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Abstract—This paper describes Independent Component Analysis
(ICA) based fixed-point algorithm for the blind separation of the
convolutive mixture of speech, picked-up by a linear microphone
array. The proposed algorithm extracts independent sources by non-
Gaussianizing the Time-Frequency Series of Speech (TFSS) in a
deflationary way. The degree of non-Gaussianization is measured by
negentropy. The relative performances of algorithm under random
initialization and Null beamformer (NBF) based initialization are
studied. It has been found that an NBF based initial value gives
speedy convergence as well as better separation performance
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I. INTRODUCTION

HE goal of Blind Signal Separation (BSS) is to estimate

latent sources from their mixed observations without any
knowledge of mixing process. This challenging problem has
bagged much research attention due to very wide area of
applicability such as in speech signal separation, image
processing, computer vision, bioinformatics, cosmo-
informatics etc. [1]- [3]. In the area of speech signal
processing BSS can be supposed as an engineering effort to
imitate a very special anthropomorphic capability of focusing
hearing attention to a particular speaker in the cacophony of
speech signals e.g. listening in a crowd. This is well known as
‘Cocktail party problem’ in the scientific community [4]. A
BSS algorithm can serve the same purpose for an automatic
speech recognizer. Mathematically, a BSS problem can be
described as the process of estimating R original sources
s(n) =[s5,(n),s,(n).....s,(n)]" from their M observed mixed

signals  x(n) =[x,(n),x,(n).....x,,(n)]" at sensors produced by

some unknown mixing function F among the R original
sources given as

x(n) = Fs(n)], (D
where n is the time index. The task of BSS is to estimate the

optimal F', the inverse of the mixing function, so that the
underlying original sources can be optimally estimated, i.e.

50 =[5,(n),8,(n).....8,, (T = F'[x(1)]. 2
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In the simplest case the mixing process F produces
instantaneous mixture; however, in this paper we will consider
the case of convolutive mixing. The complete lack of
knowledge about mixing process makes BSS problem
challenging and work is further carried out by bringing into
focus the principle of statistical independence of hidden
sources. However, due to unknown mixing process observed
signals even with spatial distinction are not independent. Thus
under the assumption of statistical assumption the task in the
BSS is to obtain Independent Components (IC) from the
mixed signals and such algorithms are called ICA based BSS
algorithms [1]. The independent components are extracted
either as maximally non-Gaussian components or looking
spectral dissimilarity among the sources [5]. The application
of the BSS technique in audio signal separation can be traced
back to the work in [6],[7] on the ICA based signal separation
algorithms for practical applications. In contrast to the other
source separation techniques, such as the organization of
hierarchical perceptual sounds [8], formant tracking [9],
auditory scene analysis [10] used with single channel
processing, delay and sum beamforming, adaptive beam
forming (ABF) [11]-[13], and NBF used with multichannel or
array signal processing [14], BSS is the unsupervised adaptive
filtering for the array processing based on information
geometry theory [15],[16].

For the blind separation of convolutive mixture of speech, it
was first proposed in [17] that in the frequency domain
convoluted mixture is converted into instantaneous mixture in
different frequency sub-bands or bins which simplify the
demixing process. Recently, many ICA based BSS algorithms
have been developed, either separately in the time domain or
in the frequency domain or mutualistically combined in both
while weighing their pros and cons, for audio source
separation [18]-[20]. However, still there hardly exist
algorithms for the real world application because separation
performance degrades in real acoustic environment with
unacceptable computational time [21]. Real-world application
requires faster methods to perform on-line separation. To date,
the algorithms developed are not sufficiently fast to satisfy
real-time requirements. Frequency-domain approaches are
relatively faster due to the power of FFT, yet the gradient
based FDICA techniques require a larger number of iterations
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Figurel: Block diagram showing basic working
principle of the ICA based BSS algorithms.

