
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:11, 2009

1002

A new heuristic approach for the large-scale
Generalized assignment problem

S. Raja Balachandar and K.Kannan

Abstract—This paper presents a heuristic approach to solve the
Generalized Assignment Problem (GAP) which is NP-hard. It is
worth mentioning that many researches used to develop algorithms
for identifying the redundant constraints and variables in linear
programming model. Some of the algorithms are presented using
intercept matrix of the constraints to identify redundant constraints
and variables prior to the start of the solution process. Here a
new heuristic approach based on the dominance property of the
intercept matrix to find optimal or near optimal solution of the
GAP is proposed. In this heuristic, redundant variables of the GAP
are identified by applying the dominance property of the intercept
matrix repeatedly. This heuristic approach is tested for 90 benchmark
problems of sizes upto 4000, taken from OR-library and the results
are compared with optimum solutions. Computational complexity
is proved to be O(mn�) of solving GAP using this approach. The
performance of our heuristic is compared with the best state-of-
the-art heuristic algorithms with respect to both the quality of the
solutions. The encouraging results especially for relatively large size
test problems indicate that this heuristic approach can successfully
be used for finding good solutions for highly constrained NP-hard
problems.

Keywords—Combinatorial Optimization Problem, Generalized As-
signment Problem, Intercept Matrix, Heuristic, Computational Com-
plexity, NP-Hard Problems.

I. INTRODUCTION

The generalized assignment problem (GAP) is a well-known
NP-Hard [28] combinatorial optimization problem. It finds
the maximum profit or minimum cost assignment of n jobs
to m agents such that each job is assigned to exactly one
agent and the capacity of each agent without exceeding. Many
real life applications can be modeled as a GAP , e.g., the
resource scheduling, allocation of memory spaces, design of
communication network with capacity constraints for each
network node, assigning software development tasks to pro-
grammers, assigning jobs to computers in a network, vehicle
routing problems, and others. Several algorithms (exact and
heuristic) that can effectively solve the GAP have been cited
and compared as benchmarks many times in the literature.
This paper, we propose a heuristic algorithm based on domi-
nance principle to solve GAP. The Dominance principle based
heuristic algorithm has been implemented successfully to solve
0-1 multi constrained knapsack problem [37]. This heuristic
is used here in the first stage, to find optimal or near optimal
solution to GAP and second stage is to improve the near

S.Raja Balachandar is with the Department of Mathematics, SASTRA
University,Thanjavur,INDIA, e-mail: srbala@maths.sastra.edu
K.Kannan is with the Department of Mathematics, SASTRA Univer-

sity,Thanjavur,INDIA, e-mail: kkannan@maths.sastra.edu

optimal solution by using another heuristic called column
dominant principle and row dominant principle.
This paper is organized as follows: Section II explains

the definition of GAP. A brief survey of various researchers
work pertaining to this problem is elucidated in section III.
The dominant principle based heuristic and its computational
complexity are presented in section IV. The algorithm’s utility
is illustrated with help of benchmark problems in section
V and we have furnished the results obtained for all the
benchmark problems in section V. The extensive comparative
study of our heuristic with other heuristic approches and
salient features of this algorithm are enumerated in section
VI, finally the concluding remarks are given in section VII.

II. GENERALIZED ASSIGNMENT PROBLEM (GAP)
Let I =��� �� ������ be a set of agents, and let J =��� �� ���� ��

be a set of jobs. For � � � , � � � define 	�� as the cost (profit)
of assigning job j to agent i (or assigning agent i to job j),

�� as the resource required by agent to perform job j(profit,
if the job j is performed by agent i), and �� as the resource
availability (capacity) of agent i. Also,��� is a 0-1 variable that
1 if agent i performs job j and 0 otherwise. The mathematical
formulation of the GAP is:
Maximize �

���

�

���

	����� (1)

subject to the constraints
�

���

����� � ����� � � (2)

�

���

��� � ���� � � (3)

��� � ��� �� ��� � ���� � � (4)

(3) ensures that each job is assigned to exactly one agent
and (2) ensures that the total resource requirement of the jobs
assigned to an agent does not exceed the capacity of the agent.

