
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

458

Abstract—This paper examines the modeling and analysis of a

cruise control system using a Petri net based approach, task graphs,
invariant analysis and behavioral properties. It shows how the
structures used can be verified and optimized.

Keywords—Software Engineering, Real Time Analysis and
Design, Petri Nets, Task Graphs, Parallelism.

I. INTRODUCTION
RITICAL systems [3]–[7], [12], [24] and embedded
systems have special real time requirements. Various

formalisms like logics, temporal logics, ASMs, calculus, CSP,
CCS, algebras, process algebras, automata, and formal
languages like Z, VDM, B, Haskell, LOTOS etc. have been
created in the past decades to express different views of these
systems and aspects of the design process. There are many
diagrams and notations found in real time methods like UML-
RT, JSD, DARTS, CODARTS, ROOM [3],[7] and the UML.
These are useful to represent different aspects of dynamic
behavior.

Formal methods definitely help towards producing better
models because in the design process more thinking and
reasoning is applied. Unfortunately many formal methods are
specific to a particular issue e.g. CSPs and CCS are focused
on component communication, Z is used to represent the
system using schemas. Another problem is that most formal
methods do not offer proper visualization. Some formal
methods have limited CASE tool support. Formal
representation can be difficult to understand, time consuming
to produce and to amend.

Many diagrams and notations found in software methods
E.g. UML communication diagrams, sequence diagrams,
ROOMcharts are informal [1]–[2]. Research has been devoted
to formalize these diagrams [11]–[13].

Petri nets [12]–[13],[17]–[19] are a convenient formalism
for behavior modeling, experimentation, visualization and
reasoning about real time system properties. Petri nets support
concurrency, synchronization and resource sharing, both
formally and diagrammatically [19],[21]. Both the structural

A. Spiteri Staines is an assistant lecturer at the Department of Computer

Information Systems, Faculty of Science, University of Malta, Msida, MSD
2080, Malta, Europe (phone: 00356-21373402; fax: 21312110; e-mail:
toni_staines@yahoo.com, tony.spiteri-staines@um.edu.mt).

and dynamic properties of Petri nets can be represented and
analyzed mathematically [14]–[18], [21]–[22]. Petri nets have
over three decades of coverage. There are several classes of
Petri nets ranging from Elementary nets [9] to Object Oriented
nets and Colored Petri nets [14]. Various CASE tools support
Petri net modeling e.g. CPN Tool, HPsim, ExSpect [23], etc.
Petri net structures can be supported and translated into other
formalisms like automata and algebras. Often the simple
properties of Petri nets are overlooked. These present detailed
analysis methods as is discussed in this paper.

II. CRUISE CONTROL

A. Basic Description
A typical cruise control system [5]-[6],[24] is composed of

several components or classes interacting amongst one another
in real time. Cruise control is subject to control law
computations, with certain components having high
computational requirements and redundancy issues.
Communication between the ‘actors’ might require the
support of adequate protocols and communication channels.
Some parts of this system clearly exhibit closed loop highly
cyclical behavior typical of certain types of controllers. In the
cruise control user data and sensor data is read in. The input
data is compared with the desired speed. This comparison is
used to compute the output adjustment value for the actuator.
The actuator automatically performs the adjustment. The RT
system also functions as a controller. Two types of tasks can
be identified i) periodic tasks and ii) user initiated tasks. In a
system like cruise control these two types of tasks can be
combined in a single process.

B. Simplified Algorithm
The text below explains the basic algorithm for the cruise

control system. The algorithm is derived from the diagrams in
section C and [24].

Set Timer to interrupt periodically in a period (T)
at each interrupt do
 1) Sensor Scan process (
 GPS,UI,Brake,Accel,Engine)
 2) Get current speed
 3) Compute control values
 4) Update parameters
 5) Send adjustment value to throttle
 enddo

Modeling and Analysis of a Cruise Control
System

Anthony Spiteri Staines

C

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

459

Steps 3 and 4 have the most significant time requirements.
The reading in sensor inputs tasks 1 and 2 can be carried out
in any order. This is because the final computation is based on
these values. It is also possible to execute these tasks
concurrently. Tasks 3 and 4 have precedence constraints
requiring certain ordering. The current speed measured from
the wheel rotation is compared with the desired speed and the
data from the other sensors. The computed adjustment value is
sent to the throttle actuator. Normally this would be i) reduce
speed or ii) increment speed or iii) maintain current speed.
Tasks 4 and 5 can be executed concurrently. This system
behavior can be classified as deterministic, exhibiting a
repeated pattern behavior. Control-law computations are
involved. Sensor data is read to obtain accurate estimates of
state variables to be monitored and controlled. Input values
are used to compute an adjustment value. Part of the system
can be scheduled differently.

