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Abstract—In this paper we study some numerical methods to 

solve a model one-dimensional convection–diffusion equation. The 
semi-discretisation of the space variable results into a system of 
ordinary differential equations and the solution of the latter involves 
the evaluation of a matrix exponent. Since the calculation of this term 
is computationally expensive, we study some methods based on 
Krylov subspace and on Restrictive Taylor series approximation 
respectively. We also consider the Chebyshev Pseudospectral 
collocation method to do the spatial discretisation and we present the 
numerical solution obtained by these methods. 

Keywords—Chebyshev Pseudospectral collocation method,  
convection-diffusion equation, restrictive Taylor approximation.  

I. INTRODUCTION 
HE numerical solution of convection-diffusion transport 
problems arises in many important applications in science 

and engineering. These problems occur in many applications 
such as in the transport of air and ground water pollutants, oil 
reservoir flow, in the modeling of semiconductors, among 
others.  In this paper, we consider the one dimensional 
convection-diffusion equation, given as  
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subject to the initial condition 
10),()0,( <<= xxgxu  

and the boundary conditions given by 
( ) ( )tgtu 0,0 = ,   0≥t  
( ) ( )tgtu 1,1 = ,   0≥t .   
Much research work has been done on computing a finite 

difference approximation solution for (1) as shown in [3,7]. In 
this paper, we focus on a semi-discretisation of (1) so as to 
obtain a system of ordinary differential equations.  The 
discrete solution requires the computation of a matrix 
exponent with a vector.  Our study is thus based on a 
comparison of three recent methods for solving the one 
dimensional convection diffusion equation.  We first consider 
the discretisation of (1) in the next section. 

A. Discretisation of the 1-D convection-diffusion equation 
We start by considering the grid point ihxi = , 

where ni ,,0 K=   a set of regular grid points of the interval 
[0,1] with 00 =x  and 1=nx  and 1=nh . We use the Taylor 
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series expansion to obtain expressions for the first and second 
partial derivative of u  with respect to x  respectively as: 

)()2/()),(),((),( 2
11 hOhtxutxutxu iiix +−= −+          (2) 

 and  
)()/()),(),(2),((),( 22

11 hOhtxutxutxutxu iiiixx ++−= −+  (3)  
at a fixed time t . Replacing equations (2) and (3) into (1) 
gives 
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The difference method (4) can be written as  

( ) ,)( btAV
dt

tdV
+=                        (5)  

where )](),(),([)( 21 tutututV nK= , A is the tridiagonal matrix 
of order 1−n  given by  
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II. DISCRETE SOLUTION OF THE ODE SYSTEM 

In this section we show how the expressions obtained after 
discretising the model convection-diffusion equation can be 
expressed as a system of ordinary differential equations. We 
find that the solution of such systems involves terms such as 

kAe  and we investigate ways to obtain the explicit 

computation of the exponential matrix. Thus the term yekA
 is 

approximated based by the Krylov subspace method proposed 
in [6].  
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Now consider the ordinary differential equation (5).  
Rewriting the equation gives 

btVA
dt

tdV
=− )]([)( . 

.)()( 1∫ +−==∴ −−−− cbeAdtbetVe tAtAtA  

tAcebAtV −− +−=∴ 1)(  
Using initial condition we obtain
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Hence to compute solution at time kt + , we need to compute 

yekA
 where bAtVy 1)( −+= , that is  

( )bAtVebAktV kA 11 )()( −− ++−=+ yebA kA+−= −1   (8)          

A. The Krylov Subspace Method 
Let us consider the tridiagonal matrix A instead of kA.  The 
method proposed is based on the Krylov subspace which is of 
the form 

yApye m
A )(1−≈  

where  1−mp  is the polynomial of degree of 1−m . In this 

paper, the approximation to yeA  is taken from the Krylov 
subspace 
  { }.,...,, 1 yAAyyspan m

m
−=κ  

 
We then have to generate an orthonormal 
basis ],,,[ 21 mm vvvV K= , so that the vectors in the Krylov 
subspace can be manipulated. Taking initial vector:  

2
1 y

yv =  we obtain mV   by the Arnoldi's algorithm which is 

next given by: 
Algorithm: (Arnoldi-modified Gram-Schmidt). 
Compute 21 / yyv = . 
For mj ,...,2,1=   Do: 

Compute jj Avw =:  
For ji ,...1=   Do: 

( )iiij vwh ,:=  

ijijj vhww ,: −=  
EndDo 

.:
21 jj wh =+   If 0,1 =+ jjh , then Stop 

jjjj hwv ,11 /: ++ =  

EndDo 
 
From this algorithm, a matrix mH  (Hessenberg matrix) and 

an orthonormal basis mV  can be obtained. We also find the 
following relations to hold: 
 mm

T
m HAVV =

T
mmmmmmm eVhHVAV 1,1 +++=

 
where me  is the mth unit vector belonging to real space of 

order m. Hence  mH  represents the projection of the linear 

transformation A to the space mκ , with respect to the basis mV .  