III. PREVIOUS WORK

There are many exact algorithms and heuristics developed to
solve the GAP. Existing algorithms include branch and bound,
branch-and-cut and branch-and-price algorithms [38,33,39].
Ross and Soland [38] proposed a new branch and bound algo-
rithm in 1975. Savelsbergh [39] introduced branch and price
approach in 1997. To improve Lagrangian lower bound in his

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:11, 2009

1003

algorithm, Nauss [33] combined several ideas with cuts sug-
gested by Gottlieb and Rao [11] and proved the performance of
this algorithm for GAP instances upto 3000 binary variables.
In 2006, he discussed the latest integer programming based
algorithms for the GAP[34]. However exact algorithm requires
more computation time for finding the optimal solutions of
large size GAP. To circumvent this computational difficulty,
several researchers started designing heuristic algorithms yet
computational attractive algorithms to find optimal or near
optimal solutions. Heuristic algorithms are designed to pro-
duce near optimal solutions for larger problem instances. Some
heuristics use the linear programming relaxation [44]. In the
last decade, several algorithms including Lagrangian relaxation
(LR) method[9] have been developed. Narciso and Lorena [32]
have proposed combining LR with surrogate relaxation, 1999.
Haddadi[14] has been applied the Lagrangian decomposition
method to solve GAP, 1999. Haddadi and Ouzia [15,16] have
been integrated LR and subgradient methods in branch and
bound schemes, 2001 and 2004. M. A. S. Monfared [31]
has established that the augmented Lagrangian method (neural
based combinatorial optimization problems) can produce su-
perior results with respect to feasibility and integrality, 2006.
V.Jeet and E.Kutanoglu[20] have combined LR, subgradient
optimization, and problem space search techniques to solve
GAP, 2007. Others use search techniques such as genetic
algorithms, tabu search algorithms and simulated annealing in
their meta heuristic approach to solve large size benchmark
GAP instances[3] available in literature. Osman [35] has
introduced simulated handling methods to solve GAP. Tabu
search based heuristic algorithm used by various researchers to
solve GAP[18,8,41,25]. Chu and Beasley [7] presented genetic
algorithm (GA)- based heuristic for solving the GAP and have
shown that the performance of genetic algorithm heuristic
holds good, 1996. Harald Feltl [17] introduced a hybrid
genetic algorithm which is the improved version of Chu and
Beasley algorithm, 2004. Yagiura et al [45,46] has designed
an algorithm based on path relinking combined with ejection
chain neighbourhood approach and solved a class of GAP.
Cattrysse and Wassenhove [5] present an extensive survey of
algorithms for the GAP published until 1992. Amini and Racer
[1] present a computational comparison of alternative solution
methods. More examples of heuristic algorithms for the GAP
can be found in [7,5,1,13,21,23,26,27,28]. A comprehensive
review on exact and heuristic algorithms is given in [20].

IV. DOMINANCE PRINCIPLE (DP)

Linear programming (LP) is one of the most important
techniques used in modeling and solving practical optimization
problems that arise in Industries, Commerce and Management.
Linear programming problems are mathematical models used
to represent real life situations in the form of linear objective
function and constraints. Various methods are available to
solve linear programming problems. When formulating an
LP model, systems analysis and researchers often include
all possible constraints and variables although some of them
may not be binding with the optimal solution. The pres-
ence of redundant constraints and variables does not alter

the optimum solution(s), but may consume extra compu-
tational effort. Many researchers have proposed algorithms
for identifying the redundant constraints and variables in
LP models [2,4,12,19,22,24,29,30,40,42,43]. Paulraj.et.al[36]
illustrated the intercept matrix of the constraints to identify
redundant constraints prior to the start of the solution process
in their heuristic approach to solve a LP model.
GAP is a well known 0-1 integer programming problem.

Since it is possible to use dominance principle in integer
programming problem also, we use the intercept matrix of the
constraints (2) to identify the variables of value 1 and 0. The
variables of value 0 are known as redundant variables. If the
elements of intercept matrix are arranged in decreasing order,
the leading element becomes the dominant variable with value
1 and it provides optimum or near optimum solution of GAP.
This process of identifying the leading element from intercept
matrix is known as dominant principle. The dominant principle
focuses at the resource matrix with lower requirement to come
forward for maximizing the profit. The intercept matrix of the
constraints(2) plays a vital role for achieving the goal in a
heuristic manner.
The dominant principle for this problem can be divided into

3 categories namely constraint, column dominance and row
dominance. For constraint dominant principle, an intercept
matrix is constructed by dividing the right hand side of
constraints by corresponding coefficients of constraints said
in (2) of the section 2. First, we initialize the solution vector
with zero value for all the unknowns(step-(a)). Next we
construct the intercept matrix and identify redundant variables
through step-(b) and (e). The Values corresponding to column
minimum ����� are multiplied with corresponding cost coeffi-
cients ����� and the maximum among this product is chosen
�������

����

�

�����.

