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A Comparison of Recent Methods for solving a
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Abstract—In this paper we study some numerical methods to
solve a model one-dimensional convection—diffusion equation. The
semi-discretisation of the space variable results into a system of
ordinary differential equations and the solution of the latter involves
the evaluation of a matrix exponent. Since the calculation of this term
is computationally expensive, we study some methods based on
Krylov subspace and on Restrictive Taylor series approximation
respectively. We also consider the Chebyshev Pseudospectral
collocation method to do the spatial discretisation and we present the
numerical solution obtained by these methods.

Keywords—Chebyshev  Pseudospectral ~collocation method,
convection-diffusion equation, restrictive Taylor approximation.

|. INTRODUCTION

HE numerical solution of convection-diffusion transport

problems arises in many important applications in science
and engineering. These problems occur in many applications
such as in the transport of air and ground water pollutants, oil
reservoir flow, in the modeling of semiconductors, among
others. In this paper, we consider the one dimensional
convection-diffusion equation, given as

2

a—u-t-ca—u—;/a—u=0,xe(0,1),t>0, Q)

Ot ox axz
subject to the initial condition
u(x,0) = g(x),0<x<1
and the boundary conditions given by
u(0,¢)=go(t), t=0
u(l,t): g.(), ¢=0.

Much research work has been done on computing a finite
difference approximation solution for (1) as shown in [3,7]. In
this paper, we focus on a semi-discretisation of (1) so as to
obtain a system of ordinary differential equations. The
discrete solution requires the computation of a matrix
exponent with a vector. Our study is thus based on a
comparison of three recent methods for solving the one
dimensional convection diffusion equation. We first consider
the discretisation of (1) in the next section.

A. Discretisation of the 1-D convection-diffusion equation

We start by considering the grid pointx; =ik,
wherei=0,...,n a set of regular grid points of the interval
[0,1] with X3=0 and x,=1 and nh=1. We use the Taylor
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series expansion to obtain expressions for the first and second
partial derivative of u with respect to x respectively as:

0, (x;,0) = (W(xig, 1) ~u(x;1,0) 1(2h) + O(h) @
and

U (x,8) = (x40, 8) = 2u(x;, 1) + u(x;4,1)) /(hz) + O(hz) (3)
at a fixed time ¢ . Replacing equations (2) and (3) into (1)
gives

dl+ c Uivgj ~¥ij | _ p Upg,; —2U; 5 g ;
dt 2h h?

2du ch ch
I—[y—7jul+1’] +(}/+7Ju1_1’] +(721)ul,]

Thus we obtain

= h

2 du
?:rui—l.j+pui,j+qui+l,/ (4)
Wherelj:(}/+ﬂj’ q:(fzﬁ)’ r:(yfﬂ].
2 2
The difference method (4) can be written as
‘%(’) = AV() +b, 5)

where V (¢) = [uy (£),u,(¢),...u, (£)], A is the tridiagonal matrix
of order n-1 given by

(6)

g p r
4 PJ(n-1)x(v-1)

T
ch
O (7 —?ju,\,l:| .

|1.DISCRETE SOLUTION OF THE ODE SYSTEM

and

b(t) = _(c_zh + 7Jul 0

In this section we show how the expressions obtained after
discretising the model convection-diffusion equation can be
expressed as a system of ordinary differential equations. We
find that the solution of such systems involves terms such as
& and we investigate ways to obtain the explicit

computation of the exponential matrix. Thus the term ekAy is

approximated based by the Krylov subspace method proposed
in [6].
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Now consider the ordinary differential equation (5).
Rewriting the equation gives
arv()
dt
MY (f) = j e (b)dt = -4
S V(@)=-A" b+ ce™™
Using initial condition we obtain

V() =—-a L4t (V(O) e 1bj

AV @]=b.

