International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:6, No:1, 2012

Application of Java-based Pointcuts in Aspect
Oriented Programming (AOP) for Data Race
Detection

Sadaf Khalid, Fahim Arif

Abstract—Wide applicability of concurrent
practices in developing various software applic&tioleads to
different concurrency errors amongst which datae riscthe most
important. Java provides greatest support for coeot
programming by introducing various concurrency pags. Aspect
oriented programming (AOP) is modern programmingag@m
facilitating the runtime interception of eventsioferest and can be
effectively used to handle the concurrency problefspect] being
an aspect oriented extension to java facilitates dpplication of
concepts of AOP for data race detection. Volatitgiables are
usually considered thread safe, but they can becdbmepossible
candidates of data races if non-atomic operatioms performed
concurrently upon them. Various data race detealgarithms have
been proposed in the past but this issue of viljatihd atomicity is
still unaddressed. The aim of this research is topgse some
suggestions for incorporating certain conditiong fdata race
detection in java programs at the volatile fielggdking into account
support for atomicity in java concurrency packagad making use
of pointcuts. Two simple test programs will demoats the results
of research. The results are verified on two difer Java
Development Kits (JDKSs) for the purpose of comparis

Keywords—Aspect Bench Compiler (abc), Aspect Orientedmaking use of java concurrency packages and AORs Th

Programming (AOP), Aspectl, Aspects, Concurrencgkages,
Concurrent programming, Cross-cutting Concerns, aDaace,
Eclipse, Java, Java Development Kits (JDKs), Paistc

|. INTRODUCTION

programming

Pointcuts and joinpoints help to intercept the ¢veof
interest at runtime.Amongst different programmiagduages,
java provides huge support for concurrent programgniyy
introducing various concurrency packages and impgpthem
with every new release of JDK. Java concurrenciities
include java.util.concurrent package containingssés useful
for concurrent programming, java.util.concurrerak®
package and java.util.concurrent.atomic packageclwthis
actually a small toolkit of classes allowing locked
programming on atomic variables.Use of volatile wesd
indicates that application is multithreaded. Vdéatrariables
are usually considered thread safe. But volatileiabées
become the possible candidates of data races Hatamic
operations are performed concurrently upon themlatile
variables are considered self-synchronized but rtbed of
synchronization for volatile variables cannot bemptetely
neglected especially if some non-atomic operat®rbéing
performed upon the volatile field, since some otheead can
intervene and may affect the final results.The afnthis
research is to address the issue of volatility ammicity by

research work proposes some suggestions for intipg
certain conditions for data race detection at thiatile fields
in java programs by taking into account supportdtomicity
provided in java concurrency packages and makire afs
pointcuts. By considering RACER algorithm as baae,

ONCURRENT programming errors including data racesdditional state to the RACER state machine is ssiggl to

deadlocks, starvation and live locks affect theultesand
performance of concurrent applications. Data rase ai
concurrent programming error in which more than ttimeads
try to access the same memory location at the same
without acquiring any lock and at least one of dceesses is
for writing to memory [1]. Various race detectioly@ithms
have been proposed in the past to address the ddsdata
race. ERASER the lockset based algorithm
contribution to the field of data race detectiof. RACER
algorithm enhances the phenomenon of data racetuetén
java based programs by making use of AOP [3], MDP is
the modern programming paradigm that facilitateshtandling
of crosscutting concerns through provision of pmits.

Sadaf Khalid is with the Department of CompuBeftware Engineering,

Military College of Signals, National University Stiences and Technology,

Islamabad, Pakistan (e-mail: makkah-madina@ hotoaail).
Fahim Arif is with the Department of Computer Safte Engineering,

address atomicity issue for data race detectionis lalso
described that how the atomicity issue can alsbdmlled by
introducing new pointcuts only without modifyingetfRACER
state machine. The results of research are deratedtby
using two test programs. The results are testawomifferent
JDKs for the purpose of comparison.The rest ofghper is
organized as follows. Section Il is a brief destoip of related

is baswork, Section Il highlights some important concepf AOP,

Section IV demonstrates the proposed research iaolut
Section V illustrates and analyzes the results esfearch,
Section VI presents a comparison of proposed swiutiith
that of other data race detection techniques amallyi paper
concludes by suggesting some future work.

Il. RELATED WORK
Savage proposed the ERASER algorithm for detgcti
potential data races in lock-based multithreadeolgmams.
ERASER makes use of lockset algorithm whose refergrat

Military College of Signals, National University Stiences and Technology, appropriate times leads to the detection of dateesia

Islamabad, Pakistan (e-mail: fahimarif@gmail.com).