If the maximum product falls �	�
� the entry of intercept
matrix, then the corresponding ��� assumes the value 1. Next
we update the availability (right hand side column vector) by
using the relation �� � �� � ���, and then the coefficients
of constraints ��� are replaced by 0 for all i. This process is
repeated n times.
Column dominant principle is used to improve the objective

function value by reassigning row i to column j with higher
profit. The step-(h) is meant for searching the dominant i for
each column satisfying constraint (2) and (3) also focussing
the maximal.
Row dominant principle is used to improve the objective

function value by reassigning column j to row i with higher
profit. The step-(i) identifies for each i, search for maximum
profit that satisfies constraints (2) and (3).
We present below, the heuristic algorithm for solving GAP
using dominance principle approach.
(a) Initialize the solution by assigning 0 to all �� .
(b) Intercept matrix D,
��� = ��
��� � if ��� � �,
��� = M, a large value ; otherwise.
(c) Identify 0 value variables(redundant): If any column

has �1 entry in D, then the corresponding variable identified
as a redundant variable.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:11, 2009

1004

(d) Dominant variable: Identify the smallest element (dom-
inant variable) in each column of D.
(e) Multiply the smallest elements with the corresponding

cost coefficients. If the product is Maximum in rth row and
kth column, then set ��� = 1 and update the objective function
value ����� ��� ���� ���.
(f) Update the constraint matrix: �� � ������ for all r and

set ��� = 0 for r = 1 to m.
(g) If ��� = 0 for all i and j, then go to step-(h). Otherwise

go to step-(b)
(h) Column dominant principle (to improve the current

solution)
For each j (1 to n), identify row i such that ���� = 1 and

satisfies both ��� � ���� , and
�

������	
����
��� + ��� - ���� �

��, i = 1 to m. If such an i can be found, then set ���=1 and
���� = 0.
(i) row dominant principle(to improve the current solution)

For each i(m to 1), identify the column j such that ���� = 1
and satisfies both ��� � ����, and

�
������	
����

��� + ���
- ���� � ��, i = 1 to m. If such an i can be found, then set
���=1 and ����=0 (for j* column assign i, to satisfy ���� �

�� �
�

������	
����
��� .

(j) the objective function value is =
��

���

��

��� ������
Theorem 1. DPHEU can be solved in 	�
��� time, poly-

nomial in the number of item types and constraints.
proof: The worst -case complexity of finding the solutions
of an GAP using DPH can be obtained as follows. Assume
that there are n variables and m constraints. The procedure
of initialization (step-(a)) requires O(mn) running time. The
Formation of D matrix involves n iterations, identification of
less than one entry in each column, finding smallest intercept
in each column, identification of rows which consists of more
than one smallest intercept and updating of constraint matrix
A. Since there are m constraints, step-(b), step-(c), step-
(d),step-(e), and step-(g), require O(mn) running time each.
The step-(f) requires O(n) operations to multiply cost with
corresponding smallest intercept and updating the correspond-
ing row of the constraint matrix. The number of iterations
required for carrying out all operations in DPH is n. step-
(h) and (i) are performed only once in that order.The step-
(h) and (i) are attempted to improve the objective function
value by reassigning jobs to agents with greater profit. In terms
of computational complexity, step-(h) and step-(i) take O(mn)
operations. Hence, the heuristic operator has a complexity of
O(n� m).
We illustrate this procedure to solve the generalized assign-

ment problem given in [10] with m = 3 and n = 8. The iteration
wise report is presented in Table I.
The DPH algorithm terminates the iterative process at 8��

iteration, since all the entries are in the constraint matrix are
equal to zero. The objective function value is 232. Since step-
(h) and step -(i) do not have any effect on columns 2 and 3
in Table I, they have not been shown.
Consider the first problem in GAP1[3], m = 5 and n =

