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Abstract—In the present study, a numerical analysis is carried 

out to investigate unsteady MHD (magneto-hydrodynamic) flow and 
heat transfer of a non-Newtonian second grade viscoelastic fluid 
over an oscillatory stretching sheet. The flow is induced due to an 
infinite elastic sheet which is stretched oscillatory (back and forth) in 
its own plane. Effect of viscous dissipation and joule heating are 
taken into account. The non-linear differential equations governing 
the problem are transformed into system of non-dimensional 
differential equations using similarity transformations. A newly 
developed meshfree numerical technique Element free Galerkin 
method (EFGM) is employed to solve the coupled non linear 
differential equations. The results illustrating the effect of various 
parameters like viscoelastic parameter, Hartman number, relative 
frequency amplitude of the oscillatory sheet to the stretching rate and 
Eckert number on velocity and temperature field are reported in 
terms of graphs and tables. The present model finds its application in 
polymer extrusion, drawing of plastic films and wires, glass, fiber 
and paper production etc. 
 

Keywords—EFGM, MHD, Oscillatory stretching sheet, 
Unsteady, Viscoelastic 

I. INTRODUCTION 
N many fluids such as blood, dyes, yoghurt, ketchup, 
shampoo, mud, clay etc. the relation between stress and 

strain can’t be simply described by Newton’s law of viscosity 
and are usually called non-Newtonian fluids. The flows of 
such type of fluids have immense practical applications in 
polymer devolatisation, fermentation, plastic foam processing 
and many others. To study the behavior of non-Newtonian 
fluids, various models have been proposed by many authors 
taking account of variations of their rheological properties. 
One of the most popular models for non-Newtonian fluids is 
the model of second order fluids which is given by 

                       2
12211 AAApIT ααμ +++−=                    (1) 

Where T is the Cauchy stress tensor, p  is the pressure, 
21 αα and are material  constants, and 21, AA are defined as, 
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The sign of the material constants 1α  and 2α  is the subject 
of much controversy which was discussed by Dunn and 
Rajagopal [1].  Generally, in the literature the fluid which 
satisfies (1) with 0,0,0 211 =+>> αααμ is known as second 
grade fluid while fluid with restriction 

0,0,0 211 ≠+<> αααμ is termed as second order fluid. 
When 0,0 21 ==> ααμ ,(1) reduces to the well-known 
constitutive relation of an incompressible Newtonian fluid. 

The problems of flow and heat transfer due to a 
continuously moving stretching surface through an ambient 
fluid have received much attention in past. Such problems find 
their application over a broad spectrum of science and 
engineering disciplines, eg. aerodynamic extrusion of plastic 
sheets, the cooling of an infinite metallic plate in a cooling 
bath, the boundary layer along a liquid film in condensation 
process, and paper production. The dynamics of boundary 
layer flow over a moving continuous solid surface was 
originated from the pioneer work of Sakiadis [2]. Then, Crane 
[3] initiated the analytical study of boundary layer flow of a 
Newtonian fluid over a linearly stretching surface. Due to 
recent advances in no-Newtonian fluids, it is still of interest to 
simulate stretching flows involving non-Newtonian fluids. 
Wang [4] discussed the viscous flow due to an oscillatory 
stretching surface. Ambethkar [5] discussed the oscillatory 
motion of a viscoelastic fluid past a stretching sheet with 
thermal relaxation. In the present study we provide an attempt 
for the numerical simulation of moment and heat transfer of a 
second grade viscoelastic fluid over an oscillatory stretching 
sheet. Although flow is induced by oscillatory stretching sheet 
in the present analysis but we also have a free stream velocity 
oscillating in time about a constant mean oscillatory flow [6]-
[7]. The non-linear mathematical model of the problem is 
solved by a meshless numerical technique known as Element 
free Galerkin method which is a very powerful technique and 
has been successfully employed to solve various problems in 
different areas such as heat transfer [8], fracture mechanics [9] 
etc. Recently, Singh and Bhargava [10] have applied EFGM 
for the simulation of an unsteady micropolar squeeze film 
flow. Results obtained with EFGM are compared with some 
results reported by Chen [11] and Grubka and Bobba [12] in 
table I and excellent agreement has been observed between 
them. 

Numerical Simulation of unsteady MHD Flow 
and Heat Transfer of a Second Grade Fluid with 

Viscous Dissipation and Joule Heating using 
Meshfree Approach  
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II. MATHEMATICAL ANALYSIS 
 Consider the two-dimensional unsteady MHD flow of an 

incompressible viscoelastic fluid (obeying second grade 
model) in the presence of viscous dissipation and joule 
heating past an oscillatory stretching surface coinciding with 
the plane 0=y  and the flow being confined to the 
space 0>y . 