Fig. 1 Cruise System Control Flow DFD adapted from [20]

C. Diagrams
The diagram in Fig. 1 illustrates the main cruise control

system events. This diagram is commonly used in RTSAD
methods. Extensions to DFDs are used to add details for event
flows and control transformations like discrete, continuous,
triggered, enable/disable etc. The diagram has been
partitioned into four main sections to illustrate the four main
tasks. All activities are controlled and synchronized by the
cruise controller.

Fig. 2 depicts the top-level network diagram for the cruise
control using MASCOT notation [3]. This diagram can be
used to obtain a full system template with bindings and
interfaces e.g.

Server Disp out:Digital_out(ow=USER..op);

User InterfaceUI

DISPLAY

ENGINE
SENSOR

BRAKE
SENSOR

ACCEL
SENSOR

GPS_System

Serial-in

Kpd 1

iw

ip

opgw sw
Analog-in1

Analog-in2

THROTTLE
ACTUATOR

Analog-in3

Analog-out1

Digital-out

Disp-out

USER

Input

gp

Output

update
Adjust

Ensensor-in

Bksensor-in

Aclsensor-in

Act-out

ow

s1w

SPEED-CONTROL

s2w

aw

apup

uw

get

signal1
signal2s1p
signal3

sp

send

s3w

s2p
s3p

CC1

GPS1

WHEEL
REVOLUTION

SENSOR
Analog-in4

Wheelrevsensor-in

s4w

s4p

Speed Control

Fig. 2 Cruise System Network Diagram

Server Spsensor-in: Analog-in1(s1w=CC1.s1p); etc.
The subsystem components e.g. speed control, user

interface, etc. can also be identified. Component coupling is
rigorously enforced. The diagram can be decomposed further.

UML interaction diagrams can describe the communication
processes for the cruise control.

D. Parallelism
Parallelism [21],[24] implies detecting computations that

can be carried out in parallel. If more than one processor of
the same type is available it is possible to carry out some of
the tasks in parallel. Petri nets and task graphs expand this
possibility.

III. PETRI NET MODELING

A. Constructing the Petri Net
Constructing the Petri net is a simple process. The

algorithm in section IIB is analyzed. The following steps are
used: i) add a dummy source transition (node) at the top ii)
add a dummy sink transition at the bottom (end) iii) the tasks
in the algorithm are placed in sequence between the source
and the sink node. Transitions for tasks that can be carried out
in parallel are placed next to each other iv) Places are added to
join the transitions. For parallel processing a fork point is used
and a join point is used to joint the output of the concurrent
tasks.

Practically speaking the Petri net represents the possible
task execution sequence and it is similar to a task graph
[8],[11],[21]. The Petri net is both a visual and formal
executable specification that is easy to understand.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

460

B. Initial Net

Fig. 3 Cruise Control Petri Net

C. Cruise Control Directed Graph
The cyclic directed graph similar to a task graph for the

cruise control system is simply obtained by ignoring all the
places in the Petri net and replacing the transitions with nodes.
This is possible because each place holds exactly one token
i.e. it is a 1-safe PN. This graph can be reduced into a DAG
by removing e17.

Fig. 4 Cruise Control Directed Graph

D. Redrawing the Graph for Two Processors
The vertices indicate which tasks can be carried out in

parallel. It is evident that if all T1, T6 had to be executed
completely in parallel six processors are required. Normally
we can assume just two processors are available. The directed

graph needs to be redesigned to reflect this. The problem is to
find an optimum solution to redistribute/schedule concurrent
tasks. The following algorithm can be used for this.

identify all critical tasks
identify all parallel tasks
Add tasks in order to a processor

 If (critical task) then
 If (time (Pa) = time (Pb)) add task to Pa or Pb
 If (time (Pa) > time (Pb)) add task to Pa
 If (time (Pa) < time (Pb)) add task to Pb

 Set time for Pa , Pb = max time

 If (parallel task) then
 If time (Pa) + newtask < time (Pb) + newtask
 Add task to Pa
 If time (Pb) + newtask < time (Pa) + newtask
 Add task to Pb
 If (time (Pa) + newtask = time (Pb) + newtask add
 task to Pa or Pb

If the given times for tasks are: T1,T6,T9 = 20ms, T2,T5 =
10ms, T3,T4 =15ms , T7= 40ms and T8= 25ms the result is as
shown in Fig. 5 and 6.

Fig. 5 Cruise Control Petri Net for Two Processors

In Fig. 6 the critical path or longest cycle is shown in bold.

