, all the nodes are light, but
the virtual servers that are in the pool must be transferred
to nodes that can accommodate them.

2. Insert: This phase aims to transfer all virtual servers from
the pool to light nodes without creating any new heavy
nodes. This phase is executed in stages. In each stage, we
choose the heaviest virtual server v from the pool, and
then transfer it to the light node k determined using a
best-fit heuristic, i.e., we pick the node that minimizes Tk
- Lk . This phase continues until the pool becomes empty,
or until no more virtual servers can be transferred.

3. Dislodge: This phase swaps the largest virtual server v
from the pool with another virtual server v’ of light node i
such that Li +load (v) - load (v’) ≤ Ti

V. AGENTS

We require three agents, out of which two are mobile agents
and one is stationary. A brief look of these agents is as
follows:

• The routing agent (RA) is stationary agent responsible

of updating the routing table that resides at each node. It
carries a routes vector table containing the
communication cost from the assigned node to each other
node in the network. This table has a lifetime measured
by the number of the hops the routing agent is allowed to
perform before updating the vector table. The routing
agent plays an important role in informing each node in
the network about the addresses of other nodes and if a
failure of a node or a link is detected, it is the role of the
routing agent to spread it over the network by copying the
new table and migrating.

• Load Information Agent (LIA) is a MA responsible for
information gathering. It travels around the nodes (virtual

server), collects the load information, and meanwhile
propagates the load information to each node.

• Location agent (LA) is a mobile agent and is activated
whenever an overload situation arises on nodes (virtual
server). Its job is to find the suitable receiver partner for
the overloaded node that launched it.

VI. PERFORMANCE EVALUATION

Mobile agent based load balancing schemes are executed on
network consisting of 100 nodes operating over Fast Ethernet
(100M bit/sec.) and employing a decentralized JuxtaNet [16,
17] which is an open and decentralized peer-to-peer network
model. The JuxtaNet is significant in the sense that it is an
open, general-purpose P2P network model. JXTA’s JuxtaNet
is abstracted into multiple layers namely core, service and
application with the intention that multiple services will be
built on the core. The core and services will support multiple
applications. In fact, there is no constraint against the
simultaneous existence on the JuxtaNet of multiple services or
applications designed for a similar purpose. As an example,
just as a PC's operating system can simultaneously support
multiple word processors, the JuxtaNet can simultaneously
support multiple file-sharing systems. Category 5 (twisted-
pair) copper wire runs among the PCs and an Ethernet hub,
enabling users of those networked PCs to access each others
resources in a decentralized manner.

Fig. 2 Architecture for Load Balancing

PMADE and J2SDK 1.5 are used for result analysis by
comparing its performance with mod_backhand [11] (A load
balancing approach based upon message passing paradigm).
The load on different peers is measured at different time
interval. The length of job queue denotes the load on peer.
 First, while we do not restrict ourselves to a particular type
of resource (storage, bandwidth or CPU), we assume that
there is only one bottleneck resource we are trying to optimize
for. Second, we consider only schemes that achieve load
balancing by moving virtual servers from heavily loaded
nodes to lightly loaded nodes. Such schemes are appropriate
for balancing storage in distributed file systems, bandwidth in
systems with a web-server like load, and processing time
when serving dynamic HTML content.

The AS is used to generate request to peers. Performance of
various load balancing policies and their impact on load is
measured by the following metrics.

 I
N
T
E
R
F
A
C
E

 One – to- One

 One – to- Many

Many – to -Many

LIA

RA

 LA

PMADE Policy
Agents

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2708

• System Throughput: The overall throughput is measured
in number of requests processed per second.

• Network Traffic: The overall communication overhead is
measured in the total number of bytes transferred in the
communication and number of probes for each individual
policy.

Fig. 3 shows the system throughput of two approaches

along x axis number of clients requests is a factor of 100 while
along y axis request satisfied /sec is shown. Clearly mobile
agent approach is better than traditional message passing
paradigm in metric of System throughput.

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7

No.of Clients Request*100

R
eq

ue
st

 S
at

is
fa

ct
io

n/
Se

c

Mobile Agent
Approach

Message
Passing
Approach

Fig. 3 System Throughput

Fig. 4 compares the network traffic using mobile agent

approach and message passing approach. It clearly shows that
MA approach generates low communication delay compared
to the message passing approach.