ERASER was used by many researchers as the bagisefo

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:6, No:1, 2012

race detection algorithms, but ERASER had somenplementing the desired functionality through advi
shortcomings. ERASER could not handle the issuebjéct execution on certain execution points selected bntputs.
initialization properly because it cannot guess mvheAdvice in Aspect] is much like a simple functionriormal
initialization phase is complete and when variab&Eomes java programming, but here advice is not calledieitly but

actually shared, thus missing out many data rasesedl as
generating many false alarms. Harrow proposed &msion

to ERASER that used thread segments to model loe& f writing various aspects, so any application camlaele aspect

handover of objects between parent and child tter¢ald But
this technique used the same state machine as ggdpay
ERASER algorithm, so it also missed out the issuiebject
initialization leading to false alarms.O’Callahamda Choi

proposed another improvement to ERASER algorithih [6

They refined lockset algorithm implemented by ERASEy
using the happens-before graph of the program uederThis

implicitly invoked by pointcuts and joinpoints.
AOP facilitates application development independeht

oriented by writing suitable aspects for desirddation. The
aim of this research is to merge AOP with concuyesupport
provided by java in order to handle the issue dadace
detection effectively.

IV. PROPOSEDENHANCEMENTSFORDATA RACE DETECTION

Multithreaded programs may exhibit non-deterministi

happens-before graph contains happens-before edgeslls

to Thread.start (), Thread.join (), Objectwait @nd i, the past to cope with the concurrent programméngrs
Object.notify (). They used some low level bytecod@gnecially with the situations giving rise to dasae. Data
instrumentation toolkit to add instrumentation e tytecode | ,-os can be minimized by strict adherence to icerta
and did not include any concept of providing instemtation rogramming disciplines. Use of synchronized bloeduces

at higher level of abstraction as possible with AOR,emory consistency errors. Volatile variables dteroused in
paradigm.RACER is the most refined aspect orientdion multithreaded programs for data sharing among twea

of ERASER algorithm for detecting data races injdased 1ho,gh considered self-synchronized, they cannot be
programs. It refines the lockset al_gonth_m_ _Of, ER’BEV completely neglected for being the candidate ofidaices.
appropriately addressing the object initializatidBsue. y/q|atile variables become the possible candidate®ta races
Moreover, RACER also introduced the concept of 88Ceit on atomic operations are performed concurrenton
pe_rlods for lock fre_e h_andover of object betweerepgand om java provides support for concurrency byoihicing
child threads, but it differs from the scheme msgd by .,herrency package containing atomic classes.dfiskese
Harrow in the way that it modifies the state maehiof ,iomic classes can reduce the chances of data Taee.
ERASER by adding two new states thus handling objeg,iors aim to use RACER algorithm as base andoseop
initialization by considering reads and writes frahe very oo suggestions for data race detection at velaélds in

behavior giving rise to data races. A lot of wodstbeen done

beginning. The biggest advantage of RACER abovefalhe
previous race detection techniques is that
instrumentation at higher level of abstraction baking use of
AOP paradigm. Three new pointcuts lock (), unlgcland

maybeShared () are introduced as language extertsion

AspectJ to intercept the events of locking and ckitey and
accessing shared memory locations in multithreglegrams.

Ill. ASPECT ORIENTED PROGRAMMING

AOP is the modern programming paradigm simplifyihg
implementation of cross-cutting concerns [7]. Caoncpace is
multi-dimensional, so in order to avoid tanglingdundancy
and complications caused by scattered functionatitese
cross-cutting concerns are modularized in the fofraspects.
Aspects are modular implementation of
functionality. Aspects can be developed independdénthe
target application even by some third party redycthe
application development time and then woven inte ltlase
program through a process called weaving.

Aspect comprises pointcuts, joinpoints and advibe&kvare
the fundamental concepts of AOP. Joinpoints araadlytthe
execution points for advice. Pointcuts select derj@npoints
on which certain advice has to be executed, wheadage is
the additional functionality needed to be performebden
certain execution point in the program has beeche

Aspect] is an aspect oriented extension to java [8]
facilitates the implementation of fundamentals @Rin java.
In Aspectl, aspects are simple class

) . java programs by availing the benefits of java corency
it mesi ackages for atomicity and by using AOP.