The flow is generated by stretching of an elastic boundary 
sheet which is stretched back and forth periodically with 
velocity tbxuw ωsin= parallel to x axis, where b is the 
stretching rate and ω is the oscillation frequency of the sheet. 
x- and y-axis are taken as the coordinates along the sheet and 
normal to it respectively. Further u and v are the velocity 
components along the x- and y-directions respectively. The 
fluid moves in the x-direction with a velocity (u-component) 
equal to the velocity of the solid surface, whereas at 
increasing distance from the surface, the velocity of the fluid 
approaches to zero asymptotically. The physical model and 
geometrical coordinates are shown in Fig. 1.  
 
 
 

                                                                                                       0B
 

 
 
 
 
 
 
                                             tbxuw ωsin=           

Fig. 1 Geometry of the problem 
 

A constant magnetic field of strength B0 is applied 
perpendicular to the stretching surface and the effect of the 
induced magnetic field is neglected. All the fluid properties 
are assumed to be isotropic and constant. With the usual 
boundary layer approximation, the governing equations for 
unsteady magneto-hydrodynamic momentum and heat transfer 
for a second grade viscoelastic fluid in the presence of viscous 
dissipation and joule heating take the following from:   

0=
∂
∂

+
∂
∂

y
v

x
u                                                                (2) 

u
B

y
v

y
u

y
uv

y
uu

xyt
uk

y
u

y
uv

x
uu

t
u

ρ
σ

ν

2
0

2

2

3

3

2

2

2

3

02

2

)

(

−
∂
∂

∂
∂

+
∂
∂

+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

∂
∂

+
∂∂

∂
+

∂
∂

=
∂
∂

+
∂
∂

+
∂
∂

     (3)                            

22
0

2

2

2
uB

y
u

y
TK

y
Tv

x
Tu

t
Tc p σμρ +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂

∂
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂      (4)                           

Where μ , ν  are the dynamic and  kinematic viscosity of the 
fluid, ρ is the fluid density, σ is the electrical conductivity of 
the fluid, 0k is the viscoelastic parameter of the fluid, K is the 

thermal conductivity of the fluid and pc is the specific heat at 

constant pressure. 
 

The following appropriate boundary conditions are 
employed on the velocity field: 

0,00,sin >==== tyatvtbxuu w ω                        (5) 

∞→=
∂
∂

= yas
y
uu 0,0                                               (6) 

An augmented boundary condition for longitudinal velocity 
gradient has been used in (6) following Fosdick and Rajagopal 
[13]. Physical implication of this boundary condition is the 
absence of shear stress in free stream. Since (3) is a third order 
differential equation in u whereas without the augmented 
boundary condition the prescribed boundary conditions on u 
are two. Hence, without the augmented boundary condition in 
(6) above system is ill-posed. In (5), both ω and b have the 

dimension (time)-1. We assume,
b

S ω
= which denotes the ratio 

of oscillation frequency of the sheet to its stretching rate. 
The boundary conditions for the temperature field are given 

as follows: 
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∞→→ ∞ yasTT                                               (8) 
Where A is a constant and l is the characteristic length. 

III. TRANSFORMATION OF THE MODEL 
To examine the flow regime adjacent to the sheet the 

following transformations are invoked, 
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Using transformations (9), the continuity equation is 
automatically satisfied and the governing equations (3), (4) 
are reduced to following non-dimensional form, 
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And the corresponding boundary conditions are 

transformed to, 
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corresponds to the case of a Newtonian fluid. 
b

B
M

ρ
σ 2

02 = is 

the Hartman number or the magnetic parameter, 
pAc

lbEc
22

= is 

the Eckert number. 
One of the physical quantities of interest, the local heat 

transfer rate in terms of Nusselt number can be expressed as: 
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Where 
ν

2
Re xb

x = is the local Reynolds number. 

For the solution of system of simultaneous differential 
equation as given in (10) and (11), with the conditions (12), 
the equations are reformulated as: 
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And the corresponding boundary conditions now become: 

( ) ( ) ( ) 1,0,0,0,sin,0 === τθτττ fh  
( ) ( ) ( ) 0,,0,,0, =∞=∞=∞ τθττ ηhh                        (15) 

 
The system of simultaneous differential equations given in 

(14) along with the boundary conditions (15) is numerically 
solved using Element Free Galerkin Method (EFGM). 