15.The solution to the GAP follows
Stage 1 (step -(a) to step -(g))
Objective function value = 302 The variables x1,5 = x1,7 =
x1,13 = x1,14 = x2,2 = x2,8 = x2,11 = x3,3 = x3,6 = x3,15 =

TABLE I
ITERATION WISE REPORT FOR GAP GIVEN IN[10]

Iteration variables variables Objective
that that function

assumes 1 assumes 0 value
1 x17 x27,x37 41
2 x25 x15,x35 77
3 x28 x18,x38 111
4 x14 x24,x34 127
5 x26 x16,x36 152
6 x32 x12,x22 186
7 x31 x11,x21 220
8 x13 x23,x33 232

x4,10 = x4,12 =x5,1= x5,4 = x 5,9 = 1 and all other variables
= 0.
Stage 2 (step-(h))
The following Table II shows the changes of the values of
the variables based on column dominant principle (step-(h) of
DPH algorithm). At the end of Step-9 DPH returns objective
function value as 316.
Stage3 (step-(i))
The following Table III shows the changes of the variables
based on row dominant principle (step-(i) of DPH algorithm).
Finally DPH gives the objective function value as 336, the
optimum one. Thus the total number of iterations required is
22.

TABLE II
CHANGES MADE BY COLUMN DOMINANT PRINCIPLE

variables value 1 to 0 value 0 to 1
1 X5,1 X2,1
2 X2,2 X5,2
3 X3,3 X4,3

TABLE III
CHANGES MADE BY ROW DOMINANT PRINCIPLE

variables value 1 to 0 value 0 to 1
1 X5,2 , X5,4 X5,6
2 X4,6 X4,10
3 X3,10 X3,4
4 - X2,2

V. COMPUTATIONAL RESULTS
The DPH has been coded in C language (DELL Core 2 Duo

CPU 1.60GHz). The heuristics were first tested on a set of 12
small instances namely GAP instance 1 to 12 (each instance
consists of 5 problems) used in [3], with sizes m x n, for m
5, 8, 10 and n 15, 20, 24, 25, 30, 32, 40, 48, 50, 60. The
heuristic is again tested with a set of 30 large scale instances
coded in MATLAB7, with sizes m � 5, 10, 20 and n � 100,
200,400. The data divided into five classes A, B, C, D and
E, (each instance consists of 6 problems) were obtained from
the OR - library [3]. Problems of classes A, B and C present
increasing knapsacks. Class D and E are specially designed
for minimization, the most difficult correlated problems. We
considered Type D and E as maximization problem to test
our algorithm’s performance. The result of this heuristic for
small size [3] is listed in Table 4 and detailed comparative
study with other state-of-art algorithm is presented in Section
6. The results of DPH, TSDL, and RH for large size [32]

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:11, 2009

1005

are presented in Table 5. The percentage of deviation of
DPH solution from the optimum/near optimum ones has been
calculated using the formula

�� �
���������	�
������
��������

���������	�
���
���� (5)

TABLE IV
DPH RESULTS FOR SMALL SIZE GAP

Problem m n Number N.O.P.T A.P.O.D average
set of solution

Problems time
GAP 1 5 15 5 4 0.35 0.1
GAP 2 5 20 5 5 0 0.2
GAP 3 5 25 5 4 0.03 0.31
GAP 4 5 30 5 3 0.09 0.46
GAP 5 8 24 5 5 0 0.42
GAP 6 8 32 5 4 0.03 0.62
GAP 7 8 40 5 4 0.4 0.71
GAP 8 8 48 5 3 0.03 0.76
GAP 9 10 30 5 3 0.61 0.74
GAP 10 10 40 5 4 0.02 0.83
GAP 11 10 50 5 5 0 0.88
GAP 12 10 60 5 5 0 0.91