A. Observations

Though considered to be self synchronized, voldidkls
are not completely thread safe. If some non-ataopieration
like increment (i++) operation is being performen certain
volatile field, then there is greater chance ofedd
interference. Because the increment operation dsewprof
get, increase and set sub-operations, so therelsm@ce that
another thread might get the incorrect result iatite field is
concurrently accessed by more than one threaddlaBisithe
case with other non-atomic operations. Continucestirtg
revealed that besides unary operations, expressiakig use

cross-cuttingf conditional operators also become non-atomic. iSdhis

case volatile field become the possible candidatata race.
This research work proposes suggestions to hahéledce
conditions arising from these kinds of situationgava based
programs.

B. Proposed Solution for Data Race detection at Volatile
Fields Undergoing Non-atomic Operations

Three different ways to detect and avoid data races at
volatile fields undergoing non-atomic operations proposed in
this research work include:
i. Use of synchronization block for accessing titddields.
ii. Use of atomic classes introduced by java comcy

like strusturpackages to accommodate atomicity issue.

62

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:6, No:1, 2012

iii. Suggesting a new state machine for handlirgrécity.

1) Use of Synchronization Block for Accessing Volatile
Fields

Use of synchronized block guarantees safe operatith
no chance of data race. It is one of the ways ttopa atomic

atomic operations avoiding data races. A simpleeiment
operation is non-atomic, if performed on volatillds without
using synchronization mechanism, there is a greasipility
of data race in case of concurrent access of \®léld by
more than one threads leading to incorrect reslts. if
atomic classes introduced by java concurrency ppelare

operation without using any concurrency package farsed then volatile fields can undergo simple namrit

atomicity, since there is no chance of thread fatence. Use
of synchronized block for accessing volatile fieisishown in

increment operation without making use of synclredi
blocks. A test program in Fig. 3 shows the usagatofmic

Fig. 1. In this case, volatile variabteunter is being accessed classes for performing non-atomic operations atatyic\We

for performing two non-atomic operations, one therément
operation at line 13 and another conditional exgiogsat line
14. Performing these non-atomic operations on Welields
within synchronized block eliminate the chance atiadrace.

1 public class IaskForVolatile implements Runnable
- il
3 int test=0;
private volatile int counter = 0;
poblic voild run () {
while(

12 synchronized({TaskForVolatile.olass) |

i Syatem, out.printlin("cOunter:" + counter++);
;_. 1f (counter >= 3) {

sTopMe () ;

counter=0;

}

private void atopMa() |

teat++:

public static void main(String [] args) |
TagkForVolatile tl = naw TaskForVolatile()?
26 Tor (1nt 1 = 0; 1 < 3; 1++) {
Inread threadl = new Inread(tl);
threadl.gcarc ()y

Fig. 1 Use of Synchronized Block for Accessing \itdaFields

We introduced a new aspéxblatileChk keeping track of
accesses to volatile fields by making use of twditahal
pointcutsvolatileFieldSet() andVolatileFieldGet() as shown in
Fig. 2. Without a synchronized block, data racd b fired
for volatile fields undergoing non-atomic operason

public aspect VolatileChk

1dGec(): get (volatile ¥ *) &g get{!Rtomict *) &

Fig. 2 Aspect Introducing Pointcuts for Detectingglds and
Writes to Volatile Fields
Maybe, shared () pointcut developed by E. Boddehkan
Havelund is also used. Results of this test progvalnbe
discussed in Section V.

2) Use of Atomic Classes Introduced by Java Concurrency
Packages to Accommodate Atomicity |ssue

With evolution of JDKs, java introduced concurmgnc aiomic for handling atomic operations. In this case, the

package java.util.concurrent.atomic for safe hangdliof

only make use of Atomicinteger class for the puepas
demonstration in this test program.

1 import java.u
public class

t.atomic.*;
lass implements Runnable

private volatile AtomicInteger counter= mnew AtomicInteger
int test = 0:
= int temp:
public void run () {
while(test < 5} {

if (cemp >= S5) |
stopMe () :

counter = new AtomicInteger(0):

¥
24 private void stopMe(} {

public static void main(Sctring [] argas) {

tomicTestClass () :

AtomicTestClass tl
for (int 1 = 0:; i <

Thread threadl = new Thread(tl);
eadl.scart ():

Fig. 3 Test Class Showing the Usage of Atomic TGiass
Introduced by java.util.concurrent.atomic ConcucseRackage