to converge [13]. The basic functioning of the ICA based BSS
algorithm is shown in Fig.1.The observed mixed signals
x(n) =[x,(n),x,(n)...x,,(n)]" = As(n) where A is the mixing

system, are passed through a tentative initial demixing system
W (randomly chosen or based on some heuristic guess and
subject to further modification) and then the mutual
independence among the estimated independent component
signals y is evaluated by some cost function J(W,y), usually
based on the statistics of the signal and candidate demixing
system. That in turn goes on modifying demixing system
unless and until the cost function is not optimized for
themaximum mutual independence among the separated ICs.
So, paradigmatically, most of the known ICA-based BSS
algorithms exhibit such functional similarities, but basic
differences occur in the choice of the cost function, the
domain of operation and the process of optimization. The
mixing process increases Gaussianity of the signal, in the light
of Central Limit Theorem (CLT), the non-Gaussianization can
yield independent components. Here we will look for the
independent components as the most non-Gaussian
components and thus our cost function will be based on non-
Gaussianity measure as proposed in [22]. In order to solve
permutation and scaling problem we will use null beamformer
based technique [14].

II. SIGNAL MIXING AND DEMIXING MODEL

In the real recording environment, signals picked-up by a
microphone consist of direct-path signals as well as their
delayed (reflected) and attenuated versions and noise signals.
Therefore, the speech signal picked up by an M element linear
microphone array is modeled as a linear convolutive mixture
of R impinging source signals s, (we exclude here noise

signal for the simplicity) such that the M-dimensional

observed signal x(n) =[x, (n),x,(n),......... x,,(m)]" is given by
R P
x,(M)=3 % h(p)sn-p+); (j=12...M) 3
i=1 p=1 ( )
where s,(n) =[s,(n),s,(n),......... s,(m]" represents the original

source signals, #,is the P-point impulse response between the

source i and the microphone j. However, in this paper we
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Fig.2 Convolutive mixing and demixing models
for speech signal at a linear microphone array
(M=R=2)

consider the case of two microphones and two sources, i.e.,
M=R=2, for which the signal mixing and demixing models are
shown in Fig.2. Accordingly, the observed signals x;(n) and
X»(n) at the microphones are given by

W] _[h b g[8 00]_[rehitres
X, (n) B hy hy, 5,(n) - refy +refy, @

)

where ref, =h,, ® s,(n); ref,,=h, ® s,(n); ref,=h, ®s,(n);
ref,,=h, ®s,(n) are called reference signals and ® represents

the convolution operation.

In the frequency domain, the same model is represented by
taking Short-Time Fourier Transform (STFT) of Eq.(3) and
the model in Eq.(4) can be expressed as

{Xl(f)

H, (f) Hy(f) | S
=H()S(f)=
Xz(f):| (IS { H

Hy(f) Hy(f) Sz(f)} (%)

where symbols in capital denote Fourier transforms of
corresponding subjects expressed by small letter symbols. The
FDICA separates the signal in each frequency bin
independently, and this separation process is given by

F.(f)}{lﬁ(f)}:W(f)X(f):[W.l(f) le(f)}{X.(f)}

S, L Wo(f) Wa(H) ]| X,0) (6)

where  [Y,(f). Y2(f)]T are ICs ; and W(f)= separation

matrix in frequency bin f. It is important to note that obtained
ICs are not exact replica of original sources.

III. Fixep POINT FDICA

FDICA algorithm works on the TFSS of the mixed
speech data to sieve out TFSS of the independent components
in each frequency bin. The whole process of TFSS generation
by the STFT analysis is depicted in Fig.3. It is evident that the
time-frequency series consists of speech spectral components
of same frequency from all analysis frames in the time
succession.  Fixed-point ICA was first developed and
proposed in [23] for the separation of the instantaneous
mixture. The key feature of this algorithm is that it converges
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Figure 3: Process of the generation of time-
frequency series of speech spectral components by
STFT analysis. h(n) is the Hanning window and e is

the step size of the analysis frame of size A. Each
short frame of speech is N-point DFTed and then
spectral components of the same frequency bins
from different analysis frames are stacked to form
TFESS x(f.».