A.P.O.D = Average percentage of deviation
N.O.P.T = Number of problems for which the DPH finds the optimal

solution

TABLE V
DPH RESULTS FOR LARGE SIZE GAP

prob optimum* DPH TSDL RH PD solution
/ best solution time
solution

A 1 4456* 4456* 4456* 4456* 0 1.36
A 2 8788* 8788* 8788* 8788* 0 1.74
A 3 4700* 4700* 4700* 4700* 0 2.52
A 4 9413* 9413* 9413* 9413* 0 2.02
A 5 4857* 4857* 4857* 4857* 0 1.97
A 6 9666* 9666* 9666* 9666* 0 2.86
B 1 4026 4026 4026 4008 0 1.69
B 2 8502 8502 8505 8502 0 1.19
B 3 4633* 4633* 4633* 4633* 0 1.94
B 4 9255 9255 9255 9255 0 2.33
B 5 4817* 4817* 4817* 4817* 0 2.53
B 6 9682 9682 9682 9670 0 2.76
C 1 4411* 4389 4411* 4411* 0.05 1.79
C 2 8347 8346 8346 8347 0.01 1.46
C 3 4535 4535 4535 4528 0 2.12
C 4 9258 9258 9258 9247 0 1.9
C 5 4790 4790 4790 4784 0 1.94
C 6 9625 9625 9625 9611 0 2.89
D 1 9147* 9147* 9147* 9147* 0 1.63
D 2 18750* 18750* 18750* 18750* 0 1.83
D 3 10349* 10349* 10349* 10349* 0 2.32
D 4 20562* 20562* 20562* 20562* 0 2.32
D 5 10839* 10839* 10839* 10839* 0 2.43
D 6 21733* 21733* 21733* 21733* 0 2.77
E 1 63228* 63228* - - 0 1.55
E 2 128648* 128648* - - 0 1.73
E 3 81054* 81054* - - 0 2.21
E 4 164317* 164317* - - 0 2.46
E 5 316844* 316844* - - 0 2.57
E 6 94432* 94432* - - 0 2.45

The first four colums of Table IV indicate the problem set,
number of constraints, number of variables and the number of
problems in the set. The next three columns report that DPH
algorithm performance, like total number of optimum solution
found by DPH, average percentage deviation from optimum
solution, and average solution time. It is clear that from Table 4
DPH finds optimal or near optimal in all 60 test problems and
the average solution time required by DPH is 0.13 seconds.
The results of DPH, TSDL, and RH for large size [32] are
presented in Table 5. The first two columns of Table V indicate
that name of the problem and optimum or best solution.
The next three columns indicate that DPH, TSDL, and RH
solutions respectively. The percentage of deviation of DPH

solution from the optimum/best solution is presented in fifth
column. The last column indicates that the solution time of
DPH. It is clear that, out of 30 large sized problems, 28
problems have reached the optimum/best solution. The DPH
has given near optimum solution for the remaining 2 problems
with error 0.05 and 0.01 percentage. So the DPH has identified
high quality solutions for large instances also.
The application of DPH for GAP D 5 X 100 (D1) is

shown in Fig.1 with iterations versus objective function value.
100 is fixed to be the maximum number of iterations and
the algorithm is found to reach the best solution (9010). For
further iterations, remaining 2 steps-(h) and (i) are executed
and the results are depicted in Fig.2. The improved objective
function value is 9147, the optimum one.

Fig. 1. Performance of DPH algorithm on GAP D5X100(from step-(a) to
step-(g)

Fig. 2. Performance of DPH algorithm on GAP D5X100 (step-(h) and Step-
(i)

As both tables and figures clearly demonstrate, the DPH is
able to localize the optimal or near optimal point for all the
test problems in quick time. Our approach is used to reduce
the search space to find the optimal/near optimal solutions
of the GAP. The computational complexity is cubic and the
space complexity is O(mn). DPH reaches the optimum or
near optimum point in less number of iterations where the

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:11, 2009

1006

maximum number of iterations is the size of variables. Our
heuristic algorithm identifies the zero value variables quickly.

VI. COMPARISON WITH OTHER HEURISTICS

The comparative study of DPH with other existing heuristic
algorithms (GA, FJ, MTB, RS, TS1, SPH) has been furnished
in Table VI in terms of the average deviation for each problem
set, the average percentage deviation for all problems, the
average percentage deviation of the best solutions and the
number of optimal/best solutions obtained (out of a total 60)
for each of the small-size problem. The computational times
for the other algorithms are not given here since it is difficult to
compare different codes and CPU times on different hardware
platforms and algorithms with different stopping criteria. Our
DPH obtains the results in a single execution like FJ, MTB
and SPH, but our algorithm takes maximum of 1 second for
small-sized GAP problems. The other heuristics are giving the
solution from multiple executions. It can be observed that the
proposed DPH heuristic performs the best among all heuristic
in terms of the solution quality, being capable of finding the
optimal solutions for 49 out of 60 problems.