Fig. 4 shows a new aspeAtomicityChk containing two
pointcuts AtomicityCheck Read () and AtomicityCheck Write
(). These new pointcuts are created to detect the sexés the
volatile fields making use of atomic test classesuch a field
is accessed outside synchronization block, no i@ will be
fired since atomicity is guaranteed by the usageatoimic

concurrency package. Fig. 4 also shows a new pdgintc
Its purpose is to create an impact that fields

never Shared ().
can never become shared if atomic operations aferpesd.
Section V explains the results of the test progiradetail.

public aspect AtomicicyChk

hieck Read(]: get{volatile Rtomic* *| &4 neverinare
yCheck Rritz(): set(volatile Acomic* *) &k neverShared(|;
it nevershared(|: if{false|;

Fig. 4 Aspect Introducing Pointcuts for Detectingalels and Writes
to Volatile Fields Making Use of Atomic Test Classe

3) Suggesting a New State Machine for Handling Atomicity
We suggest a new state machine with two stdilegn and

63

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:6, No:1, 2012

immediate state of the variable just after its togais Virgin.
If the newly created field is undergoing atomic @i®ns by
making use of java atomic classes, then once tié i read
or written by any thread, its state is transitiob@dtomic and
then no data race will be fired for such volatilarigbles
undergoing atomic operations. Rest of the transti@and Fig. 6 Output with NO Data Race at Volatile Fieldo&ssed within

le.cest' i= accesszed unprotected.

working will be same as that of RACER state macli®jeFig. the Synchronized Block
5 shows the proposed state machine for handlingniato
operations. If we execute the test program in Fig. 1 withosing

synchronized block, output shown in Fig. 7 is prostli Here,
read(t’) / write(t') newly created pointcuts detect the unprotected sscde
volatile fields undergoing non-atomic operationsfite data

| race on it.

\.. .

read(t’) / write(ts

W@mmmh

int TaskForVolatile.counter' is accessed unprotected.

Fig. 5 Proposed State Machine for Handling Atoryitisue

V.ANALYSS | m————————————

Test results are obtained using Aspect] in Eclipsd
providing runtime environment of abc. In this sentiresults
obtained using JavaSE 1.6 as JRE System Librari{ (3DK)

and ibm_sdk60 as JRE System Library (IBM JDK) arc— - — -
described in detail. Fig. 7 Output Showing Data Race at the Volatildd-iendergoing

Non-atomic Operations

A. Testing Proposed Solution with SUN JDK

Volatile variables are used to share the valuesngmo
threads in multithreaded programs. They are usuady

With the evolution of java programming languagewn
concurrency packaggava.util.concurrent.atomic supporting

cached in thread local memory and contain the mesént atomicity is introduced. Atomic operations are safid cannot

value updated by any thread. Volatile variables wsgally become victims of thread interference. So, there mo

considered thread safe and are accessed withoigt Stphances of ‘?'g‘t% rgce_ In ca_fe of atomic op(_erat|603. !f
adherence to locking discipline. However, this @ the case sup.?ort Fr)]row ﬁ y jafva.utl .concurrentigtgmlc I'm!fe 'IIS
with all of the accesses to volatile fields. In thet program of 2vailed, then chances of data race are eliminaiddvalatile

Fig. 1, volatile variablecounter is undergoing two different variable; can be accegsed without any §ynchrogizati
kinds of non-atomic operations. In line 13, valdeaunter s Mechanism. In order to adjust support for atomiritgxisting
incremented whereas in line lebunter is undergoing another ac€ detection algorithm RACER, we introduced a aspect
non-atomic operation in conditional expression. Wassify SNOWn in Fig. 4. Two pointcutatomicityCheck Read () and

this operation within the conditional expressiomas-atomic a0micityCheck Wite () detect if any volatile field making use
because through continuous testing, it was obsethvetdnew of atomic classes introduced by java.util.concuregamic is
value of counter is misread by some threads because it h&S€d- If such classes are used, then the purpose of
already been changed during the condition testitwigh is not neverShared() pointcut is to implement the assumption that

detected. But if this operation is performed ataifjcwithin ~ SUCh fields can never be shared among the threadbere is
the synchronized block then such kind of errors ¢mn N° chance of data race at volatile fields making efsatomic

avoided. The increment operation is already nomat since C/asses. Result of executing the test program@f3-is shown
there is the chance of thread interference, ss batter to M Fig. 8.

