
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:7, 2010

1163

Abstract—The cost of developing the software from scratch can

be saved by identifying and extracting the reusable components from
already developed and existing software systems or legacy systems
[6]. But the issue of how to identify reusable components from
existing systems has remained relatively unexplored. We have used
metric based approach for characterizing a software module. In this
present work, the metrics McCabe’s Cyclometric Complexity
Measure for Complexity measurement, Regularity Metric, Halstead
Software Science Indicator for Volume indication, Reuse Frequency
metric and Coupling Metric values of the software component are
used as input attributes to the different types of Neural Network
system and reusability of the software component is calculated. The
results are recorded in terms of Accuracy, Mean Absolute Error
(MAE) and Root Mean Squared Error (RMSE).

Keywords—Software reusability, Neural Networks, MAE,
RMSE, Accuracy.

I. INTRODUCTION
OFTWARE reusability is an attribute that refers to the
expected reuse potential of a software component.

Software reuse not only improves productivity but also has a
positive impact on the quality and maintainability of software
products [1]. A component can be considered an independent
replaceable part of the application that provides a clear distinct
function. A component can be a coherent package of software
that can be independently developed and delivered as a unit,
and that offers interfaces by which it can be connected
unchanged with other components to compose a larger system
[1]. According to Gomes [2], the idea of software reuse
appeared in 1968, opening new horizons for the software
design and development. Reusable software components have
been promoted in recent years [3].

There are two approaches for reuse of code: develop the
reusable code from scratch or identify and extract the reusable
code from already developed code. The organization that has

Sonia Manhas is working as HOD IT, SSCET, Badhani, Punjab, India.
Vinay Chopra is working as Lecturer in Deptt. of CSE, DAVIET, Jalandhar,
Punjab, India.
Nirvair Neeru is workign as lecturer at UCOE, Punjabi University, Patiala.
Parvinder S. Sandhu is working as Professor with Computer Science &
Engineering Department, Rayat & Bahra Institute of Engineering & Bio-
Technology, Sahauran, Distt. Mohali (Punjab)-140104 INDIA

experience in developing software, but not yet used the
software reuse concept, there exist extra cost to develop the
reusable components from scratch to build and strengthen
their reusable software reservoir [4]. The cost of developing
the software from scratch can be saved by identifying and
extracting the reusable components from already developed
and existing software systems or legacy systems [6]. In other
words, The software industry is moving toward large-scale
reuse, resulting in savings of time and money. To develop a
new system from scratch is very costly. This has made custom
software development very expensive. It is generally assumed
that the reuse of existing software will enhance the reliability
of a new software application. This concept is almost
universally accepted because of the obvious fact that a product
will work properly if it has already worked before. But the
issue of how to identify reusable components from existing
systems has remained relatively unexplored. In both the cases,
whether we are developing software from scratch or reusing
code from already developed projects, there is a need of
evaluating the quality of the potentially reusable piece of
software. The contribution of metrics to the overall objective
of the software quality is understood and recognized [7]-[9].
But how these metrics collectively determine reusability of a
software component is still at its early stage. A neural
Network approach could serve as an economical, automatic
tool to generate reusability ranking of software [10]. But,
when one designs with Neural Networks alone, the network is
a black box that needs to be defined, which is a highly
compute-intensive process. One must develop a good sense,
after extensive experimentation and practice, of the
complexity of the network and the learning algorithm to be
used.

In this paper, Neural Network techniques are empirically
explored to evaluate the reusability of the function oriented
software systems. This paper consists of four sections. The
second section explains the steps for identification of
reusable software component is discussed. In the third section,
implementation results are illustrated and in the final section
conclusion is written on the basis of results obtained.

Identification of Reusable Software Modules in
Function Oriented Software Systems using

Neural Network Based Technique
Sonia Manhas, Parvinder S. Sandhu,Vinay Chopra, Nirvair Neeru

S

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:7, 2010

1164

II. PROPOSED METHODOLOGY

A. Selection of Metric Suit for Function Oriented Paradigm
A framework of metrics is proposed for structural analysis

of procedure or function-oriented. The code of software is
parsed to calculate the metric values. The following suits of
metrics are able to target those the essential attributes of
function oriented features towards measuring the reusability
of software modules, so it tried to analyze, refine and use
following metrics to explore different structural dimensions of
Function oriented components.

