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Hamiltonian Factors in Hamiltonian Graphs
Sizhong Zhou, Bingyuan Pu

Abstract—Let G be a Hamiltonian graph. A factor F of G is called
a Hamiltonian factor if F contains a Hamiltonian cycle. In this paper,
two sufficient conditions are given, which are two neighborhood
conditions for a Hamiltonian graph G to have a Hamiltonian factor.
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I. INTRODUCTION

Many physical structures can conveniently be modelled
by networks. Examples include a communication network
with the nodes and links modelling cities and communication
channels, respectively, or a railroad network with nodes and
links representing railroad stations and railways between two
stations, respectively. Factors and factorizations in networks
are very useful in combinatorial design, network design, circuit
layout, and so on [1]. It is well known that a network can
be represented by a graph. Vertices and edges of the graph
correspond to nodes and links between the nodes, respectively.
Henceforth we use the term ”graph” instead of ”network”.

The graphs considered in this paper will be finite undirected
graphs without loops or multiple edges. In particular, a graph
is said to be a Hamiltonian graph if it contains a Hamiltonian
cycle. Let G be a graph with vertex set V (G) and edge set
E(G). For x ∈ V (G), the neighborhood NG(x) of x is the
set vertices of G adjacent to x, and the degree dG(x) of x is
|NG(x)|. We denote the minimum degree of G by δ(G). For
S ⊆ V (G), NG(S) = ∪x∈SNG(x) and G[S] is the subgraph
of G induced by S. We write G−S for G[V (G)\S]. A vertex
set S ⊆ V (G) is called independent if G[S] has no edges. Let
r be a real number. Recall that �r� is the greatest integer such
that �r� ≤ r.

Let g and f be two nonnegative integer-valued functions
defined on V (G) with g(x) ≤ f(x) for each x ∈ V (G).
A spanning subgraph F of G is called a (g, f)-factor if it
satisfies g(x) ≤ dF (x) ≤ f(x) for each x ∈ V (G). If g(x) =
a and f(x) = b for each x ∈ V (G), then a (g, f)-factor
is called an [a, b]-factor. A (g, f)-factor F of G is called a
Hamiltonian (g, f)-factor if F contains a Hamiltonian cycle.
If g(x) = a and f(x) = b for each x ∈ V (G), then we say
a Hamiltonian (g, f)-factor to be a Hamiltonian [a, b]-factor.
The other terminologies and notations not given here can be
found in [2].

Many authors have investigated factors [3–8], connected
factors [9–11] and Hamiltonian factors [12,13].

The following results on Hamiltonian factors are known.
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Theorem 1. ([12]). Let 2 ≤ a < b be integers and let G be
a Hamiltonian graph of order n ≥ (a+b−4)(2a+b−6)

b−2 . Suppose
that δ(G) ≥ a and

max{dG(x), dG(y)} ≥ (a − 2)n
a + b − 4

+ 2

for each pair of nonadjacent vertices x and y of V (G). Then
G has a Hamiltonian [a, b]-factor.

Theorem 2. ([13]). Let G be a connected graph of order
n, a and b be integers such that 4 ≤ a < b. Let g and f
be positive integer-valued functions defined on V (G) such
that a ≤ g(x) < f(x) ≤ b for each x ∈ V (G). Suppose
that n ≥ (a+b−5)2

a−2 . If bind(G) ≥ (a+b−5)(n−1)
(a−2)n−3(a+b−5) , and for

any nonempty independent subset X of V (G), |NG(X)| ≥
(b−3)n+(2a+2b−9)|X|

a+b−5 , then G has a Hamiltonian (g, f)-factor.
Liu and Zhang [14] proposed the following problem.

Problem. Find sufficient conditions for graphs to have con-
nected [a, b]-factors related to other parameters in graphs such
as binding number, neighborhood and connectivity.

We now show our main theorems which partially solve the
above problem.

Theorem 3. Let 2 ≤ a < b be nonnegative integers,
and let G be a Hamiltonian graph of order n with n ≥
(a+b−3)(2a+b−6)−a+2

b−2 . Suppose for any subset X ⊂ V (G),
we have

NG(X) = V (G) if |X| ≥
⌊

(b − 2)n
a + b − 3

⌋
; or

|NG(X)| ≥ a + b − 3
b − 2

|X| if |X| <

⌊
(b − 2)n
a + b − 3

⌋
.

Then G has a Hamiltonian [a, b]-factor.
Theorem 4. Let 2 ≤ a < b be nonnegative integers,

and let G be a Hamiltonian graph of order n with n ≥
(a+b−3)(a+2b−7)−b+3

a−1 . Let g and f be two nonnegative integer-
valued functions defined on V (G) such that a ≤ g(x) <
f(x) ≤ b for each x ∈ V (G). Suppose for any subset
X ⊂ V (G), we have

NG(X) = V (G) if |X| ≥
⌊

(a − 1)n
a + b − 3

⌋
; or

|NG(X)| ≥ a + b − 3
a − 1

|X| if |X| <

⌊
(a − 1)n
a + b − 3

⌋
.

