
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:1, 2010

101

Abstract—This paper describes the results of an extensive study

and comparison of popular hash functions SHA-1, SHA-256,
RIPEMD-160 and RIPEMD-320 with JERIM-320, a 320-bit hash
function. The compression functions of hash functions like SHA-1
and SHA-256 are designed using serial successive iteration whereas
those like RIPEMD-160 and RIPEMD-320 are designed using two
parallel lines of message processing. JERIM-320 uses four parallel
lines of message processing resulting in higher level of security than
other hash functions at comparable speed and memory requirement.
The performance evaluation of these methods has been done by using
practical implementation and also by using step computation
methods. JERIM-320 proves to be secure and ensures the integrity of
messages at a higher degree. The focus of this work is to establish
JERIM-320 as an alternative of the present day hash functions for the
fast growing internet applications.

Keywords—Cryptography, Hash function, JERIM-320, Message
integrity

I. INTRODUCTION
EPENDENCY of modern human life on electronic
communication is increasing day by day. The

convenience, speed and cost effectiveness of this
communication channel is leading to rapid growth and
spreading of internet enabled services into almost all walks of
human life. On the other hand, the enormous applications in
financial sector together with the increasing network base and
accessibility from any nook and corner of the world has
necessitated the need for increased network security also. The
threats in ensuring confidentiality, integrity and authenticity of
internet transactions call for greater focus of the research
community as a challenging goal.

The integrity of the message sent from the sender to the
receiver can be verified using cryptographic hash function.
Hash function takes a variable size message as input and
returns a fixed size string as output, which is called the hash
code. The hash code is a concise representation of the longer
message or document from which it was computed. Hash
functions are important components in many cryptographic
applications and security protocol suites. The most important
uses are in the protection of information authentication and as
a tool for digital signature schemes.

Sheena Mathew and K. Poulose Jacob are with the Department of

Computer Science, Cochin University of Science and Technology, Kochi,
Kerala, India. (e-mail: sheenamathew@cusat.ac.in, kpj@cusat.ac.in).

II. DESIGN FACTORS WITH RESPECT TO JERIM-320
MD5 [1], SHA-1 [2] and RIPEMD algorithms [3] are

popularly used for generating hash codes. But these
algorithms have been broken at various levels [4]-[8]. The
SHA-2 hash functions are quite resistant against those attack
techniques which had been used to attack MD4 [9], MD5 and
SHA-1. Another alternative, RIPEMD-family [3], has a
different approach for designing a secure hash function. Here
the attacker who tries to break the algorithm should try
simultaneously at two ways where the message difference
passes. This design strategy is still successful because so far
there is no effective attack on RIPEMD-family except the first
proposal of RIPEMD.

As a result of a large number of attacks on hash functions
such as MD5 and SHA-1 of the so called MD4 family, and
also general attacks on the typical construction method
[10],[11] there is an increasing need for developing alternate
designs based on new principles for future hash functions.

Several attacks on hash functions are focused on improving
the difference of intermediate values which are caused by the
difference in the message. In this context, a hash function can
be considered secure, if it is computationally hard to alleviate
such difference in its compression function. The design of the
hash algorithm JERIM-320 [12] has been done based on these
findings. In the design criteria, more emphasis can be seen for
security over speed. The marginal reduction in speed of
JERIM-320 can be neglected in the light of today’s high
computing power. The efficiency of the new hash function is
its design based on potential parallelism. In this contest, the
performance of JERIM-320 is compared with the some of the
popular hash functions and presented in the subsequent
sections.

III. REVIEW OF POPULAR HASH FUNCTIONS AND JERIM-320

A. SHA-1, SHA-256, RIPEMD-160 and RIPEMD-320
Here the hash functions SHA-1, SHA-256, RIPEMD-160

and RIPEMD-320 are briefly described.
The general skeleton of these hash functions shows their

similarities and consists of the following steps:
1. Initialization: In this step some constant values are

defined. These constants include initial chaining values
(IVs), order of accessing message words, additive
constants and the number of bits for rotation in each step.