The proposed metrics for Function Oriented Paradigm are
as follows:

i) Cyclometric Complexity Using Mc Cabe’s
Measure [11][12]:

According to Mc Cabe, the value of Cyclometric
Complexity (CC) can be obtained using the following
equation:

1+= nodespredicateofNumberCC (1)

Where predicate nodes are the nodes of the directed graph,
made for the component, where the decisions are made.

Hence, the value of CC of a software component should be
in between upper and lower bounds as a contribution towards
reusability.

If CC is high with high regularity of implementation then
there exists high functional usefulness.

ii) Halstead Software Science Indicator [11] [13]
According to this metric volume of the source code of the

software component is expressed in the following equation:

)21(2log21 ηη ++= NNVolume (2)

Where, η1 is the number of distinct operators that appear in
the program, η2 is number of distinct operands that appear in
the program, N1 is the total number of operator occurrences
and N2 is the total number of operand occurrences.

The high volume means that software component needs
more maintenance cost, correctness cost and modification
cost. On the other hand, less volume increases the extraction
cost, identification cost from the repository and packaging
cost of the component. So the volume of the reusable
component should be in between the two extremes.

iii) Regularity Metric [11][13]
The notion behind Regularity is to predict length based on

some regularity assumptions. As actual length (N) is sum of
N1 and N2. The estimated length is shown in the following
equation:

22log212log1 ηηηη +=′= NLenghtEstimated

 (3)

The closeness of the estimate is a measure of the Regularity
of Component coding is calculated as:

NNNNNgularity /]/){(1Re ′=′−−= (4)

The above derivation indicates that Regularity is the ratio of
estimated length to the actual length. High value of Regularity
indicates the high readability, low modification cost and non-
redundancy of the component implementation [24].

Hence, there should be some minimum level of Regularity
of the component to indicate the reusability of that
component.

iv) Reuse-Frequency Metric [11][13]
Reuse frequency is calculated by comparing number of

static calls addressed to a component with number of calls
addressed to the component whose reusability is to be
measured. Let N user defined components be X1, X2 … XN in
the system, where S1, S2 … SM are the standard environment
components e.g. printf in C language, then Reuse-Frequency
is calculated as:

∑
=

=− M

i
iSM

CFrequencyReuse

0
)(1

)(

η

η
(5)

Equation (5) shows that the Reuse-Frequency is the
measure of function usefulness of a component. Hence there
should be some minimum value of Reuse- Frequency to make
software component really reusable [24].

v) Coupling Metric [11]
Functions/methods that are loosely bound tend to be easier

to remove and use in other contexts than those that depend
heavily on other functions or non-local data. Different types
of coupling effects reusability to different extent.

Data Coupling: Data coupling exists between two functions
when functions communicate using elementary data items that
are passed as parameters between the two.

Stamp Coupling: When two functions communicate using
composite data item e.g. structure in C language then that kind
of coupling is called Stamp Coupling.

Control Coupling: If data from one function is said to direct
the order of instruction execution in another function then
Control Coupling is there between those functions.

Common Coupling: In case of Common Coupling the two
functions share global data items. Weight of coupling
increases from category “a” to “d”, means

Data Coupling is lightest weight coupling, whereas Content
Coupling is the heaviest one.

Let

ai be the number of functions called and Data Coupled with
function “i”

bi be the number of functions called and Stamp Coupled
with function “i”

ci be the number of functions called by function “i” and
Control Coupled with function “i”

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:7, 2010

1165

di be the number of functions Common Coupled with
function “i”

e cdwcwbwawa iiii
caxf)(43211

1),,(
−+++−+

= (6)

Where a = 10, c = 0.5 and wi for i = 1, 2, 3, 4 is the weights
of the respective the coupling types.

As coupling increases, there is decrease in understandability
and maintainability, so there should be some maximum value
of the coupling.

B. Design & Evaluate Neural Network System
The following five Neural Network algorithms are

experimented:

• Batch Gradient Descent

• Batch Gradient Descent with momentum

• Variable Learning Rate

• Variable Learning Rate training with momentum

• Resilient Backpropagation

The following are the steps for each Neural Network based
system:

i) Phase I
The following steps will be followed to train a Neural

Network:

• Load the data

• Divide data into Training, Validation and Test data

• Set number of hidden neurons

• Training is accomplished by sending a given set of
inputs through the network and comparing the results
with a set of target outputs.