This is sequence of events on processor A, T1-T4-T6-T7-T8.
The sequence of events on processor B is T2-T3-T5-T9.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

461

Fig. 6 Cruise Control Directed Graph for Two Processors

IV. ANALYSIS

A. Incidence Matrix
An incidence, flow or change matrix Cij is a special matrix

representing the ordered input flows and output flows of the
Petri net. For this matrix njmi ≤≤≤≤ 1,1 and C = input
flows – output flows. The incidence matrix is important for
expressing basic structural properties of the net. If every row
has some non zero values and for a row i, ∑

=

=
n

k
jka

1
0 this can

indicate that each transition has exactly one input and output
flow.

B. Invariants
There are several classes invariants [15]-[18]. Linear

invariants are used here. A vector mZv ∈ is by definition a

P-invariant iff 0=⋅Cvt for a given Petri net. For the PN

Mvt ⋅ = sCvMv tt ..' +⋅ , where M = initial marking,
'M = next marking, C = incidence matrix and s =firing

vector. Mvt ⋅ = 'Mvt ⋅ for all reachable markings denoting
that the weighted sum of tokens remains constant or
unchanged. A vector mZy ∈ is by definition a T-invariant iff

0=Cy for a given Petri net denoting a repetitive firing
cycle.

Analyzing the Petri nets in Fig. 3 and Fig. 4 the following
results are obtained. This data was obtained using the Dnanet
Petri net tool.

Fig. 7 Place Invariants for fig.3 & fig. 5

1 (main.t1)
1 (main.t2)
1 (main.t3)
1 (main.t4)
1 (main.t5)
1 (main.t6)
1 (main.t7)
1 (main.t8)
1 (main.t9)
1 (main.t10)
1 (main.t11)

Fig. 8 Transition Invariants for fig.3 & fig. 5.

C. Other Behavioral and Structural Properties
The reachability tree or marking graph can be used for

constructing the reachability tree and testing for deadlock.
Invariants can be used for further analysis. i) Bounded and

conservative behavior is denoted by 0,0 =>∃ Cvv T , ii)
Repetitive behavior by 0,0 ≥>∃ Cyy and iii) Consistent
behavior by 0,0 =>∃ Cyy . Other issues like home states,
cyclic behavior, deadlock , boundedness can be properly
interpreted from the invariant results. Petri net test suites and
CASE tools like Dnanet, etc. can be used for further checking.
The results of the reachability trees and invariants are
presented in Table I & II.

TABLE I

CRUISE CONTROL PETRI NET REACHABILITY & INVARIANT COMPARISON
PETRI REACHABILITY CONNECTED T- INVARIANTS P-INVARIANTS
NET MARKING GRAPH COMPONENTS
Fig. 3 69 unique markings 1 strongly identical not identical

Fig. 5 21 unique markings 1 strongly identical not identical

TABLE II
CRUISE CONTROL PETRI NET BEHAVIOR COMPARISON

PETRI DEADLOCK BOUNDED CYCLIC HOME
NET POSSIBLE BEHAVIOUR STATES

Fig. 3 NO YES YES YES

Fig. 5 NO YES YES YES

V. INTERPRETATION OF RESULTS
The Petri net models for the cruise control system have

been successfully validated. They are both conflict free,
deadlock free and do not have unwanted states. The most
strongly connected component is T7. This task is the most
critical and important task.

The transition invariant analysis shows that even though the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

462

algorithm and firing cycle is modified, the basic properties
and execution remain unchanged. I.e. both models are
formally correct and valid.

 The structures have a relatively small reachability tree. The
two processors Petri net in Fig. 5 have only 21 unique
markings compared with the 69 of Fig. 4. This is indicative
that if more processors are introduced the overall system state
space is increased and becomes more difficult to handle. More
synchronization overhead is necessary to coordinate and
control process communication. On the other hand reducing
the parallel tasks in the system the complexity is reduced so
there is less switching overhead.

The number of parallel places in the Petri net or the
concurrent tasks in the directed task graph indicate the total
number of processors required to execute those tasks in
parallel.

One of difficulty in parallel systems is load balancing. The
graphical result for the Petri net in Fig. 5 and task graph in fig.
6 is shown in Fig. 9. This is obtained from the algorithm in
section III D. Processor I is fully utilized and processor II has
a utilization of approximately 46 % only. Adding another
processor can reduce the time of processor I, but the task like
compute control values has precedence constraints. Hence the
other initial tasks must have completed.

Fig. 9 Two Processor Task Scheduling

VI. CONCLUSION
A cruise control system has been explained and analyzed

using simple Petri nets, directed task graphs and Petri net
related theory. Petri net theory can be used for model
optimization and proving the correctness of models used for
real time and critical systems. Useful properties like invariants
,reachability tree, etc. can be easily obtained for deterministic
systems.