2. Preprocessing: The message to be hashed has to be of
length divisible by 512. The message is appended with a

Sheena Mathew, K. Poulose Jacob

Performance Evaluation of Popular Hash
Functions

D

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:1, 2010

102

single bit of value ‘1’, followed by the required number
of 0’s to make the message length 64 bits less than a
multiple of 512 bit blocks, each of which consists of
sixteen 32-bit words. In addition, a number of chaining
variables are initialized in this step during the initial IVs.

3. Processing: This is the heart of the algorithm, where each
512-bit block is processed in a step. Each step consists of
the following sub steps

 a. Initialize working variables with the current values of
the chaining variables.

 b. Update the working variables using some computation
in rounds. Each round has almost the same
computation in all the steps.

 c. Update the chaining variables.
4. Completion: The final hash value is composed by

appending the chaining variables.
The main differences between these four hash functions are

as follows:
1. For each 512-bit block, SHA-1 has 4 rounds of 20 steps

each, SHA-256 has 4 rounds of 16 steps each, and
RIPEMD-160 and RIPEMD-320 have 5 rounds, each of
16 steps.

2. Working variables are not updated in the same way in
compression steps.

3. RIPEMD-160 and RIPEMD-320 use two parallel
processing blocks for each 512 bit message block. The
other two hash functions use only one processing block
each.

4. After processing each 512-bit message block, SHA-1,
SHA-256 and RIPEMD-320 update the chaining
variables in the same way, whereas RIPEMD-160 uses a
different way to update them.

5. The final hash value of SHA-1 is 160-bit long, SHA-256
is 256-bit long and RIPEMD-160 is 160-bit long; whereas
RIPEMD-320 is 320-bit long.

B. JERIM-320
1) Structure of JERIM-320

JERIM-320 consists of four parallel branches B1, B2, B3
and B4. The initial chaining variable CVi is given as input to
the compression functions. CVi consists of 10 registers
A,B,C,D,E,F,G,H,I and J.

Each successive 512-bit message block M is divided into
sixteen 32 bit sub blocks M0, M1, …, M15 given as Σi(M) as
input to all four branches and a computation is done to update
CVi to CVi+1 as

CVi+1=CVi^ ((B1output ^ B2output) + (B3output ^
B4output)). Finally the message is transformed into the 320
bit hash value.

2) Single Step Operations
Five rounds are used in JERIM-320 for each 512-bit

message block. The sixteen 32-bit sub blocks of the 512-bit
block in each round are processed in four parallel branches.
The inputs to each single step operations are the sixteen sub
blocks, the chaining variables A1, B1,…J1, A2, B2, …J2,
A3, B3,….J3, A4, B4,…..J4 of each branch and the constants

K[t]. Order of message words, shift values, Boolean functions
and constants in each branch and each round are different.
There are 16 single step iterations in each round and in all the
four branches. The output of each iteration is copied again
into the chaining variables A1, B1,…J1; A2, B2, …J2; A3,
B3,….J3; A4, B4,…..J4 and so on.

C. A Brief Comparison of Hash Functions
A brief overview of the above discussions is summarized in

Table I

TABLE I
HASH FUNCTIONS AT A GLANCE

ALGORITHM SHA-1 SHA-256 RIPEMD-
160

RIPEMD-
320

JERIM-
320

Block size
(bits) 512 512 512 512 512

Word size
(bits) 32 32 32 32 32

Output size
(bits) 160 256 160 320 320

Rounds 80 64 80 80 80

Serial /
parallel
iteration

Serial Serial
Parallel
(2 lines)

Parallel
(2 lines)

Parallel
4 lines)

Max. message
size (bits) 264 -1 264 -1 264 -1 264 -1 264 -1

Operations
+, and, or,
xor, rotl,

not

+, and, or,
xor, shr,
rotr, not

+, and, or,
xor, rotl,

not

+, and, or,
xor, rotl,

not

+, and, or,
xor, rotl,

not

Collision Yes (in
2005) None yet None yet None yet None yet

IV. PERFORMANCE EVALUATION
In this section the performance evaluation of the hash

functions is done by using practical implementations and by
using single step computations. The total number of
operations, memory requirements and the speed performance
of SHA-1, SHA-256, RIPEMD-160, RIPEMD-320 and
JERIM-320 were compared. The evaluation was done using
Pentium IV processor, Linux operating system and C compiler