faster than other algorithms, like natural gradient-based
algorithms, with almost same separation quality. However, the
algorithm in [23] is not applicable to TFSS as these are
complex valued. In [22], fixed-point ICA algorithm of [23]has
been extended for the complex-valued signals, however, this
algorithm has no strategy for solving the problem of
permutation and scaling arising in FDICA for speech signal
separation. In [24], Mitianoudis et al. have proposed the
application of the fixed-point algorithm for speech signal
separation with a time-frequency-model-based likelihood ratio
jump scheme as a solution for permutation. The basic
functioning of the fixed-point FDICA is shown in Fig. 4. The
fixed-point ICA algorithm [23] is based on the heuristic
assumption that when the non-Gaussian signals get mixed it
becomes more Gaussian and thus its non-Gaussianization can
yield independent components. The frequency domain mixing
model for the speech signal in Eq.(5) revels that the TFSS in
any frequency bin is superposition of spectral contributions of
each source. Thus, in the light of CLT,TFSS of mixed speech
signal in any frequency bin is more Gaussian than that of any
independent source.

Obviously, non-Gaussianization of TFSS can give TFSS of
independent sources from which original signals can be
reconstructed. The process of non-Gaussianization consists of
two-steps approaches, namely, pre-whitening or sphering and
rotation of the observation vector as shown in Fig.4. Sphering
is half of the ICA task and gives spatially decorrelated signals.
The effect of mixing, whitening and rotation on the data is
shown in the scatter plots of Fig.5. Whitening of the zero
mean TFSS is done using Mahalanobis transform [25]. The
whitened
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Figure 4: Functioning of the fixed-point FDICA
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Fig.5 Scatter plots showing effect of mixing, whitening
and ICA on the speech data distribution.

signal X,, (f,t) in the fth frequency bin is obtained as

Xy (f.0) =0(HX(f.1), )
o( f):A;O'SVX is called whitening matrix;

Ax:diag{l/\/z,l/\/z,....,l/\//Tn} is the diagonal matrix with

A>A > >], of the covariance

where

positive eigenvalues
matrix of X(f,,t) and v is the orthogonal matrix consisting

of eigenvectors.

The task remaining after whitening involves rotating the
whitened signal vector X,,(f,7) by the separation matrix such
that Y(f)=W ()X, (f,t) equals independent components. The
cost function can be based on the various measures, such as
kurtosis or negentropy, for measuring the non-Gaussianity.
However, negentropy provides better performance as
explained in [23]. The negentropy J(Y) of the TFSS of the
candidate IC, Y(f,r) is given by (frequency index f and

frame index ¢ are dropped hereafter for clarity)

J(Y) = H(Ygauss) - H(Y) (8)
where H(.) is the differential entropy of (.) and Y, is the

gauss
Gaussian random variable with the same covariance as of Y.
This definition of negentropy ensures that it will be zero if
Y(f,r) is Gaussian and will be increasing if Y(f,?) is

tending towards non-Gaussianity. Thus negentropy based
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contrast function can be maximized to obtain optimally non-
Gaussian component. Here we will place derivation of such a
deflationary learning rule in which one separation vector w
(any one row of the separation matrix) at a time will be
learned. The negentropy can be approximated in terms of non-
quadratic non-linear function G as follows [23]:

() = LE(G(y) = EIG(y gauss )T’ @

where o is a positive constant. The performance of the
fixed-point algorithm depends on the used non-quadratic non-
linear function G. The choice of the non-linear function G
depends on the Probability Distribution Function (PDF) of the
data. Some of the non-quadratic functions used for complex-
valued signal separation are