The required approximation can be written to Ayex =  as 
yApx mm )(1−=    or equivalently,  wVx mm =   where w is 

an m-vector.  

1eew mHβ=  with 2y=β  is suggested, leading to the 

following formula: 1eeVe mH
m

Ay β≈ where 1e is the 
first unit vector belonging to the real space of order m. 

B. Restrictive Taylor’s approximation for solving 
convection-diffusion equation (RTA) 
In this section we introduce an explicit method for solving (1) 
which exhibits several advantageous features compared other 
known methods. The accuracy is not affected when the exact 
solution is sufficiently large.  Moreover, the choice of time 
step length k is relatively large compared with what can be 
used for the classical schemes, this allows us to have the 
solution at high level of time. We use the restrictive Taylor 
(RT) approximation [4, 5] to approximate the exponential 

matrix given as kAe .  The RTs approximation of the function 
f(x) at the point a can be written in the form: 
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where the parameter ε is to be determined such that 

)()( 00)(, xfxRT xfn = .                        (10) 

This means that the considered approximation is exact at two 
points ax =  and 0xx= . 

        
( ) ),()( 10)(, xxRTxf nxfn +ℜ+=                 (11)

 
where )(1 xn+ℜ  is the remainder term of Restrictive Taylor’s 
series and it given by 
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 where ],[ xa∈ξ  and ε is the restrictive parameter.
 The exponential matrix 

kAe can be formally defined by the 
convergent power series  
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In the case of RTs approximation of single function the 
term ε , (9) can be reduced to the square restrictive matrix Γ  
in the case of RTs approximation for matrix function, where 

Iε=Γ and I  is the identity matrix.  
 For example, ( ) AkIkRT xA Γ+=)exp(,1 . 

III. CHEBYSHEV PSEUDOSPECTRAL METHOD (CPS) 
In this section, we focus on solving (1) based on Chebyshev 

pseudospectral collocation (CPS) [1]. Spatial discretization is 
done by using the Chebyshev pseudospectral collocation 
(CPS).  Bazan [1] has highlighted one major drawback of [6] 
lies in the fact that the vector b does not take into account the 
time dependence. The solution to (1) with respect to the given 
initial condition is therefore given as: 
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where ie  represents the ith canonical vector in 1−ℜm  [1].  If 

( )tb  is independent to t which is the case when the boundary 
conditions in (1) are constants, the unique solution to (1) 
reduces to 

( ) ( ) ( )( )bAVtAbAtV 11 0exp −− ++−= . 
Consider the lemma given in [1] 
LEMMA 1: Let A  have a spectral 
decomposition 1−= PAPA .  Then a necessary condition for 

( )txtxu βα += exp),(  to solve problem (1) 
is ( ) ( )ttgo βexp= , ( ) ( )ttg βα += exp1  

and 02 =−− βαγα c . Moreover, the approximate difference 
finite-based solution becomes in this case 
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where ( )01
0 VPw −=  and ( )( )11

1
1 exp −

− += mceqePw α . 

We can readily conclude that problem (1) is of the 
form ( )tx βα +exp . As for (14), it results from using 

1−= PAPA  in (13) and the specified boundary conditions. 
We focus on defining a semi-discrete method obtained by 
discretising (1) with respect to the spatial variable using the 
pseudospectral Chebyshev method. In the following the first-
order ( ) ( )11 +×+ nn  Chebyshev differentiation matrix 
associated with the collocation points 

,1...0 10 =<<<= nxxx   

with ( )[ ]njx j /cos1
2
1 π−=  , nj ,...,1,0=   will be denoted by 

D . Also, if ( )T
ii lrespd ., denotes the ith column (resp., row) 

vector of matrix D , we write 
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Let 1D , 2D , and 3D  be matrices defined by [ ]nddD ,...,21 = , 

[ ]TnllD ,...,22 = , DEED T=3 , 
with [ ]neeE ,...,2= , where ie is the ith column of the identity 
matrix of order 1+n . 
We introduce the semi-discrete version of  (1) obtained by 
discrete differencing using matrix D . Then 

[ ]Tnμμμμ ,...,, 10= denotes a vector of data at 
positions jx , nj ,...,1,0= , the first order differentiation matrix 
D  gives highly accurate approximations to ( ) ( ),...,",' jj xx μμ  

simply by taking ( ) ( ) ,' jj Dμx =μ  ( ) ( ) ,2
jj μDxμ" = and so 

on. Thus the formulae for the entries of D  can be computed 
by the Chebyshev differentiation matrix matlab code given in 
[1]. 
 