IV. ELEMENT FREE GALERKIN METHOD 
The Element free Galerkin method (EFGM) requires 

Moving least square (MLS) interpolation functions to 
approximate an unknown function. The MLS approximant 
requires only set of nodes for its construction and is made up 
of three components: a compact support weight function 
associated with each node, a polynomial basis function and a 
set of coefficients that depends on node position. The weight 
function is non-zero over a small neighborhood at a particular 
node, called support domain of the node. Using MLS 
approximation, the unknown field variable u(x) is 
approximated over the domain Ω as (details can be seen in 
[14]): 

)()()()()()(
1

xaxpxaxpxuxu T
m

j
jj

h ==≈ ∑
=

             (16)         

Where m is the number of terms in the basis, )(xp j the 

monomial basis function and )(xa j the non-constant 

coefficient functions. In the present simulation quadratic 

basis functions are used i.e. ]1[)( 2xxxpT = . The 

coefficients )(xa j are determined by minimizing the 

functional J(x) given by: 
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Where ( )IxxW −  is a weight function which is non-zero over 
a small domain, called support domain, n is the number of 
nodes is the support domain. The minimization of J(x) w.r.t 
a(x) leads to the following set of equations: 
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Substituting (18) in (16), the MLS approximant is obtained as: 
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Where the shape function )(xIΦ is defined by: 
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A.   Weight Function Description 
The weight function is non-zero over a small neighborhood 

of Ix , called the support domain of node I. The choice of 

weight function affects the resulting approximation )( I
h xu in 

EFG and other meshless methods. In EFGM, the continuity of 
MLS approximants is governed by the continuity of weight 
function. Singh et al. [15] has studied these weight functions 
and reported that cubicspline weight function gives more 
accurate results as compared to others. Therefore, in present 
work, cubicspline weight function has been used. 

B.   Cubic Spline Weight  
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Imxd is the sizes of support domain in x-direction. maxd  is a 

scaling parameter, and 
IxC is the distance to the nearest 

neighbor in x-direction. The size of the support domain at a 
particular node I is only controlled by scaling parameter since 
the distance between nearest neighbors for an evaluation point 
(or quadrature point) remains unchanged for a given nodal 
data distribution. The minimum value of maxd  should be 

greater than 1 so that n>m, and the maximum value of maxd  
should be such that it preserves the local character of MLS 
approximation. The optimum range of scaling parameter for 
heat transfer problems is discussed in [16]. In the present 
simulation maxd  has been fixed as 2.2. 

C.   Variational Formulation 
The weighted integral form of the equations (14) over the 

entire domain can be written as: 
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Where 321 ,, www  are arbitrary test functions and may be 
viewed as the variation in θ,, hf  respectively.  

D.   Element Free Galerkin Formulation 
The Element free Galerkin model of the equations (21) may 

be obtained by substituting MLS approximation for the 
unknown variables θ,, hf using equations (19-20). 
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E.   Imposition of the boundary conditions 
Since MLS shape functions do not satisfy the kronecker 

delta property, so we cannot directly impose the essential 
boundary conditions. To remove this problem, different 
numerical techniques have been proposed to enforce the 
essential boundary conditions in EFG method, such as 
Lagrange Multiplier method, Penalty method. In the present 
simulation penalty method is applied. 

F.   Penalty Method 
Using penalty method, to enforce the essential boundary 

conditions, the variational form is written as: 
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where ( ) ( ) ( ) ( ) ( )∞∞ θθ ,0,,0,0 hhf  are given in equation 

(15). α is the penalty parameter and in the present work, it is 
chosen as .106

 
Using the EFGM model given by (22), into equations (23), 

the system of equations can be defined in matrix form, which 
is given as follows: 
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For time integration, Crank-Nicolson scheme is used which 

is unconditionally stable. Following Crank-Nicolson scheme, 
eq. (24) at (p+1)th time step can be written as: 
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The whole domain Ω is discretized with uniformly 

distributed 101 nodes. Four point Gauss quadrature formula 
has been used to calculate the integral values. At each node 
three functions θ,, hf  are to be evaluated, hence after 
assembly, we obtain a non-linear system of equations of 
order 303303× , as given in (24). Owing to the nonlinearity of 
the system an iterative scheme has been used to solve it with 
an initial guess. The system of equations is linearized by 
incorporating known functions θ,, hf , which is solved using 
Gauss elimination method. This gives a new set of values of 
unknowns θ,, hf  and the process continues till the absolute 
difference of two successive iterate value of unknowns is less 
than the accuracy 0.0005. 

It has been observed that in the same domain, the accuracy 
is not affected even if the numbers of nodes are increased, else 
it increases the computational time only. 