G (Y)=\Ja,+Y ;a,=00l,

G,(Y)=log(a, +Y);a, =0.01, (10
Y
G,(Y)=—;VY #0.
() T

The most general form of non-linear function that can be
used for speech data (assuming TFSS has super-Gaussian
distribution) is G,. Following findings in [22], we will also

use non-quadratic function G, , hereafter denoted by G, whose

first and 2nd-order derivatives g and g’, respectively, are
given by

and g'(Y)= 0.5

g(Y)=m m (1)

The one unit algorithm for learning the separation matrix
W(f) is obtained by maximizing the negentropy based contrast
function. The speech signal is also modeled as a spherically
symmetric variable, and as pointed out in [22], for a
spherically symmetric variable, modulus-based contrast
function can be wused to measure non-Gaussianity.
Accordingly, we use the same contrast function as in [23]
given by

J(Y)=E{GIw"X )} (12)
where w is an M-dimensional complex vector such that
E(Iw'X P}=1=|w|=1. (13)

This contrast function may have M local or global optimum
solutions w, (i=1,2, ..., M) for each source. Thus learning each

w calls for the maximization of Eq.(12) under the constraint
given in Eq.(13). The maxima of J(Y) can be found by solving
the Lagrangian function L(w,w",1) of the above, given as

Liw,w" ) =E(GIW"X P}t AE{wW'X }-1}, (14)

where Ais Lagrangian multiplier. In order to locate
maxima of the contrast function, the following simultaneous
equations must be solved.

a—L=O;—aLH =0; and a—L=O as)
ow ow oA

These equations can be obtained from Eq.(12) as follows

a—L:E{g(IwHXW Pyw?}+ Aw" =0, (16)
ow

BLH =E{g(w"X, )X w}+Aw =0, a7
ow

oL

Zgwr-1=0,

a " (18)

From here, we proceed further in the light of following two
theorems [26]:

THEOREM 1: If function f{(z,z*) is analytic with respect to 7
and z* all stationary points can be found by setting the
derivative with respect to either z or z*.

THEOREM 2: If f{(z,z*) is a function of the complex-valued
variable z and its conjugate, then by treating z and z*
independently, the quantity directing the maximum rate of

change of fiz.z%) is Vz' f(z)

Accordingly, the final solution using Newton’s iterative
method is given by

" _w{a_L} a_L[a_LJ i
new ow” || ow | ow” ' (19)

_ > H 2 H 2 D H 2
wnew—w(E{g,(Iw X, H+Aw X, PHg'dw'X 1)}

“E{g(W"X, P)X"W)X, }. (20)

The stopping criterion for iteration is  defined
asd=(Iw,,—w, 1)>, which becomes very small near the

convergence. Since each update changes the norm of w, after
each iteration w is normalized to maintain compliance of Eq.
(13).

20

new.

Iw, |

new

w =

new

As this is a deflationary algorithm, independent sources are
extracted one by one in the decreasing order of negentropy
from the mixed signal. Thus after each iteration, it is also
essential to decorrelate w to prevent its convergence to the
previously converged point. In order to achieve this, Gram-
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Schmidt sequential orthogonalization can be used, in which
components of all previously obtained separation vectors
falling in the direction of the current vector are subtracted.
Accordingly, the orthogonalized separation vector w, for the

ith source after jth iteration is given by

i-1
W, =W, —Z(w‘.ij)w/. 22)

J=1

The update Eq.(20) is used to estimate separation vector w
in each frequency bin from whitened TFSS of mixed signal for
each source in the deflationary fashion and separation matrix
W(f) in any frequency bin fis given by

Wil [ W) Wi () (22)
WiH=| . |=

wR WR|(.f) WRM (f)

Each row of this separation matrix uniquely corresponds to
a separation vector w for each source. Because this separation
matrix has been obtained using whitened signals, its pre-
multiplication with whitened signals in the frequency domain

gives the TESS Y(/,1) = [%,(f:0. Y, (f+ D) Yg (/o001 OF the

separated signal, i.e.,

S(f.0) =Y (f.0) = W)X, (f,0). (23)