A semi discrete Chebyshev approximation to (1) is provided 
by the system of 1−n  ordinary differential equations: 

( )tbAV
dt
dV

+=  

( ) ( ) ( )[ ]TnxfxfV 11 ,...,0 −= , ( ) ( ) ( )[ ]Tn tttV 11 ,..., −= μμ ,   

312 cDDDA −= γ ,  
and ( ) ( )( ) ( )( ) .12112 +−+−= n

TT
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If 1−= PAPA holds, the solution to the above initial value 
problem (2.1) is  
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Finally the solution to the problem (1) follows as: 
( ) ( )weeABIwePtV AtBttA −−+= −1

0 )()( , where 

( )( )( )112
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T dedcEDPw αγ . 

IV. NUMERICAL EXPERIMENTS 
In this section, we use the methods described earlier to 

solve three problems which are given as follows: 
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0,10 ≥≤≤ tx   

where the initial boundary conditions are defined such that the 
exact solution is  txetxu 09.0467701771243444.1),( −= .  
Problem 2 
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where the initial boundary conditions are defined such that the 
exact solution is  txetxu 09.09),( −= . 
Problem 3 
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where the initial boundary conditions are defined such that the 
exact solution is   txetxu 09.019280285479799.0),( −= . 
 

For our numerical experiments, we let 025.0=h , 
001.0=k and 5=m for the Krylov subspace projection. We 

observe that the CPS’s accuracy for problem 1 is better than 
that of SM. RTA gives the least accurate solution when 
compared to SM and CPS. Thus we can conclude that for 
problem 1, the parameters defined on CPS gives very accurate 
approximation. 

We note that the SM’s accuracy for problem 1 is more 
accurate than CPS. RTA gives the least accurate solution 
when compared to SM and CPS. Thus we find that for 
problem 2, the parameters defined on SM gives very accurate 
approximation. 

We note that the RTA’s accuracy for problem 2.3 is more 
accurate than CPS and SM. SM gives the least accuracy 
compared to RTA and CPS at x = 0.5 and at x = 0.1, SM and 
CPS gives a mean absolute value relatively the same. Thus we 
see that for problem 3, the parameters defined on RTA gives 
good accuracy. 

V. CONCLUSION 
In this paper, we have studied three methods for solving the 

one-dimensional convection-diffusion equation. The first 
method, SM, consists of finding the solution of the system of 
ordinary differential equations which arises from 
discretisation of the convection-diffusion with respect to the 
spatial variable. The resulting exponential matrix term was 
approximated by a polynomial obtained by using a Krylov 
subspace method.  We next studied the Restrictive Taylor 

approximation (RTA) method. This time the exponential 
matrix was approximated by an expression derived from the 
Taylor series approximation. Finally, we studied the 
Chebyshev Pseudospectral Collocation method which is used 
from the spatial discretisation.  
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Time t 

Absolute errors at x = 0.1 Absolute errors at x = 0.5 

SM RTA CPS SM RTA CPS 
1 
2 
3 
4 
5 
. 
. 
. 

36 
37 
38 
39 

1.2894e-005 
3.7845e-007 
3.8452e-008 
5.0364e-008 
5.2083e-008 

. 

. 

. 
1.2928e-007 
1.0981e-007 
9.3904e-007 
3.6908e-005 

6.7584e-004 
2.5208e-005 
2.3145e-006 
2.1025e-006 
2.1653e-006 

. 

. 

. 
5.3916e-006 
6.1610e-006 
6.4395e-005 
1.9355e-003 

4.4148e-008 
4.7615e-008 
4.9108e-008 
5.0577e-008 
5.2087e-008 

. 

. 

. 
1.2970e-007 
1.3357e-007 
1.3738e-007 
1.3550e-007 

3.9094e-004 
6.8890e-005 
9.5392e-006 
8.4640e-007 
2.1159e-007 

. 

. 

. 
1.4737e-006 
2.1112e-005 
1.7394e-004 
1.1193e-003 

2.8050e-003 
7.2700e-004 
1.4102e-004 
3.0323e-005 
1.5436e-005 

. 