0
0.5

1
1.5

2
2.5

3
3.5

1 2 3 4 5

No.of Peers*10

C
om

m
un

ic
at

io
n/

Se
c

Message
Passing
Approach

Mobile Agent
Approach

Fig. 4 Network Traffic

In Fig. 5 we plot the total number of probes performed by

the heavy nodes before they completely transfer their excess
load to light node. This graph shows that one to one scheme is
sufficient if load remains stable over long period of time and
if the control traffic overheads do not affect the system too
much.

0

5000

10000

15000

20000

1 2 3 4 5 6

Load/Target

N
o.

of
 P

ro
be

s
fo

r B
al

an
ce

One To Many

One to
One(Total
Probes)

Fig. 5 The number of probes required for all nodes to become light

Fig. 6 compares system throughput of the mobile agent

approach and the case without load balancing. This result
shows that MA approach improves the system throughput
while increasing the number of peers, but there is no
improvement in system throughput without load balancing.

0
5

10
15
20
25
30
35
40

1 2 3 4 5 6 7 8

No.of Peers*10

R
eq

ue
st

/S
ec Mobile Agent

Approach
Without Load
Balancing

Fig. 6 System throughput using mobile agent and the case without

load balancing

VII. RELATED WORK
 Load balancing is indispensable for a P2P system to assure

even distribution of workload on each peer. But one of the
most difficult problems that arise on P2P system is the
selection of an efficient load balancing policy. The load
balancing policy should aim for evenly utilized Peers and a
minimum response time for the processed requests. Under
standard methodology load selection is done randomly. The
random selection cannot guarantee load balancing. Round
robin is widely used because it is easy to implement and
implies only a minimum overhead. A variation of round robin
policy is the weighted round robin policy [18]. With weighted
round robin the incoming requests are distributed among the
peers on a round robin fashion, weighted by some measure of
the load on each of the peers.

Another techniques, which is called dispatching techniques
which when implemented by network address translation or
other methods (such as HTTP redirection), introduce higher
overhead than does network load balancing. This limits
throughput and restricts performance. SUNSCALAR [19]
provides load balancing by using both approaches, i.e.,
Dispatcher and Round Robin.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2709

But Today’s most well known peer-to-peer applications are
Napster, Gnutella [20], and Freenet [21], and various research
projects have been initiated in the past few years, such as
Pastry [22] and Chord [23]. Although the different peer to-
peer applications share the same notion of peer-to-peer
networking, the intended usage and approach varies from
application to application. Napster and Gnutella are primarily
file-sharing applications: exchange of files between peers.

Napster’s approach to information search is traditionally
client-server, while Gnutella adheres more to the peer-to-peer
philosophy and forwards information search requests to its
neighboring peers in the network. (Although Gnutella recently
introduced super nodes and client nodes for more scalable
information retrieval.) Freenet is more like a distributed
information storage system. It pools unused disk space across
potentially hundreds of thousands of desktop computers to
create a collaborative virtual file system. Pastry provides a
scalable, distributed object location and routing infrastructure
for wide-area pee r-to-peer applications. It can be used to
support a variety of peer-to-peer applications, including global
data storage, data sharing, and group communication and
naming. Chord, on the other hand, focuses on a scalable peer-
to-peer lookup service to efficiently locate the node that stores
a particular data item. Chord provides support for just one
operation: given a key, it maps the key onto a node. The
JXTA project from Sun Microsystems [16, 17] works on core
network computing technology to provide a set of simple,
small, and flexible mechanisms that can support peer-to-peer
computing. The focus is on creating basic mechanisms and
leaving policy choices to application developers.

The self-organizing behavior of peer-to-peer networks has
also been studied. In particular scalability, fault tolerance, and
security have been subject of study. It has been observed that
peer-to-peer networks organize themselves into a “small-
world” networks [24, 25], which are typically characterized by
a power-law distribution of the edge degree. In such a
distribution, the majority of nodes have relatively few local
connections to other nodes, but a significant small number of
nodes have large wide-ranging sets of connections. Even in
very large networks, the small-world topology enables short
paths because these well-connected nodes provide shortcuts.
Small-world networks are surprisingly resistant to random
errors, because random failures are most likely to eliminate
nodes from the poorly connected majority of nodes. But the
feature that makes it immune to accidents also makes it
vulnerable to attacks if the well-connected nodes are targeted.
A framework for load balancing using MA named EALBMA
(Efficient and Adaptive Load Balancing based on MA)[26]
has been made in which a novel algorithm for updating load
information partially based on MA which is called ULIMA.