“Lpe ™ 1 ¢

V(O)=-A%+e%  cc=V(0)+47%
V(@) =-A b+ (7 (0)+ A7) )

Now, V(t+k)=-A"tp+el+ k)A(V(O) + A_lb)

A1 4 {etA (V(O) + A_lbﬂ

4y ekA(V(t) + A_lbj

Hence to compute solution at times+k, we need to compute
¢y where y = v (1) + 4% , that is
V(e+ k)= A"+ My () + A7) = A+ My (8)

A. The Krylov Subspace Method
Let us consider the tridiagonal matrix 4 instead of k4. The
method proposed is based on the Krylov subspace which is of
the form
4
e y= pmfl(A)y

where  p,4 is the polynomial of degree of m—1. In this

paper, the approximation to eAy is taken from the Krylov
subspace

K, = span {y,Ay,..., Amfly}.

We then have to generate an  orthonormal
basisV,, =[v;,v,,...,v,,], so that the vectors in the Krylov

subspace can be manipulated. Taking initial vector:

v, = H Jﬁ we obtain ¥, by the Arnoldi's algorithm which is
Yl

next given by:
Algorithm: (4rnoldi-modified Gram-Schmidy).

Compute v, =y/||y||2.
For j=12,..,m Do:
Compute w; = Av;
For i=1,..; Do:

hj Z=(W~,V»)
w;=w; —h; Vi
EndDo

By =|w,], Wjs1,; =0, then Stop

Via =wilhyy
EndDo

From this algorithm, a matrix /7 ,, (Hessenberg matrix) and

an orthonormal basis ¥,, can be obtained. We also find the
following relations to hold:
V”‘TAVm = Hm

AV, =V, H, +h T

matmVm1€m
where e,, is the m"™ unit vector belonging to real space of
order m. Hence I, represents the projection of the linear
transformation A to the space «;,,, with respect to the basis V.

The required approximation can be written to x = eV as
X, = Pma(A4)y orequivalently, x, =V, w where wis
an m-vector.

w = ,BeH”‘ e; with ,B=||y||2 is suggested, leading to the

following formula: e Ay = BV,e mel where €1 is the
first unit vector belonging to the real space of order m.

B. Restrictive Taylor’s approximation for solving

convection-diffusion equation (RTA)

In this section we introduce an explicit method for solving (1)
which exhibits several advantageous features compared other
known methods. The accuracy is not affected when the exact
solution is sufficiently large. Moreover, the choice of time
step length % is relatively large compared with what can be
used for the classical schemes, this allows us to have the
solution at high level of time. We use the restrictive Taylor
(RT) approximation [4, 5] to approximate the exponential

matrix given as ekA . The RTs approximation of the function
f(x) at the point a can be written in the form:

RTn,f(x) (xa)= fla) + f{fl)

(x—a)+
(n)' C)
f(a) (x a)Z +. +8f n/(a) (x_a)n’

where the parameter & is to be determined such that
RTn,f(x) (x()) :f(xo) ' (10)
This means that the considered approximation is exact at two
points X=a and X=Xg.
]F(x):RTn,.f(x)(x0)+mn+l(x)’ (11)
where R, .;(x) is the remainder term of Restrictive Taylor’s
series and it given by
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g(x _ a)n+l

(n+1)!

_n(e-Y(x-a)"™
(x=&)n+1)!

R, (x) = F©)

&), (12)

where ¢ e[a,x] and & is the restrictive parameter.

. . kA
The exponential matrix €
convergent power series

can be formally defined by the

z A” A=1

In the case of RTs apprOX|mat|on of single function the
term e, (9) can be reduced to the square restrictive matrix I
in the case of RTs approximation for matrix function, where
I' = ¢l and [ is the identity matrix.

For example, RT7 exp XA)(k)z I+kl'4.