A. Practical Implementation
As shown in Table II the total number of operations used in

JERIM-320 is 7 times that of SHA-1, 3.7 times that of SHA-
256 and 4 times that of RIPEMD-160 and RIPEMD-320.
This is because of the hash function JERIM-320 making use
of four parallel lines of message processing and hence the
variables and computations in JERIM-320 will be more
compared to other hash functions mentioned here. These
multiple operations on the message blocks in JERIM-320 will

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:1, 2010

103

result in much higher security than other hash functions.
TABLEII

COMPARISON OF NUMBER OF OPERATIONS OF SHA-1, SHA-256, RIPEMD-
160, RIPEMD-320 AND JERIM-320

OPERATION SHA-1 SHA-256 RIPEMD -
160

RIPEMD-
320

JERIM-
320

Addition
 12 20 20 20 42

Bitwise
operation
(^,V, Λ,¬)

18 27 36 36 187

Shift
operation 7 23 9 9 33

Total number
of operations 37 70 65 65 262

As shown in Table III, the memory requirement for JERIM-

320 is more and the speed is less than those of SHA-1, SHA-
256, RIPEMD-160 and RIPEMD-320. These are because of
the increased number of Boolean functions, the need for other
operations like add and shift as well as the greater number of
lines of message processing used in JERIM-320. Even though
the speed of JERIM-320 is less than that of the other hash
functions, it is very much within the acceptable limits and
hence the advantages due to increase in the security
overcomes the disadvantage in speed.

TABLE III
PERFORMANCE COMPARISON BETWEEN SHA-1, SHA-

256, RIPEMD-160, RIPEMD-320 AND JERIM-320

ALGORITHM SPEED (MBPS)
MEMORY

REQUIREMENT
(BYTES)

SHA-1 60.89 6533

SHA-256 55.93 7214

RIPEMD-160 35.89 8679

RIPEMD-320 35.63 8927

JERIM-320 14.01 12003

B. Single Step Computation
The single step computations for comparison of speed of

the five hash functions are as follows:
The step operation of SHA-1 consists of 4 additions, 2

shifts and a Boolean function. The Boolean function consists
of 3 unit operations, and the step operations consist of 80
steps (4 rounds * 20 iterations). That is 1 (stream) * 80 (steps)
* 9 (step operations) = 720 (unit operations)

The step operation of SHA-256 consists of 7 additions, 2
summations and 2 Boolean functions. Each Boolean function
and summation consists of 3 unit operations, and the step
operation consists of 64 steps. That is

1 (stream) * 64 (steps) * 19(step operations) = 1216 (unit
operations)

RIPEMD-160 consists of 4 additions, 2 circular shifts and a
Boolean function. The Boolean function consists of 3 unit
operations.

2(streams) * 80(steps) * 9(step operations) = 1440 (unit
operations).

RIPEMD-320 consists of 4 additions, 2 circular shifts and a
Boolean function. The Boolean function consists of 3 unit
operations.

2(streams) * 80(steps) * 9(step operations) = 1440 (unit
operations).

The step operation of JERIM-320 consists of 5 additions, 4
XORs, 4 shift and 2 Boolean functions. Each Boolean
function consists of 3 unit operations, and the step operation
consists of 80 steps (5 rounds * 16 iterations). That is 4
(streams) * 80 (steps) * 19 (step operations) = 6080 (unit
operations).

From the above computations it can be seen that JERIM-
320 has 8.4 times unit operations as compared to SHA-1, 5
times as compared to SHA-256 and 4.2 times as compared to
RIPEMD-160 and RIPEMD-320. Due to this, the hash code
produced in JERIM-320 will be much more secure than the
other hash functions.