TABLE VI
SUMMARIZED RESULTS FOR THE SOLUTION QUALITY(SMALL SIZE)

prob DPH GA FJ MTB RS TS1 SPH
set
Gap 1 0.35 0 0 0 0 0 0.08
Gap 2 0 0 0 0 0 0.1 0.11
Gap 3 0.03 0 0 0 0 0 0.09
Gap 4 0.09 0 0.83 0.18 0 0.03 0.04
Gap 5 0 0 0.07 0 0 0 0.35
Gap 6 0.02 0.01 0.58 0.52 0.05 0.03 0.15
Gap 7 0.4 0 1.58 1.32 0.02 0 0
Gap 8 0.03 0.05 2.48 1.32 0.1 0.09 0.23
Gap 9 0.61 0 0.61 1.06 0.08 0.06 0.12
Gap 10 0.02 0.04 1.29 1.15 0.14 0.08 0.25
Gap 11 0 0 1.32 2.01 0.05 0.02 0
Gap 12 0 0.01 1.37 1.55 0.11 0.04 0.1
Aver 0.13 0.01 0.84 0.78 0.04 0.03 0.13
No.
of
opt 60 60 26 24 39 45 40
and
best
known

GA: Genetic Algorithm [7]; FJ: Fisher, Jaikumar and VanWassenhove[10],
branch-and-bound procedure with an upper CPU limit; MTB: Martello and
Toth[28],vbranch-and-bound procedure with an upper CPU limit; RS:

Osman [35], hybrid simulated annealing/tabu search;TS1: Osman [35], long
term tabu search with best- admissible selection; SPH: Set Partitioning

Heuristic [6]

For large-size problem set, Narciso[32] and Tai-His Wu[41]
have run the program for maximization problems. The compar-
ison between DPH, TSDL and RH heuristics has been reported
in Table VII. It can be seen from Table VII the RH and TSDL
algorithms found 15 optimal solutions, whereas DPH obtains
20 optimal solutions out of 30. Our DPH takes maximum of
3 seconds to reach optimum or near optimum solutions for
both large and small-size GAP problems, but TSDL takes
maximum of 172.911 CPU time to reach best solution for
B(20 X 200) [41] and RPH takes maximum of 278.83 CPU
time to complete some of the large-size problems reported in
[32].
Features of DPH: The heuristic is used to reduce the search

space to find the near-optimal solutions of the GAP. The
computational complexity is O(n�m) and the space complexity

TABLE VII
SUMMARIZED RESULTS FOR THE SOLUTION QUALITY(LARGE SIZE)

problem set DPH TSDL Rh
Gap A 0 0 0
Gap B 0.00 0 0.1
Gap C 0.01 0.01 0.09
Gap D 0 0 0
Gap E 0 - -
Average 0.0003 0.002 0.05

Total no of problems 30 25 25
No. of optimum 20 15 15
No. of best known 8 6 2

TSDL: Dynamic tabu tenure with long-term memory mechanism [41]; Rh:
Lagrangian/surrogate relaxation heuristic for generalized assignment

problems [32].

is O(mn). It reaches the optimum or near optimum point
in n+k, (k�n) iterations where n is the number of jobs
(variables) and k is any integer such that � � � � �. Due
to dominace principles, this heuristic identifies the zero value
variables instantaneously. The maximum CPU time for small-
size problem is 1 second and 3 seconds for large-size problem.
It concludes that DPH algorithm is the effective one.

VII. CONCLUSION
In this paper, the dominant principle based approach for

tackling the NP-Hard Generalized assignment problem (GAP)
is presented. This heuristic has been tested for 90 state-of-art
benchmark instances and found to produce optimal or near
optimal solutions for all the problems given in literature. For
the near optimal instances the average percentage of deviation
of DPH solution from the optimum solution is very less. This
heuristic is with complexity O(mn�) and it requires n + k, (� �
�) iterations to solve the GAP. The wide range of experimental
data show that the optimality achieved by this heuristic almost
100 percentage. The basic idea behind the proposed scheme
may be explored to tackle other NP-Hard Problems also.