. 

. 
6.7588e-005 
3.2069e-004 
1.8412e-003 
8.0338e-003 

2.2772e-007 
2.9006e-007 
3.0894e-007 
3.1966e-007 
3.2939e-007 

. 

. 

. 
8.1984e-007 
8.4107e-007 
8.4085e-007 
7.0949e-007 

Error 1.3858e-006 7.2434e-005 8.5287e-008 4.6208e-005 3.7577e-004 5.3312e-007 

Time t Absolute errors at x = 0.1 Absolute errors at x = 0.5 

SM RTA CPS SM RTA CPS 

1 
2 
3 
4 
5 
. 
. 
. 

36 
37 
38 
39 

8.3458e-006 
1.9577e-005 
2.4680e-005 
3.0909e-005 
3.8708e-005 

. 

. 

. 
4.1400e-002 
5.1840e-002 
6.4287e-002 
3.4727e-002 

2.3530e-002 
4.1244e-004 
2.2087e-004 
2.7560e-004 
3.4514e-004 

. 

. 

. 
3.6914e-001 
4.6535e-001 
1.7393e+000 
1.4814e+002 

1.5409e-005 
1.9703e-005 
2.4681e-005 
3.0909e-005 
3.8708e-005 

. 

. 

. 
4.1400e-002 
5.1846e-002 
6.4900e-002 
7.9240e-002 

1.5434e-004 
9.8454e-005 
1.5398e-004 
1.9533e-004 
2.4478e-004 

. 

. 

. 
2.6141e-001 
3.1986e-001 
2.8227e-001 
1.0857e+000 

1.3006e-001 
1.2307e-002 
2.0218e-003 
1.7688e-003 
2.1841e-003 

. 

. 

. 
2.4103e+000 
5.3248e+000 
5.8540e+001 
8.1866e+002 

8.8238e-005 
1.2347e-004 
1.5599e-004 
1.9546e-004 
2.4479e-004 

. 

. 

. 
2.6180e-001 
3.2752e-001 
4.0490e-001 
4.4308e-001 

Error 9.1349e-003 3.9025e+000 1.0292e-002 7.6577e-002 2.2932e+001 1.1412e-001 

Time t Absolute errors at x = 0.1 Absolute errors at x = 0.5 

SM RTA CPS SM RTA CPS 
1 
2 
3 
4 
5 
. 
. 
. 

36 
37 
38 
39 

8.3458e-006 
1.9577e-005 
2.4680e-005 
3.0909e-005 
3.8708e-005 

. 

. 

. 
4.1400e-002 
5.1840e-002 
6.4287e-002 
3.4727e-002 

3.8701e-005 
3.1223e-005 
3.0136e-005 
3.0111e-005 
3.0133e-005 

. 

. 

. 
3.0808e-005 
3.0828e-005 
3.0982e-005 
2.7928e-005 

2.5637e-005 
2.9621e-005 
3.0055e-005 
3.0109e-005 
3.0131e-005 

 
 
 

2.6089e-003 
1.6659e-002 
9.6472e-003 
2.7770e-002 

1.5434e-004 
9.8454e-005 
1.5398e-004 
1.9533e-004 
2.4478e-004 

. 

. 

. 
2.6141e-001 
3.1986e-001 
2.8227e-001 
1.0857e+000 

1.1186e-004 
1.6231e-004 
1.8483e-004 
1.9074e-004 
1.9122e-004 

. 

. 

. 
1.9482e-004 
1.9516e-004 
1.9196e-004 
2.2184e-004 

7.1696e-005 
1.2897e-004 
1.6397e-004 
1.8086e-004 
1.8757e-004 

. 

. 

. 
5.8361e-003 
7.9375e-003 
2.0856e-002 
1.2473e-002 

Error 9.1349e-003 3.0639e-005 1.6969e-003 7.6577e-002 1.9040e-004 1.5399e-003 

TABLE II 
 COMPARISON OF SM, RTA AND CPS’S ABSOLUTE ERRORS AT X = 0.1 AND X = 0.5 FOR PROBLEM 2 

TABLE III 
COMPARISON OF SM, RTA AND CPS’S ABSOLUTE ERRORS AT X = 0.1 AND X = 0.5 FOR PROBLEM 3 

TABLE I 
COMPARISON OF SM, RTA AND CPS’S ABSOLUTE ERRORS AT X = 0.1 AND X = 0.5 FOR PROBLEM 1