• If there is a difference between the actual and target
outputs, the weights are adjusted to produce a set of
outputs closer to the target values.

• Network weights are determined by adding an error
correction value to the old weight.

• The amount of correction is determined

• This Training procedure is repeated until the
network performance no longer improves.

ii) Phase II
This phase is a Testing phase. In this step the trained Neural

Network is evaluated against the testing data on the different
criteria as described in the next step.

C. Comparison Criteria
The comparisons are made on the basis of value of MAE,

RMSE and Accuracy values of the neural network model. The
details of the MAE and RMSE are given below:

• Mean absolute error (MAE)
Mean absolute error, MAE is the average of the difference

between predicted and actual value in all test cases; it is the
average prediction error [14]. The formula for calculating
MAE is given in equation shown below:

n
MAE cacaca nn

−++−+−
=

...
2211

 (7)

Assuming that the actual output is a, expected output is c.

• Root mean-squared error (RMSE)
RMSE is frequently used measure of differences between

values predicted by a model or estimator and the values
actually observed from the thing being modeled or estimated
[15]. It is just the square root of the mean square error as
shown in equation given below:

n
RMSE cacaca nn

−++−+−
=

...
2211

 (8)

D. Conclusions Drawn
The conclusions are made on the basis of the results

calculated in the previous section.

III. IMPLEMENTATION AND RESULTS
In this paper, the implementation of the algorithm is done in

Matlab 7.1 environment and Neural Network toolbox for
Matlab is used. The dataset is collected and Batch Gradient
Descent, Batch Gradient Descent with momentum, Variable
Learning Rate, Variable Learning Rate training with
momentum and Resilient Backpropagation based neural
networks are experimented to obtain the results in terms of
Accuracy, MAE and RMSE values. The same neural network
is run for five times and the following table I is showing the
Results of five different iterations of different Neural Network
Based algorithms for Identification of Reusable Modules in
the function based software systems. The table II shows the
Mean Values of the Results of table I means mean value of the
results of five iterations.

As evidenced by the results shown in table II, the MAE and
RMSE values of the Resilient Backpropagation (RB)
algorithm is the best among five neural network based
algorithms experimented in the study with 80%, 0.05616 and
0.07046 as Accuracy, MAE and RMSE values respectively.
The performance of Variable Learning Rate (VLR) and
Variable Learning Rate training with momentum (VLRM)
algorithms is not good as compared with Resilient
Backpropagation algorithm. The performance of Batch
Gradient Descent, Batch Gradient Descent with momentum
algorithms in the study is not satisfactory with less than 50%
Accuacy values in case of both algorithms.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:7, 2010