V.   RESULTS AND DISCUSSION 
In order to obtain some physical insight into present 

simulation, numerical computations are carried out for various 
values of the parameters that describe the flow characteristics 
and the results are reported in terms of graphs. 

Fig. 2 shows the time series of the velocity field ( )ηfh =  at 
the four different distances from the surface of the oscillatory 
sheet with fixed values 
of 2.0,2.0,0.5Pr,2,1 1 ===== EckMS . It is observed that 

the amplitude of the flow near the oscillatory surface is greater 
as compared to that far away from the surface. As the distance 
increases from the surface, the amplitude of the flow motion is 
decreased and almost vanishes (approached to zero) for larger 
distance from the sheet. 
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Fig. 2 ( )τηη ,f with S=1.0, M=2.0, 1k =0.4, Pr=5.0 and Ec=0.2 

 
Fig. 3 depicts the effect of viscoelastic parameter 1k on the 

time series [ ]πτ 4,0∈ of the velocity field ( )ηfh =  at a fixed 
distance 2.0=η  from the surface. An increment in the 
amplitude of the flow motion is observed with the increase of 
the non-Newtonain viscoelastic parameter 1k  due to increased 
effective viscosity.  
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Fig. 3 ( )τηη ,f with S=1.0, M=2.0, Pr=5.0 and Ec=0.2 

 
In Fig. 4 the effect of parameter S (ratio of oscillation 

frequency of sheet to its stretching rate) on the time series 
[ ]πτ 4,0∈ of the velocity field is depicted. It is observed that 

with the increase of S the amplitude of the flow increases 
slightly.  
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Fig. 4 ( )τηη ,f with k1=0.2, M=2.0, Pr=5.0 and Ec=0.2, 4.0=η  

 
Fig. 5 depicts the velocity profile ηf for the different values 

of the magnetic parameter M keeping fixed values 
of 2.0,0.5Pr,2.0,0.1 1 ==== EckS . As expected, the 
magnetic field in an electrically conducting flow acts as a 
drag-like force called the Lorentz force. This type of resistive 
force tends to slow down the motion of the fluid in the 
boundary layer i.e decelerates the flow. Hence, the amplitude 
of the flow decreases with the increase of the magnetic 
parameter M. Due to deceleration of the flow, temperature of 
the fluid is increased. Fig. 6 reveals the relative influence of 
magnetic field on temperature ( )τηθ , .  
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Fig. 5 ( )τηη ,f  with k1=0.2, S=1.0, Pr=5.0, Ec=0.2, 2/πτ =  

 
Fig. 7 illustrates the effect of prandtl number Pr on the 

temperature profile ( )τηθ , at 4/πτ = . It is observed that the 
effect of increasing Prandtl number Pr is to decrease, 
temperature throughout the boundary layer, which results in 
decrease of the thermal boundary layer thickness. The increase 
of Prandtl number means slow rate of thermal diffusion. 
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Fig. 6 ( )τηθ ,  with k1=0.2, S=1.0, Pr=5.0, Ec=0.2, 2/πτ =  
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Fig. 7 ( )τηθ ,  with k1=0.2, S=1.0, M=2.0, Ec=0.2, 4/πτ =  

 
Fig. 8 depicts that the effect of increasing the values of 

local Eckert number Ec is to increase temperature distribution 
in the flow region. This behavior of temperature enhancement 
occurs as heat energy is stored in the fluid due to frictional 
heating. 
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Fig. 8 ( )τηθ ,  with k1=0.2, S=1.0, Pr=5.0, M=2.0, 2/πτ =  

VI. CONCLUSIONS 
The main findings can be summarized as: 

1. The effect of viscoelastic parameter is to increase the 
velocity distribution. 
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2. The effect of magnetic parameter is to decrease the velocity 
distribution while temperature increases with the increased 
magnetic parameter. 

3. The thermal boundary layer thickness decreases 
significantly with the increase of Prandtl Number. 

4. The effect of increasing values of Eckert number is to 
increase the temperature in the boundary layer flow. 

 

TABLE I 

COMPARISON OF RESULTS FOR THE NUSSELT NUMBER ( )0ηθ−  

WITH k1=0.0, M=0.0, S=0.0, Ec =0.0 AND VARIOUS VALUES OF Pr 
WITH CHEN [11] AND GRUBKA AND BOBBA [12] 
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Pr            Chen [11]          Grubka and Bobba [12]         Present Results 
 
1.0            1.33334                    1.3333                               1.3333 
 
2.0                -                                 -                                     1.9876 
 
3.0            2.50972                    2.5097                              2.5095 
 
5.0                -                                -                                      3.6577 
 
10.0           4.79686                 4.7969                                4.7968 