perform such operations atomically within the sywocived
block. Executing this test program using Aspectd ar
providing runtime environment of abc containing hew
created pointcuts yields the output shown in FigHére, no
data race is reported at the volatile fielolnter, since it is
accessed within the synchronized block. We enhaR#&CER
by making it sensitive to such volatile field acses via
pointcuts introduced in newly created aspect shimwhig. 2.
However, the data race is being reported at anattstance
variable test which is quite true because this variable igig. 8 Output with NO Data Race at Volatile Fieling Java Atomic
actually shared among the threads. Classes (Detected via Pointcut neverShared ())

64

International Journal of Information, Control and Computer Sciences

ISSN:
Vol:6,

In test program shown in Fig. 3, our main condsrmith
the usage of atomic classes for creating atomidabims.
Volatile variable counter is created as an
Atomicinteger class introduced by concurrency pgeka
java.util.concurrent.atomic. Since use of atomicasses
guarantee safe operations without thread interéereso here
no data race is being reported at the volatilel fieunter even
it is not accessed within the synchronized blockisTis
because newly developed pointmaverShared () made the
assumption that fields on which atomic operatiores laeing
performed can never become the shared fields. Tier two
data races being reported as shown in Fig. 8 aeedne, as

instance of

2517-9942
No:1, 2012

VI.

Data race is a serious programming error in muéaded
programs. A lot of work has been done on fixingimas
concurrent programming errors especially data rames
concurrent programs. Various race detection algast have
been proposed in past to address the issue of da&
detection in different programming languages. ERRS&the
lock-set based race detection algorithm for C anet+ C
programs. Harrow proposed an extension to ERASER b
introducing the concept of thread segments impléeaein
Visual Threads. Mayur Hiru Naik presented his athon for
static race detection in java programs [9], [LRACER on

COMPARISONOF DATA RACE DETECTION TECHNIQUES

the instance fieldsemp and test are actually shared among e gther hand is the most recent aspect orieatesi detection

threads.If the pointcuteverShared () is not createdthen in
order to deal with atomic operations, we suggeséwa state
machine shown in Fig. 5. After a new variable isated, its
state is declared agirgin, after checking that whether it is
created by making use of java atomic classes, wieena
thread reads or write this variable, its state vistched to

Atomic. No data race is fired iAtomic state because this state

is introduced as an indication of atomic operatigdstput of
the same test program shown in Fig. 3 when tesitd the

implementation of new state machine is shown in BigThis

state machine only handles the atomic operationsodatile

fields; the rest of the implementation we usedaie as that
of RACER state machine.

Fig. 9 Output showing NO Data Race at the Voldikld using Java
Atomic Classes (Detected via Proposed State Maghine

Output in Fig. 9 shows that when a volatile fiellnter
declared using java atomic classes is accesseitteatt| for
writing purpose by thread, its state is transitibrie Atomic
and a message saying ‘Fields using JAVA ATOMI(
CLASSES ARE NOT THE CANDIDATES OF DATA
RACES'’ is displayed. After this, whichever threaccesses

algorithm for java based programs. All of theseoathms
address the race detection issue in their own .stylethis
research work, we propose suggestions to addrassgae
issue of data race detection at the volatile fielsd how
concurrency utilities for atomicity provided by éwiion of
java programming language can be utilized to hatid#dssue
effectively. This research work demonstrates hove th
application of common programming practice normaised
for writing concurrent programs can help address tace
detection issue at the volatile fields. Volatilerighles being
considered as self-synchronized have never bechenéotus
of the data race issue. But through careful usdgeolatile
variables and taking into account the atomicityiéssanother
aspect of data race detection issue can be resohaue |
highlights the comparison among different race ci&ie
techniques. None of the existing race detectiorrtiegies
particularly focused on the volatility and atomydssue, so we
propose suggestions to address this issue for taetedata
races in multithreaded programs.

TABLE |
COMPARISONBETWEEN DIFFERENTDATA RACE DETECTION TECHNIQUES

this field counter for either read or write purpose, its state will Threads

remain the same and no data race will be repoxdedtch
volatile fields on which atomic operation is bejpgyformed.

B. Testing Proposed Solution with 1BM JDK
IBM JDK provides utility classes containing suppdot

concurrency same as that in SUN JDK. We proposeesom

suggestions to handle volatility and atomicity esdor data
race detection and tested the results on smaleptegrams.
So no change in results is obtained. We obtairséinee results
for both SUN and IBM JDKs. Differences

some larger programs.

in thread
management in SUN and IBM JDK might be observed for

Data Race Object Aspect Accesses Atomicity Issue
Detection Initializatio Oriented to
Techniqu n Volatile
e Variable
S
ERASER N N N N
RACER Y Y N N
Static N N N N
Race
Detection
Tech. by
Mayur
Visual N N N N
by
Harrow

We have presented the results of two different test
programs making use of static, volatile and atomic
variables. Fig. 10 summarizes the results by higtilng the
total number of data races in test program of Figtile
accessing the volatile field outside the synchrediblock.
The total numbers of data races existing in thepgesgram
of Fig. 1 are two. Data race at the simple instdield test
is detected via RACER logic while data race atvbkatile
field is being reported through the addition of rgouts
volatileFieldSet() andvolatileFieldGet().