V. CONCLUSION
Various cryptographic hashes are analysed in this paper

along with a high security hash function JERIM-320 using
practical implementations and using single step computations.
The core strength of JERIM-320 is the four parallel lines with
five rounds of processing, which provide a strong nonlinear
avalanche plus more number of register operations that
increase diffusion in its output and make differential attacks
difficult. Thus it is more secure than most of the existing
popular hash functions, which are based on serial iterations.
Due to the more number of operations performed in each
message block, JERIM-320 produces much more secure hash
code compared to other hash functions. Since message
integrity is an important security service in today’s high-speed
network protocols and also because of the confidence level
with respect to the current candidates like SHA-1 is coming
down, new hash schemes become a necessity. A more secure
hash code JERIM-320 can definitely be used as a substitute.

REFERENCES

[1] R.L.Rivest, “The MD5 message digest algorithm”, (RFC 1320), Internet

Activities Board, Internet Privacy Task Force. (1992)
[2] National Institute of Standards and Technology (NIST), FIPS-180-2:

Secure Hash Standard. Available:
http://csrc.nist.gov/publications/fips/fips 180-2/fips 180-2.pdf. (2002)

[3] H. Dobbertin, A.Bosselaers, B.Preneel, “RIPEMD-160, a strengthened
version of RIPEMD”. Fast Software Encryption , LNCS 1039, Springer-
Verlag, pp. 71-82. (1996)

[4] E.Biham and R.Chen, A.Joux, P.Carribault, C.Lemuet, and W.Jalby,
“Collissions of SHA-0 and Reduced SHA-1”, Advances in Cryptology-
EUROCRYPT, LNCS 3494, Springer- Verlag, pp. 36-57. (2005)

[5] F.Chabaud and A.Joux, “Differential Collissions in SHA-0”, Advances
in Cryptology- CRYPTO, LNCS 1462, Springer- Verlag, pp. 56-71.
(1998)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:1, 2010

104

[6] H. Dobbertin, “Cryptanalysis of MD4”, Fast Software Encryption,
LNCS 1039, Springer-Verlag, pp. 53-69. (1996)

[7] E.Biham and R.Chen, “Near Collissions of SHA-0”, Advances in
Cryptology- CRYPTO, LNCS 3152, Springer- Verlag, pp. 290-305.
(2004)

[8] Xiaoyun Wang and Hongbo Yu, “How to break MD5 and other hash
functions”, Advances in Cryptology – EUROCRYPT, LNCS 3494,
Springer-Verlag, pp. 19-35. (2005)

[9] R.L.Rivest, “The MD4 message digest algorithm”, Advances in
Cryptology-CRYPTO, LNCS 537, Springer-Verlag, pp. 303-311. (1990)

[10] Ivan Damgard, “A design principle for hash functions”, Advances in
Cryptology -CRYPTO, LNCS 435, Springer – Verlag, pp. 416-427.
(1989)

[11] Ralph C.Merkle, “One way hash functions and DES”, Advances in
Cryptology –CRYPTO, LNCS 435, Springer – Verlag, pp. 428-446.
(1989)

[12] Sheena Mathew, K. Poulose Jacob, “JERIM-320: A New 320-bit Hash
Function with Higher Security”, International Journal of Computers,
Systems and Signals, Vol. 9, No.1, 2008, pp 31-41.

Sheena Mathew, Reader in Cochin University of Science and Technology
(CUSAT), Kochi, Kerala, India has 16 years of teaching experience in
Computer Science. She had her graduation from Madurai Kamaraj University
and post graduation from the Indian Institute of Science, Bangalore. She is
presently a research scholar; her areas of interest being Cryptography and
Network Security. She has 9 publications in various international journals and
conferences to her credit.

 Dr. K. Poulose Jacob, a National Merit Scholar all through, got his degree in
Electrical Engineering in 1976 from University of Kerala, followed by his
M.Tech. in Digital Electronics and Ph. D. in Computer Engineering from
CUSAT, Kochi. He has been teaching at CUSAT since 1980 and currently
occupies the position of Professor and Head of the Department of Computer
Science. He has served as a Member of the Standing Committee of the UGC
on Computer Education and Development. He is on the editorial board of two
international journals and has more than 80 papers in various international
journals and conferences to his credit. His research interests are in Information
Systems Engineering, Intelligent Architectures and Networks.