Then G has a Hamiltonian (g, f)-factor.

II. PROOF OF MAIN THEOREMS

The proofs of our main Theorems relies heavily on the
following lemmas. Lemma 2.1 is a well-known necessary and
sufficient for a graph to have a (g, f)-factor which was given
by Lovasz. The following result is the special case which we
use to prove our main theorems.
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Lemma 2.1. ([15]). Let G be a graph, and let g and f
be two nonnegative integer-valued functions defined on V (G)
with g(x) < f(x) for each x ∈ V (G). Then G has a (g, f)-
factor if and only if

δG(S, T ) = f(S) + dG−S(T ) − g(T ) ≥ 0

for any disjoint subsets S and T of V (G).
Lemma 2.2. Let G be a graph of order n which satisfies

the assumption of Theorem 3. Then δ(G) ≥ (a−1)n+b−2
a+b−3 .

Proof. Let t be a vertex of G with degree δ(G). Let X =
V (G) \ NG(t). Clearly, t /∈ NG(X), then we have

(a + b − 3)|X| ≤ (b − 2)|NG(X)| ≤ (b − 2)(n − 1).

Since |X| = n − δ(G), we obtain

(a + b − 3)(n − δ(G)) ≤ (b − 2)(n − 1).

Thus, we get

δ(G) ≥ (a − 1)n + b − 2
a + b − 3

.

Completing the proof of Lemma 2.2.

Lemma 2.3. Let G be a graph of order n which satisfies
the assumption of Theorem 4. Then δ(G) ≥ (b−2)n+a−1

a+b−3 .
Proof. The proof is similar to that of Lemma 2.2.

Proof of Theorem 3. By assumption, G has a Hamiltonian
cycle C. Let G′ = G − E(C). Note that V (G′) = V (G).

Clearly, G has the desired factor if and only if G′ has an
[a− 2, b− 2]-factor. By way of contradiction, we assume that
G′ has no [a − 2, b − 2]-factor. Then, by Lemma 2.1, there
exist disjoint subsets S and T of V (G′) satisfying

δG′(S, T ) = (b− 2)|S|+ dG′−S(T )− (a− 2)|T | ≤ −1. (1)

We choose such subsets S and T so that |T | is as small as
possible.

The following claims hold.
Claim 1. T 
= ∅.
Proof. If T = ∅, then by (1) we have −1 ≥ δG′(S, T ) =

(b − 2)|S| ≥ 0. It is a contradiction.
Claim 2. dG′−S(x) ≤ a − 3 for each x ∈ T .
Proof. If dG′−S(x) ≥ a − 2 for some x ∈ T , then the

subsets S and T \ {x} satisfy (1). This contradicts the choice
of S and T .

Claim 3. dG−S(x) ≤ dG′−S(x) + 2 ≤ a − 1 for each
x ∈ T .

Proof. Note that G′ = G − E(C). Thus, we obtain by
Claim 2

dG−S(x) ≤ dG′−S(x) + 2 ≤ a − 1

for each x ∈ T .
Since T 
= ∅ by Claim 1, let

h = min{dG−S(x) : x ∈ T}.
According to Claim 3, we get

0 ≤ h ≤ a − 1.

We shall consider three cases according to the value of h and
derive contradictions.

Case 1. h = 0.
Set l = |{t : t ∈ T, dG−S(t) = 0}|. Clearly, l ≥ 1. Let

X = V (G) \ S. Then NG(X) 
= V (G) since h = 0. In terms
of the assumption of the theorem, we obtain

n − l ≥ |NG(X)| ≥ a + b − 3
b − 2

|X| =
a + b − 3

b − 2
(n − |S|),

that is,

|S| ≥ n − (b − 2)(n − l)
a + b − 3

. (2)

In view of Claim 3, |S| + |T | ≤ n, 2 ≤ a < b, (1) and (2),
we get

−1 ≥ δG′(S, T ) = (b − 2)|S| + dG′−S(T ) − (a − 2)|T |
≥ (b − 2)|S| + dG−S(T ) − a|T |
≥ (b − 2)|S| + |T | − l − a|T |
= (b − 2)|S| − (a − 1)|T | − l

≥ (b − 2)|S| − (a − 1)(n − |S|) − l

= (a + b − 3)|S| − (a − 1)n − l

≥ (a + b − 3)(n − (b − 2)(n − l)
a + b − 3

) − (a − 1)n − l

= (b − 3)l ≥ 0,

which is a contradiction.
Case 2. h = 1.