IV. PERMUTATION AND SCALING PROBLEM

In order to get separated signal correctly, the order of
separation vectors (position of rows) in W(f) must be same in
each frequency bin. The deflationary algorithm separates
original sources in the decreasing order of negentropy. But the
order of negentropy for the independent sources does not
remain same, due to change in contents, in all frequency bins
which in turn leads to the inter-exchange or flipping of rows
of W(f) in an unknown order. This is called permutation
problem. The other problem is related with different gain
values in each frequency bin, however, for the faithful
reconstruction of the signal it should be same. This is called
scaling problem. If these two problems are not solved, Eq.(23)
will give another mixed signals instead of separated
components. There have been developments of several
methods to resolve these two inherent problems [27].
However, we will use here Directivity Pattern (DP) based
method using null beamformer [28] for the reason explained
in the following section. The DP based method requires the
Direction of Arrival (DOA) of each source to be known. In the
totally blind setup, this cannot be known so it is estimated
from the directivity pattern of the separation matrix. The DP
F,(f.,6) of the microphone array in the Rth source direction is

given by [28]

Fo(f.0)= S WU (fyexplj2rd, sinb/cl.
1.00= & W (Depljamd ‘ (24)

where W\(f) is an element of the separation matrix

obtained in Eq. (22), R=1,2. The DP of the separation matrix
contains nulls in each source direction. However, the positions
of the nulls vary in each frequency bin for the same source
direction. Hence by calculating the null directions in each
frequency bin, the DOA of the Rth source can be estimated as

N/2

N 2
HR:NEQR(}C,,)» (25)

where O (fp) denotes the direction of null in the pth

frequency bin. For the present case of two sources, these are
given by

a.( fp):min[arg.m{}n IE(f,.6)1. arg.min E(f,.6) q,
(26)
Hz(fp):max[arg.mgin E(f,.O)1 arg.mﬂin E(f,.0) |:|,

where  min[u,v] and max[u,v] are defined to choose

minimum and maximum, respectively, from u and v. Then the
separation matrix in each frequency bin is arranged in
accordance with the directions of nulls, which sort-out the
permutation problem. After estimating DOA, the gain value in
each frequency bin is normalized in each source direction.
Gain in the Rth source direction in the pth frequency bin is
given by

1

a,(f,) = 8 Q7

where éR is the estimated direction of the Rth source. Thus,

a scaled separation matrix is obtained as

a,(f,)0.. 0 Wi (f,) Wi (f,)
W(f)=| : = 0 . . . (28)
0 0.ax(f) | Wi (f,) o Wye(f,)

This scaled and depermuted matrix is used to separate the
signals in each frequency bin. Then by using overlap-add
technique [29] time-domain signal is reconstructed from the
TFSS of each source. However, in order to use W(f) of Eq.
(22) in the time domain to form an FIR filter, it is essential to
de-whiten the separation filter as follows:

W) =WEHQUN™ (29)

Then using de-whitened W(f), an FIR filter of length P can
be formulated to separate the signals directly in the time-
domain as follows

y(n) =Y w(r)x(n—r). (30)

r=0
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A. Algorithm initialization

The deflationary learning rule for w in Eq.(20) is sensitive
to the initial value of separation vector w. It can be initialized
by a random value or some heuristically chosen good guess
values such as NBF-based initial value. NBF is a geometrical
technique for the speech signal separation in which the
separation filter depends on the DOA, frequency of the signal
and the geometry of the used microphone array. NBF jams
signals from the undesired directions by forming nulls in DP
in that directions while setting look direction in the direction
of desired signal source. Accordingly, DP in Eq.(24) for the

NBF based separation matrix W*'(f) for the look direction@l

and null direction éz should satisfy the following conditions

F(f.6)=1and F(f.6,)=0 €1Y)

These simultaneous equations can be solved to give the
following solutions for the elements of separation
matrix W (f)