65

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:6, No:1, 2012

[1]
15 [2]

0.5 Seriesl [3]

Total No.of Data Data Races [4]
Races Detected Via RACER
(UnSynchronized
access to Volatile
variable)

Data Races at
Volatile fields
Detected via
Proposed Solution [5]

Fig. 10 Data Race Detection [6]

Test program in Fig. 3 contains two data raceghat 71
instance fielddest andtemp, while the data race at the volatile
field counter is avoided by using java atomic classes. Our
newly created pointcuts atomicityCheck Read, [8]
atomicityCheck_Write() and never Shared() help to resolve the
issue. atomicityCheck Read and atomicityCheck Write() [9]
detect the accesses to atomic volatile fields raever Shared()
pointcut checks that these fields are never shamdng [10]
threads and can never become the possible canslidbtata
races, thus avoiding false alarms.

VII. CONCLUSION

AOP is modern programming paradigm facilitating the
implementation of cross-cutting concerns in modstgte. Its
simplicity, ease of use and ability to interceperts of
interest at runtime increases its usage for solwagous
issues. For the same reason, it can also be usesblfidng
concurrent programming errors like data racesyatam etc.

In this research work, we have used AspectJ toesdddata
race issue by combining the benefits of AOP andajav
concurrency utilities. We have presented the raeeation
issue at the volatile fields and atomicity concémt java
programming language, but this concept can be dgtero
other programming languages by considering the woency
utilities and aspect-oriented support provided thgm. By
using AspectC, Aspect# etc, concept of data ratectien by
using aspects and pointcuts can be extended todCCain
programming languages. Moreover, we can devise caspe
oriented algorithms for addressing other concurrent
programming errors like starvation, live locks etc.

ACKNOWLEDGMENT

We thank Eric Bodden for providing us with the
implementation of RACER algorithm which helped us
understanding the algorithm and facilitate impletimen our
proposed modifications in the algorithm. We alsanth
National University of Sciences and Technologyanshbad,
Pakistan for facilitating us in carrying out thissearch work
and for provision of equipment required for implenaion
and testing of our results.

REFERENCES
“Oracle Solaris Studio 12.2 Thread Analyzer Us&lside,” Internet:
download.oracle.com/docs/cd/E18659_01/pdf/821-24df4. [6 Sep.
2010].
S.Savage, M.Burrows, G.Nelson, P.Sobalvarro and ndefson,
“Eraser: A Dynamic Data Race Detector for Multithreaded Programs,”
ACM Trans. Computer Systems, Vol.15, No.4, pp. 321; 1997.
Eric Bodden and Klaus Havelundigpect-Oriented Race Detection in
Java’, [EEE Trans. on Software Engineering, Vol.36, #4Qluly/August
2010.
Eric Bodden and Klaus HavelundRdcer: Effective Race Detection
Using AspectJ”, Proc. Int'l Symp. Software Testing and Analysig.
155-165, July 2008.
J.Harrow, Runtime Checking of Multithreaded Application with Visual
Threads’, SPIN Model Checking and Software Verificatiompri®ger,
pp. 331-342, 2000.
R. O'Callahan and J-D. ChoiH{/brid Dynamic Data Race Detection”,
Proc. ACM SIGPLAN Symp. Principles and Practice Bérallel
Programming, pp. 167-178, 2003.
Pouria Shaker and Dennis K. Peterg&\n“Introduction to Aspect-
Oriented Software Development”, Proc. Newfoundland Electrical and
Computer Engineering Conference, October 2005.
Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik iseen, Jeffrey Palm
and William G. Griswold, An Overview of AspectJ’, ECOOP’01 Proc.
of 15th European Conference on Object OrientedrBroming, 2001.
Mayur Hiru Naik, “Effective Static Race DetectioorfJava”, Ph.D
Dissertation, March 2008.
Mayur Naik and Alex Aiken, Conditional Must Not Aliasing for Static
Race Detection”, Proc. of the 34th annual ACM SIGPLAN, 2007.

66