ACKNOWLEDGMENT
The authors would like to thank Prof.T.R.Natesan(late),

Anna University, Chennai, INDIA, for his motivation towards
to the improvement of this paper.

REFERENCES
[1] Amini, M.M., Racer, M, A rigorous comparison of alternative solution

methods for the generalized assignment problem, Management Science
40, 868-890, 1994.

[2] Anderson, E.D. and K.D. Andersen, Presolving in linear programming.
Math. Prog. Series B.,71:221-245, 1995.

[3] Beasley JE. OR-Library; Distributing Test Problems by Electronic Mail,
Journal of Operational Research Society 41, 1069-1072, 1990.

[4] Brearley, A.L., G.Mitra and H.P Williams, Analysis of mathematical
programming problem prior to applying the simplex algorithm . Math.
Prog., 8: 54-83, 1975.

[5] Cattrysse, D.G., Wassenhove, L.N.V., A survey of algorithms for the gen-
eralized assignment problem. European Journal of Operational Research
60, 260-272, 1992.

[6] Cattrysse, D., Salomon, M and Van Wassenhove, L.N., A set partitioning
heuristic for the generalized problem. European Journal of Operational
Research., 72, 167-174, 1994.

[7] Chu, P.C., Beasley, JE., A genetic algorithm for the generalized assign-
ment problem. Computers and Operations Research 24, 17-23, 1997.

[8] Diaz, J.A., Fernandez, E., A tabu search heuristic for the generalized
assignment problem, European Journal of Operational Research 132, 22-
38, 2001.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:11, 2009

1007

[9] Fisher, M.L., The Lagrangian relaxation method for solving integer
programming problems. Management Science 27, 1-18,1981.

[10] Fisher, M. L., Jaikumar,R. and Van Wassenhove, L.N, A multiplier
adjustment method for the generalized assignment problem. Mgmt Sci.,
32, 1095-1103, 1986.

[11] Gottlieb, E.S., Rao, M.R., The generalized assignment problem: Valid
inequalities and facets. Mathematical Programming 46, 31-52, 1990.

[12] Gowdzio, J.,Presolve analysis of linear program prior to applying an
interior point method .Inform. J.Comput., 9: 73-91, 1997.

[13] Guignard M., Rosenwein M.B. An improved dual based algorithm for
the generalized assignment problem, Operations Research 37 (4), 658-
663, 1989.

[14] Haddadi, S., Lagrangian decomposition based heuristic for the general-
ized assignment problem. INFOR 37, 392-402, 1999.

[15] Haddadi, S., Ouzia, H., An effective Lagrangian heuristic for the
generalized assignment problem,. INFOR 39, 351-356, 2001.

[16] Haddadi, S., Ouzia, H., Effective algorithm and heuristic for the gen-
eralized assignment problem. European Journal of Operational Research
153, 184-190, 2004.

[17] Harald Feltl and Gunther R. Raidl., An improved hybrid genetic algo-
rithms for the generalized assignment problem, SAC ’04, Nicosia, Cyprus,
march 14-17, 2004.

[18] Higgins, A.J. A dynamic tabu search for large-scale generalized assign-
ment problems, Computers and Operations Research 28 (10), 1039-1048,
2001.

[19] Ioslovich, I., Robust reduction of a class of large scale linear program.
Siam J. Optimization, 12: 262-282, 2002.

[20] Jeet V., Kutanoglu E., Lagrangian relaxation guided problem space
search heuristics for generalized assignment problems, European Journal
of Operational Research 182, 1039-1056, 2007.

[21] Jornsten K., Nasberg M., A new lagrangian relaxation approach to
the generalized assignment problem, European Journal of Operational
Research 27, 313-323, 1986.

[22] Karwan, M.H., V. Loffi, J. Telgan and S. Zionts, Redundancy in
mathematical Programming: A State of the Art Servey (Berlin: Springer-
Verlag), 1983.

[23] Klastorin T.D. An effective subgradient algorithm for generalized assign-
ment problem, Computers and Operations Research 6, 155-164, 1979.

[24] Kuhn, H.W. and R.E . Quant, An Experimental Study of the Simplex
Method. In: Metropolis, N. et al.(Eds.). Preceedings of Symposia in
Applied Mathematics. Providence, RI: Am. Math. Soc., 15: 107-124,
1962.