Subcase 2.1. |T | >

⌊
(b−2)n
a+b−3

⌋
.

In this case, there exists t ∈ T such that dG−S(t) = h = 1.
It is easy to see that

t /∈ NG(T \ NG(t)). (3)

According to |T | >

⌊
(b−2)n
a+b−3

⌋
and dG−S(t) = h = 1, we

obtain

|T \ NG(t)| ≥ |T | − 1 >

⌊
(b − 2)n
a + b − 3

⌋
− 1.

In terms of the integrity of |T \ NG(t)|, we get

|T \ NG(t)| ≥
⌊

(b − 2)n
a + b − 3

⌋
.

Combining this with the condition of the theorem, we have

NG(T \ NG(t)) = V (G),

that contradicts (3).

Subcase 2.2. |T | ≤
⌊

(b−2)n
a+b−3

⌋
.

Let m = |{t : t ∈ T, dG−S(t) = 1}|. Clearly, m ≥ 1 and
|T | ≥ m. According to h = 1, δ(G) ≤ |S| + h and Lemma
2.2, we obtain

|S| ≥ δ(G) − 1 ≥ (a − 1)n + b − 2
a + b − 3

− 1 =
(a − 1)(n − 1)

a + b − 3
.

(4)
Subcase 2.2.1. |T | > (b−2)(n−1)

a+b−3 .
By (4), we have

|S| + |T | >
(a − 1)(n − 1)

a + b − 3
+

(b − 2)(n − 1)
a + b − 3

= n − 1.
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Using this and |S| + |T | ≤ n, we get

|S| + |T | = n. (5)

From (1), (5), Claim 3 and |T | ≤
⌊

(b−2)n
a+b−3

⌋
≤ (b−2)n

a+b−3 , we

obtain

−1 ≥ δG′(S, T ) = (b − 2)|S| + dG′−S(T ) − (a − 2)|T |
≥ (b − 2)|S| + dG−S(T ) − a|T |
≥ (b − 2)|S| − (a − 1)|T |
= (b − 2)(n − |T |) − (a − 1)|T |
= (b − 2)n − (a + b − 3)|T |
≥ (b − 2)n − (a + b − 3) · (b − 2)n

a + b − 3
= 0,

it is a contradiction.
Subcase 2.2.2. |T | ≤ (b−2)(n−1)

a+b−3 .
According to Claim 3, (4) and |T | ≥ m, we have

δG′(S, T ) = (b − 2)|S| + dG′−S(T ) − (a − 2)|T |
≥ (b − 2)|S| + dG−S(T ) − a|T |
≥ (b − 2)|S| + 2|T | − m − a|T |
= (b − 2)|S| − (a − 2)|T | − m

≥ (b − 2) · (a − 1)(n − 1)
a + b − 3

−(a − 2) · (b − 2)(n − 1)
a + b − 3

− m

=
(b − 2)(n − 1)

a + b − 3
− m

≥ |T | − m ≥ 0.

This contradicts (1).
Case 3. 2 ≤ h ≤ a − 1.
In terms of (1), Claim 3, |S|+ |T | ≤ n and a− h ≥ 1, we

get that

−1 ≥ δG′(S, T ) = (b − 2)|S| + dG′−S(T ) − (a − 2)|T |
≥ (b − 2)|S| + dG−S(T ) − a|T |
≥ (b − 2)|S| + h|T | − a|T |
= (b − 2)|S| − (a − h)|T |
≥ (b − 2)|S| − (a − h)(n − |S|)
= (a + b − h − 2)|S| − (a − h)n.

This inequality implies

|S| ≤ (a − h)n − 1
a + b − h − 2

. (6)

From Lemma 2.2, δ(G) ≤ |S| + h and (6), we obtain

(a − 1)n + b − 2
a + b − 3

≤ δ(G) ≤ |S| + h ≤ (a − h)n − 1
a + b − h − 2

+ h.

(7)
If the LHS and RHS of (7) are denoted by A and B

respectively, then (7) says that A − B ≤ 0. But, after some
rearranging, we find that

(a + b − 3)(a + b − h − 2)(A − B)
= (h − 1)((b − 2)n + a − 1 − (a + b − 3)(a + b − h − 2))

−(a + b − 3)(a − 2). (8)

Since 2 ≤ h ≤ a − 1 and n ≥ (a+b−3)(2a+b−6)−a+2
b−2 , it

is easy to see that the expression in (8) is positive, and this
contradicts (7).

From the contradictions we deduce that G′ has an
[a − 2, b − 2]-factor. This completes the proof of Theorem 3.

The proof of Theorem 4 is quite similar to that of Theorem
3 and is omitted.
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