MA support load balancing in parallel and distributed
computing [8,14], e.g., Traveller [27] using resource broker. It
implements parallel application such as L. U. Factorization
and sorting. MESSENGERS [6] is a system for general-
purpose distributed computing based on MAs. It supports load
balancing and dynamic resource utilization. Flash [28] is a
framework for the creation of load balanced distributed
application in heterogeneous cluster system.

VIII. CONCLUSIONS AND FUTURE WORK
In this paper we have implemented different load balancing

policies on P2P systems and studied the various metrics
affecting these policies using mobile agent approach. The
performance evaluation shows that Mobile agent approach is
far better than the traditional load balancing approach in
heterogeneous P2P network. In the future work we would like
to implement this approach to Cluster of PCs and Grid
Computing and try to measure different metrics regarding
these systems for load balancing. Also fault tolerance would
be studied and its impact on load balancing policies.

 REFERENCES
[1] Dias, D., Kish, W., Mukherjee, R. and Tewari, R., A Scalable and

Highly Available Web-Server, in Proc.41st International Computer
Conference (COMPCON’96), IEEE Computer Society, SanJose, CA,
1996, pp. 85-92.

[2] W. Tang, M. Mutka, Load Distribution via Static Scheduling and Client
Redirection for Replicated Web Servers, in Proc. 1st International
Workshop on Scalable Web Services (in conjunction ICPP 2000),
Toronto, Canada, 2000, pp. 127-133.

[3] Patel, R. B., Design and Implementation of a Secure Mobile Agent
Platform for Distributed Computing, PhD Thesis Department of
Electronics and Computer Engineering, IIT Roorkee, India, Aug. 2004.

[4] Jonathan Dale, A Mobile Agent Architecture for Distributed Information
Management, Ph.D. thesis,Univ. of Southampton, Sept. 1997

[5] Haverkamp, D. S. and Gauch, S., Intelligent Information Agents:
Review and Challenges for Distributed Information Sources, in Journal
of the American Society for Information Science, 49(4): 304-311, 1998.

[6] Chess, D., B. Grosof, Harrison, C., Levine, D.,Parris, C. and Tsudik, G.,
Itinerant agents or mobile computing, IEEE Personal Communications
Magazine, 2, pp. 34-49, Oct. 1995.

[7] Imielinsky, T. and Badrinath, B. R., Wireless Computing: Challenges in
Data Management,Communication of the ACM, 37(10): 18-28, 1994.

[8] Al-Jaroodi, J., Mohamed, N., Jiang Hong and Swanson, D., A
Middleware Infrastructure for Parallel and Distributed Programming
Models on Heterogeneous Systems, IEEE Transactions on Parallel and
Distributed Systems, Special Issue on Middleware, 14(11): 1100-1111,
Nov. 2003.

[9] Al-Jaroodi, J., Mohamed, N., Jiang Hong and Swanson, D., An Agent-
Based Infrastructure for Parallel Java on Heterogeneous Clusters, in
Proceedings of the IEEE International Conference on Cluster
Computing, IEEE, Nov. 2002.

[10] Cardellini, V. and Colajanni, M., Dynamic Load Balanc ing on Web-
server Systems, IEEE Internet Computing, 3, pp. 28-39, 1999.

[11] Schlossnagle, T., The Backhand Project: Load balancing and Monitoring
Apache Web Clusters, in Proceedings Apache Con Europe 2000,
London, Britain, mod_backhand,
http://www.backhand.org/mod_backhand

[12] Patel, R.B. and Garg, K., PMADE – A Platform for mobile agent
Distribution & Execution, in Proceedings of 5th World MultiConference
on Systemics, Cybernetics and Informatics (SCI2001) and 7th
International Conference on Information System Analysis and Synthesis
(ISAS 2001),Orlando, Florida, USA, July 22-25, 2001, Vol. IV, pp. 287-
293.

[13] Patel, R. B. and Garg, K., A New Paradigm for Mobile Agent
Computing, WSEAS Transaction on Computers, Issue 1, Vol. 3, pp.
57-64, Jan. 2004.