More detailed analysis based on graph theory, other Petri
net properties and simulation techniques should be considered.

Colored Petri nets and Higher order nets can provide us
with other possibilities.

The two processor Petri net model can be translated into
LLD ladder logic diagrams which are useful for PLC

programming. The diagrams in Fig. 4 and 6 qualify for the
automatic generation of methods [10].

REFERENCES
[1] S. Bennett, J. Skelton, K. Lunn, UML. Schaums Outline 2nd ed., New

York: McGraw-Hill, 2005, pp. 5–18.
[2] P. Roques, UML in Practice. UK: Wiley, 2005, ch. 1. & ch. 2.
[3] J.E. Cooling, Software Design for Real-Time Systems, Chapman & Hall,

London, 1995 ch. 10.
[4] R. Williams, Real-Time Systems Development. UK: ELSEVIER, 2006,

ch. 11.
[5] H. Gomaa, Software Design Methods for Concurrent and Real-Time

Systems, Addison-Wesley, 2001, ch. 1-13,19,23.
[6] H. Gomaa, Designing Concurrent, Distributed, and Real-Time

Applications with UML, Addison-Wesley, 2001, ch. 2.
[7] G.P. Mullery, “CORE - A Method for Controlled Requirement

Specification”, Proceedings of the 4th international conference on
Software engineering, Munich Germany 1979 , pp.126 – 135.

[8] Y. Abdeddaim, A. Kerbaa, O. Maler, “ Task Graph Scheduling using
Timed Automata”, IEEE Parallel and Distributed Processing
Symposium, Apr 2003.

[9] J. Brusey, D. McFarlane, “Designing Communication Protocols for
Holonic Control Devices using Elementary Nets”, LNCS 0302-9743
 Volume 3593/2005, Aug 2005, pp. 76-86.

[10] K. Maruyama, “Automated Method-Extraction Refactoring by Using
Block-Based Slicing”, ACM Software Engineering Notes, Vol 26 no 3,
May 2001, pp.31-40.

[11] J.A. Saldhana, S.M. Shatz Z. Hu, “Formalization of Object Behavior and
Interactions From UML Models”, International Journal of Software
Engineering and Knowledge Engineering IJSEKE, Vol. 11 No 6., Dec
2001, pp. 643-673.

[12] L.A. Cortes, P. Eles, Z. Peng, “A Petri Net based Model for
Heterogeneous Embedded Systems”, NORCHIP Conference, 1999, pp.
248-255.

[13] T. Gehrke, U. Goltz, H. Wehrheim, “The Dynamic Models of UML:
Towards a Semantics and its Application in the Development Process”,
Technical Report Informatik-Bericht 11/98, University of Hildesheim,
Germany, 1998.

[14] K. Jensen, G. Rosenberg, High-Level Petri Nets: Theory and
Application , Springer – Verlag, Berlin, 1991.

[15] S. Sankaranarayana, H. Simpa, Z. Manna, “ Petri Net Analysis using
Invariant Generation”,LNCS Vol, 2772 – Springer Verlag ,ISSN: 0302-
9743, 2004, pp. 682-701.

[16] R. Clariso, E. Rodriguez-Carbonell, J. Cortadella, “Derivation of Non-
structutal Invariants of Petri Nets using Abstract Interpretation”,
ICATPN LNCS, Vol. 3536- Springer Verlag, 2005, pp. 188-207.

[17] K.M. Van Hee, Information Systems Engineering A Formal Approach,
University Press, Cambridge, 1994, pp. 237-240.

[18] M. Zhou, K. Venkatesk, Modeling, Simulation and Control of Flexible
Manufacturing Systems- A Petri Net Approach, World-Scientific
Publishing, N.J. ,1999.

[19] J. Desel, E. Kindler, “Petri Nets and Components extending the
DAWN approach”, D. Moldt (ed.): Workshop on Modelling of
Objects, Components, and Agents., Aarhus Denmark, Aug 2001.

[20] J. Kramer, J. Magee, “Exposing the Skeleton in the Coordination
Closet”, Proceedings of the Second International Conference on
Coordination Languages and Models, 1997,pp. 18-31.

[21] Z. Hanzalek, “Parallel Algorithms for Distributed Control - A Petri Net
Based Approach”, PhD. thesis, Prague 1997, ch 2-6.

[22] K. Yamalidou, J Moody, M. Lemmon, P. Antsaklis, “Feedback Control
of Petri Nets Based on Place Invariants”, Technical Report of the ISIS
Group University of Notre Dame IN 46556, ISIS-94-002, 1994.

[23] Exspect Tool, Technische Universiteit, Eindhoven.
[24] J.W.S. Liu, Real-Time Systems, Pretence Hall, NJ, 2000.