W5 () = —expl—q, sin 6,1 {-exp[q, (sin §, —sin §,) x

explg,(sin 6, —sin §,)]}"! 32)
W (f) = —expl—q, sin 6,]x {—exp[q, (sin §, — sin 6,) x (33)

explq, (sin 6, —sin 6,)]}
Similarly, for the look direction 6, and null direction 6,

following conditions are satisfied by the elements of
separation matrix W** (f)

F,(f.6)=0and F,(f.6,)=1 (34

On solving these, the following solutions are obtained

W () = —expl—g, sin ,]1x{—explq, (sin §, — sin §,)] -

explg, (sin 6, —sin §)]) ! (35
W (f) = —expl—q, sin 8] x {—explq, (sin 6, —sin )] -
explg, (sind, —sin )]}~ (36)

where g, = j27d, f [c and q, = j27zd,f [c,
c= velocity of sound in the given environment.

The NBF based separation matrix is approximately optimal
and is derived for ideal far-field propagation of acoustic wave.
However, under the reverberant condition, its separation
performance degrades markedly.

B. Objective Evaluation Score

In order to evaluate the performance of the algorithm Noise

Reduction Rate (NRR), Spectral NRR (SNRR), and Spectral
Correlation Coefficient (SCRF) y(f) will be used. NRR is
defined as ratio of speech signal power (computed from
reference signal) to the noise power. SNRR (SNRR) is given
as NRR in any frequency bin. SNRR for the ith source (here
M=R=2) in the fih frequency bin is given by

SNRR,(f)

E(W, (f)ref, (f) + W (f)refs (f) P} 37

=10log, _,
BN, - W, (Foref, (F)+Wo (foref(£)F)

SCRF between ICs v, and v, in a frequency bin f'is given by

m

SULA YNNG L))
V(D: ml _ m _ !
\/ZlYl(f)-Y.(f)lz \/zle(f)-Yz(f)lz (38)

V. EXPERIMENTS AND RESULTS

The layout of experimental room is shown in Fig.6.The
spacing between two microphone was kept at 4 cm. Voices of
two male and two female speakers, at the distances of 1.15
meters and from the directions of 3y and 40° were used to
generate 12 combinations of mixed signals x; and x, under the
described convolutive mixing model. Mixed signals at each
microphone were obtained by adding speech signals ref;,
ref1y, refa, refy;. The speech signals ref;;, refis, refz;, and refs;
reaching each microphone from each speaker are used as the
reference signals. These speech signals were obtained by
convolving seed speech with room impulse response, recorded
under different acoustic conditions, characterized by a
different Reverberation Time (RT), e.g., RT=0 ms, RT=150
ms and RT=300 ms.

First of all STFT analysis of the mixed data is done to
obtain TFSS. The STFT analysis conditions are shown in the
Tablel. The TFSS data in each frequency bin are whitened in
accordance with Eq.(7) before being fed into iterative ICA
loop. As explained in the previous sections whitening is only
half ICA, the whitened data are used to learn separation vector
in accordance to Eq.(20). At first the algorithm is initialized
using random values of separation vector w in each frequency
bin. Algorithm learns separation vector in each frequency bin

573m

Londspeakers
Q (Height - 1.35 m)

LSm

l
|

312m

Microphone

array A
(Height : 1.35m) é

(Room height - 2.70 m)

. .Fig.6 Layout of the experimental setup.
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by formed by the separation matrix are shown in Fig.7. The
algorithm begins to converge after 20 iterations (less for RT=0
ms) for RT=300 ms and stops when the stopping criterion is
satisfied. The stopping criterion & was fixed at 0.001.

Using directivity-pattern-based methods, DOAs of the sources
are estimated. The DOAs of the 1st source S, and 2nd

source S, , estimated using Eq.(25), are presented in Table 2

along with true DOAs. The histograms of Direction of Nulls
(DON) formed by the separation matrix are shown in Fig.7. It
is evident from there that in all frequency bins DON are not in
the same direction. In some frequency bins it is swapped with
the DOA of other sources indicating that separation matrix is
permuted, however, maximum no. of nulls are occurring in a
particular source direction (shown as white bar in Fig.8) and
hence this can also be used as the DOA information.