[14] Patel, R.B. and Garg, K, A Flexible Security Framework for Mobile
Agent Systems Control and Intelligent Systems, 33(3): 175-183, 2005.

[15] F. Dabek and M. F. Kaashoek and D. Karger and R. Morris and I. Stoica.
“Wide-area Cooperative Storage with CFS”, Proc. ACM SOSP 2001.

[16] L. Gong. JXTA: A network programming environment.IEEE Internet
Computing, 5(3):88–95, May/June 2001

[17] Sun Microsystems, Inc. Project JXTA: An open, innovative
collaboration. White Paper, http://www.jxta.org/project/-
www/docs/OpenInnovative.pdf>, Apr. 2001.

[18] CiscoSystemsInc.LocalDirector. http://www.cisco.com

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2710

[19] Singhai, A., Lim, S. B. and Radia S. R., The SunSCALR Framework for
Internet Servers, IEEE FaultTolerant Computing Systems, Jun 1998.

[20] D. Clark. Face-to-face with peer-to-peer networking. Computer,
34(1):18–21, Jan. 2001.

[21] I. Clarke, S. G. Miller, T.W. Hong, O. Sandberg, and B.Wiley.Protecting
free expression online with Freenet. IEEE Internet Computing, 6(1):40–
49, Jan./Feb. 2002

[22] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems. In Middleware
2001, volume 2218 of Lecture Notes in Computer Science, pages 329–
350, Berlin, Germany, 2001. Springer-Verlag.

[23] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for Internet applications.
In Proceedings of the 2001Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications
(SIGCOMM’01), pages 149–160, San Diego, CA, Aug. 2001.

[24] M. A. Jovanovic. Modeling peer-to-peer network topologies through
“small-world” models and power laws. In Proceedings of the IX
Telecommunications Forum (TELFOR 2001), Belgrade, Yugoslavia,
Nov. 2001.

[25] D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’
networks. Nature, 393(6684):440–442, June 1998.

[26] Server Iron Chassis L4-7 Software Configuration Guide.
<http://www.foundrynet.com/services/documentati on
/sichassis/management.html>

[27] C. -Z. Xu and Wims, B., Mobile Agent Based Push Methodology for
Global Parallel Computing, Concurrency and Computation: Practice and
Experience, 14 (2000), pp. 705-726.

[28] Obeloer, W., Grewe, C. and Pals, H., Load anagement with Mobile
Agents, in Proc. 24th EUROMICRO Conference (EUROMICRO98),
vol.2, Vasteras, Sweden, 1998, pp. 1005-1012.

Nehra Neeraj is Lecturer (School of Computer Science
and Engineering), Shri Mata Vaishno Devi University,
Katra(India). His research is focused on use of agents,
mobile computing, parallel/distributed computing,
multiagent system and fault tolerance. Prior to joining
SMVDU, Katra he has worked with HEC Jagadhri and
MMEC Mullana, Ambala, Haryana, India.

Dr. R. B. Patel received PhD from IIT Roorkee in
Computer Science & Engineering, PDF from Highest
Institute of Education, Science & Technology (HIEST),
Athens, Greece, MS (Software Systems) from BITS
Pilani and B. E. in Computer Engineering from M. M.
M. Engineering College, Gorakhpur, UP. Dr. Patel is in
teaching and Research & Development since 1991. He
has published about 50 research papers in

International/National Journals and Refereed International Conferences. He
has been awarded for Best Research paper by Technology Transfer, Colorado,
Springs, USA, for his security concept provided for mobile agents on open
network in 2003. He has written 5 books for engineering courses. He is
member of various International Technical Societies such as IEEE-USA,
Elsevier-USA, Technology, Knowledge & Society-Australia, WSEAS,
Athens, etc for reviewing the research paper. His current research interests are
in Mobile & Distributed Computing, Mobile Agent Security and Fault
Tolerance, development infrastructure for mobile & peer-to-peer computing,
Device and Computation Management, Cluster Computing, etc.

Dr. V. K. Bhat is a Assistant Professor, SMVDU Katra, India. His research
is focused on Ring theory, Graph theory, and discrete structure. He has 11
years of teaching and research experience. He has published 19 papers in
international/national journals and 18 papers in international/national
conference proceedings. He is a recipient of UGC (SRF and JRF) fellowship.