[25] Laguna, M., Kelly, J.P., Gonzalez Velarde, J.L., Glover, F. Tabu search
for the multilevel generalized assignment problem, European Journal of
Operational Research 82, 176-189, 1995.

[26] Lorena L.A.N., Narciso M.G., Relaxation heuristics for a generalized
assignment problem, European Journal of Operational Research 91, 600-
610, 1996.

[27] Martello, S. P. Toth., An algorithm for the generalized assignment
problem, operational Research ’81, ed. J.P.Brans. North-Holland, 589-
603, 1981.

[28] Martello, S., Toth P. Knapsack Problems: Algorithms and Computer
Implementations, Wiley, New York, 1990.

[29] Matthesiss, T.H., An Algorithm for determining irrelevant constraints
and all vertices in systems of linear inequalities. Operat. Res., 21: 247-
260, 1973.

[30] Meszaros. C. and U.H. Suhl, Advanced preprocessing techniques for
linear and quadratic programming, Spectrum, 25: 575-595, 2003.

[31] Monfared. M.A.S and M . Etemadi., The impact of energy function
structure on solving generalized assignment problem using Hopfield
neural network, European Journal of Operational Research 168, 645-654,
2006.

[32] Narciso, M.G., Lorena, L.A.N. Lagrangian/surrogate relaxation for gen-
eralized assignment problems. European Journal of Operational Research
114 (1), 165-177, 1999.

[33] Nauss, R.M., Solving the generalized assignment problem:An optimiz-
ing and heuristic approach. INFORMS Journal of Computing 15 (3),
249-266, 2003.

[34] Nauss, R.M., The generalized assignment problem. In: Karlof, J.K. (Ed.),
Integer Programming: Theory and Practice. CRC Press, Boca Raton, FL,
39-55, 2006.

[35] Osman, I.H., Heuristics for the generalized assignment problem: Simu-
lated annealing and tabu search approaches. OR Spektrum 17, 211-225,
1995.

[36] Paulraj, S., C. Chellappan and T.R. Natesan, A heuristic approach for
identification of redundant constraints in linear programming models. Int.
J. Com. Math., 83(8): 675-683, 2006.

[37] Raja Balachandar. S, Kannan. K, A new polynomial time algorithm for
0-1 multiple knapsack problems based on dominant principles, Applied
Mathematics and Computation, 202, 71-77, 2008.

[38] Ross, G.T., Soland, R.M., A branch and bound algorithm for the
generalized assignment problem, Mathematical Programming 8, 91-103,
1975.

[39] Savelsbergh, M., A branch-and-price algorithm for the generalized
assignment problem. Operations Research 45 (6), 831-841, 1997.

[40] Srojkovic, N.V. and P.S. Stanimirovic, Two direct methods in linear
programming. European J. Oper. Res., 131: 417-439, 2001.

[41] Tai- Hsi Wu , Jinn-Yi Yeh, and Yu -Ru Syau., A tabu search approach
to the generalized assignment problem, Journal of Chinese institute of
Industrial Engineers, vol. 21, no. 3, pp. 301-311, 2004.
Telgan, J., Identifying redundant constraints and implicit equalities in
system of linear constraints. Manage. Sci., 29: 1209-1222, 1983.

[42] Tomlin, J.A. and J.S Wetch, Finding duplicate rows in a linear program-
ming model. Oper. Res. Let., 5: 7-11,1986.

[43] Trick, M.A., A linear relaxation heuristic for the generalized assignment
problem. Naval Research Logistics 39, 137-152,1992.

[44] Yagiura, M., Ibaraki, T., Glover, F., An ejection chain approach for the
generalized assignment problem. INFORMS Journal of Computing 16
(2),133-151, 2004.

[45] Yagiura.M., Ibaraki.T, Glover, F, A path relinking approach with ejection
chains for the generalized assignment problem. European journal of
Operational Research. 169, 548-549, 2006.

[46] Yagiura.M and T. Ibaraki. Generalized Assignment Problem, in: T.F.
Gonzalez, ed., Handbook of Approximation Algorithms and Metaheuris-
tics, Chapman and Hall/CRC in the Computer and Information Science
Series, Chapter 48 (18 pages), 2007.