1166

TABLE I RESULTS OF DIFFERENT NEURAL NETWORK BASED ALGORITHMS FOR
IDENTIFICATION OF REUSABLE MODULES

 Iteration Accuracy MAE RMSE

BGD

1st 30 0.1560 0.1797

2nd 20 0.2289 0.2661

3rd 30 0.1743 0.1962

4th 50 0.1670 0.2518

5th 30 0.1379 0.1629

BGDWM

1st 40 0.1309 0.1679

2nd 60 0.1299 0.2117

3rd 40 0.1040 0.1292

4th 50 0.1436 0.1914

5th 30 0.1248 0.1398

VLR

1st 60 0.0841 0.1225

2nd 40 0.1016 0.1353

3rd 40 0.1336 0.1541

4th 60 0.1033 0.1665

5th 60 0.0627 0.0785

VLRM

1st 60 0.0929 0.1162

2nd 70 0.0777 0.1056

3rd 60 0.0680 0.0868

4th 60 0.0758 0.1052

5th 70 0.0747 0.1006

RB

1st 70 0.0579 0.0709

2nd 90 0.0437 0.0610

3rd 90 0.0550 0.0708

4th 70 0.0737 0.0877

5th 80 0.0505 0.0619

TABLE II MEAN VALUES OF THE RESULTS OF TABLE I

Algorithm
Mean

Accuracy

Mean

MAE

Mean

RMSE

BGD 32 0.17282 0.21134

BGDWM 44 0.12664 0.168

VLR 52 0.09706 0.13138

VLRM 64 0.07782 0.10288

RB 80 0.05616 0.07046

IV. CONCLUSION
In this paper, different Neural Network based approaches

are experimented to identify the reusability of function
oriented software systems. We have used metric based
approach for characterizing a software module. The metrics
used are: McCabe’s Cyclometric Complexity Measure for
Complexity measurement, Regularity Metric, Halstead
Software Science Indicator for Volume indication, Reuse
Frequency metric and Coupling Metric. The neural networks
experimented are: Batch Gradient Descent, Batch Gradient
Descent with momentum, Variable Learning Rate, Variable
Learning Rate training with momentum and Resilient
Backpropagation. The Resilient Backpropagation (RB)
algorithm is the best among five neural network based
algorithms experimented in the study with 80%, 0.05616 and
0.07046 as Accuracy, MAE and RMSE values respectively.
The performance of the Resilient Backpropagation (RB)
algorithm is found to be consistent in all iterations that are
recorded to calculate the mean result values. So, Resilient
Backpropagation (RB) algorithm based approach can be used
for the identification of the reusable component based on its
structural properties as discussed in the paper.

The results obtained using proposed system is better than
the results mentioned in literature .

The future work can be extended in following directions:
• This work can be extended to other programming

languages.
• More algorithms can be evaluated and then we can find

the best algorithm.
• Other dimensions of quality of software can be

considered for mapping the relation of attributes.

REFERENCES
[1] Gill, Nasib S., “Importance of Software Component Characterization for

Better Software Reusability”, ACM SIGSOFT Software Engineering
Notes, vol. 31 No. 1, Jan 2006, pp. 1-3.

[2] Gomes, P. and Bento, C., “A Case Similarity Metric For Software Reuse
And Design”, Artificial Intelligence for Engineering Design, Analysis
and Manufacturing, vol. 15, issue 1, 2001, pp. 21-35.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:7, 2010

1167

[3] Isakowitz, T. and Kauffman, R.J., “Supporting Search For Reusable
Software Objects”, IEEE Trans. Software Eng., vol. 22, issue 6, Jun
1996, pp. 407-423.

[4] W. Lim, “Effects of Reuse on Quality, Productivity, and Economics,”
IEEE Software, vol. 11, no. 5, Oct. 1994, pp. 23-30.

[5] H. Mili, F. Mili and A. Mili, "Reusing Software: Issues And Research
Directions," IEEE Transactions on Software Engineering, Volume 21,
Issue 6, June 1995, pp. 528 - 562.

[6] G. Caldiera and V. R. Basili, “Identifying and Qualifying Reusable
Software Components”, IEEE Computer, February 1991, pp. 61-70.

[7] W. Humphrey, Managing the Software Process, SEI Series in Software
Engineering, Addison-Wesley, 1989.

[8] L. Sommerville, Software Engineering, Addision-Wesley, 4th Edition,
1992.

[9] R. S. Pressman, Software Engineering: A Practitioner’s Approach,
McGraw-Hill Publications, 5th edition, 2005.

[10] G. Boetticher and D. Eichmann, “A Neural Network Paradigm for
Characterising Reusable Software,” Proceedings of the 1st Australian
Conference on Software Metrics, 18-19 November 1993.

[11] Parvinder Singh Sandhu and Hardeep Singh, “Automatic Reusability
Appraisal of Software Components using Neuro-Fuzzy Approach”,
International Journal Of Information Technology, vol. 3, no. 3, 2006,
pp. 209-214..

[12] T. MaCabe, “A Software Complexity measure”, IEEE Trans. Software
Eng., vol. SE-2 (December 1976), pp. 308-320.

[13] G. Caldiera and V. R. Basili, Identifying and Qualifying Reusable
Software Components, IEEE Computer, (1991), pp. 61-70.

[14] Herenji, H. R. and Khedkar, P (1992), “Learning and Tuning Fuzzy
Logic Controllers through Reinforcements”, IEEE Transactions on
Neural Networks, vol. 3, 1992, pp. 724-740.

[15] Challagulla, V.U.B., Bastani, F.B., I-Ling Yen, Paul, (2005), “Empirical
assessment of machine learning based software defect prediction
techniques”, 10th IEEE International Workshop on Object-Oriented
Real-Time Dependable Systems, WORDS 2005, 2-4 Feb 2005, pp. 263-
270.