Using the estimated source direction, the separation matrix

Table 1. Signal analysis conditions
Sampling freq. 8000 Hz
Frame Length 20 ms
Step Size € 10 ms
Window Hanning
FFT length 512
S 0.001
Table 2 DOA Estimation result
RT RT=0 ms RT=150ms RT=300 ms
Methods S, S, M S, S, S,
Averaging | -31.1 40.0 -32.2 | 39.0 | -28.1 42.1
True DOA | -30 40 -30 40 -30 40

is scaled using Eq.(28). The DP of the separation matrix
before and after de-permutation and scaling are shown in Fig.
9. That figure shows how the directional nulls of the
separation matrix get blurred with increasing R7. After
solving the permutation and scaling problem the DP of
separation matrix

shows unity gain in the estimated look direction and nulls in
the direction of source to be rejected.
In order to evaluate the performance of the algorithm with
NBEF based initialization, the initial value of w is generated for
every frequency bin using the estimated DOA and Eq. (32, 33,
35 and 36). Using these initial values in each frequency bin,
ICA is performed. The NRR results under both initializations
are shown in Fig.10. There occurs severe degradation in the
separation performance with the increasing reverberation time
in both cases. It is also evident from Fig.10 that the NRR
improvements for the non-reverberant case are almost same
for the both types (NBF based and random value based) of
initializations. However, for reverberant conditions, NBF-
based guess value shows improvement in the NRR
performance as well as in the convergence speed, see Fig. 11,
over random initialization In order to study the effect of over-

iteration on the separation performance, NRRs for the
different number of iterations for both the NBF based
initialization and random value based initialization were
observed under different RTs. The average NRR versus
number of iterations for RT=150 ms and RT=300 ms are
shown in Fig.12. The maximum iteration limit was set at
1000. It is evident from that figure that NRR performance is
slightly changed by over-learning and NBF based
initialization results in better performance than that of the
random value based initialization.

The overall separation performance of the algorithm depends
on the performance in each frequency bins. As stated before
algorithm works independently in each frequency bins, the
separation performance measures such as spectral NRR and
correlation coefficients between ICs in each frequency bin
were observed. Spectral NRR for the male-female speaker
combination for RT=0 ms, RT=150ms and RT=300 ms are
shown in Fig.13, Fig.14 and Fig.15. Similarly correlation
coefficients for RT=300 ms is shown in Fig.16. It is evident
that the algorithm does not show similar and good
performance in each frequency bin. In some frequency bins it
has better performance while in some other frequency bin it
has very poor performance, especially with increasing RT.
This is indicative of the fact that data in some frequency bins
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Figure 7 (a) and (b): Histogram of number of nulls
formed by the separation matrix before solving
permutation and scaling problem ( for RT=150 ms)
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may be ill conditioned. In [30] it has been investigated that
the TFSS of speech in each frequency bin does not follow
CLT, as a result of which working of the algorithm is
hampered in such frequency bin. However, this may be one of
the important causes for the poorer performance of
thealgorithm in some frequency bins

vI. CONCLUSIONS

In this study, we used Lagrangian multiplier method
optimization to derive a fixed-point learning rule for the blind
separation of convoluted mixture of speech in the frequency
domain. We also used DP method to solve permutation and
scaling problems. The use of Null beamformer as the initial
value for the algorithm initialization was also studied and
results were compared for that of random value based
initialization. Also, the histogram-based method for DOA
estimation was introduced. The performance of the algorithm
under reverberant condition is very poor and need to be
improved. However, the convergence speed of the algorithm is
much better than that of the gradient based algorithms. We are
looking further for the possibility of improving the separation
performance of the algorithm. The possibility of combining
gradient-based FDICA with fixed-point ICA is also left for
future work. The slow convergence near the convergence
point of the gradient-based ICA might be improved by
switching over to the fixed-point algorithm.
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