—1+kA+—A2

I1l. CHEBYSHEV PSEUDOSPECTRAL METHOD (CPS)

In this section, we focus on solving (1) based on Chebyshev
pseudospectral collocation (CPS) [1]. Spatial discretization is
done by using the Chebyshev pseudospectral collocation
(CPS). Bazan [1] has highlighted one major drawback of [6]
lies in the fact that the vector 5 does not take into account the
time dependence. The solution to (1) with respect to the given
initial condition is therefore given as:

t
QIGXP (4t 7)o (cJerdr
1
V(t):eA’V(O)+h—2 ° (13)
+ rjexp (A(t - T)kl(r)emfldr
0
where e represents the i canonical vector in R"™* [1]. If

b(t) is independent to 7 which is the case when the boundary

conditions in (1) are constants, the unique solution to (1)
reduces to

V() =—4"+exp(e4)y (0)+ 47).
Consider the lemma given in [1]

LEMMA 1: Let A have a spectral
decomposition 4 = PAP ~*. Then a necessary condition for
u(x,t) = exp(ax + ,Bt) to solve problem (1)

is g, () = exp(3), g ()= exp(a + )
and ya® —ca — =0 . Moreover, the approximate difference
finite-based solution becomes in this case

exp(tA)wg

ra=n, hiz (081 — ) expl(pre) - explaae o,

(14)

where wq = P_lV(O) and wy = Pil(qel + exp (a)cem—l)'

We can readily conclude that problem (1) is of the
form exp(ax + ﬂt). As for (14), it results from using
A = PAP ™" in (13) and the specified boundary conditions.
We focus on defining a semi-discrete method obtained by
discretising (1) with respect to the spatial variable using the
pseudospectral Chebyshev method. In the following the first-
order (n +1)><(n +1) Chebyshev differentiation matrix
associated with the collocation points

O=xq<x <..<x, =1

with x; :%[1—cos(j;r/n)] , j=04,..,n will be denoted by

D. Also, if d,(resp.,1;)" denotes the i column (resp., row)
vector of matrix D, we write
T
I

D=layd, 1]
' T

_ln +1 |

Let D;,D,, and D; be matrices defined by D; =[d2,...,dn],

D2 :[12,...,ln]T, D3 = ETDE ’
with £ =Je,,... e, ], where ¢ is the i column of the identity

matrix of order n+1.
We introduce the semi-discrete version of (1) obtained by
discrete  differencing using matrix D. Then

M= [;@,M,...,un]T denotes a vector of data at
positionsx ;, j=01,...,n, the first order differentiation matrix
D gives highly accurate approximations to 4'(x; ) x"(x; )...,
simply by taking u'(x,)= (Du),, w"(x,)-= (Dzﬂ)j,and S0

on. Thus the formulae for the entries of D can be computed
by the Chebyshev differentiation matrix matlab code given in

[1].

A semi discrete Chebyshev approximation to (1) is provided
by the system of n—1 ordinary differential equations:

dlt/ = AV +b(r)

V0)=r(w).f 0] V(e)= [t} )]
and Z(t;;go(t)(;;z —cET)dl + gl(t)(7D2 —CET)dnA-

If A= PAP *holds, the solution to the above initial value
problem (2.1) is

wo + L[exp (— Af)go(r)drwl
e acko(ehmn,

V(t)= P|exp (4

where
_ p-1 -1 T
wo =P V(0),w, =P (}/Dz —cE )dl and

wy =P Dy, —cET W, ...
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Finally the solution to the problem (1) follows as:
V()= P(e[Awo )+ (BI - A)fl(eB’ P )w , Where
w=p*t ((7D2 —cET Xdl +e%d, 4 )) .

IV. NUMERICAL EXPERIMENTS

In this section, we use the methods described earlier to
solve three problems which are given as follows:

Problem 1

2
M 012 _0029 " g<v<isz0
ot ox 8x2

where the initial boundary conditions are defined such that the
exact solution is u(x, ) = 11771243444 46770 x-0.09:

Problem 2

2
W01 0019 p<x<1r20,

ot ox o’
where the initial boundary conditions are defined such that the

exact solution is 4 (x,¢) = 370097
Problem 3

2
M35 00229 0<x<Lrz0,
ot ox 2

where the initial boundary conditions are defined such that the
exact solution is u(x,t) _ 60'0285479799 1928 x—0.09¢ .

For our numerical experiments, we let /=0.025,
k=0.001and m =5for the Krylov subspace projection. We
observe that the CPS’s accuracy for problem 1 is better than
that of SM. RTA gives the least accurate solution when
compared to SM and CPS. Thus we can conclude that for
problem 1, the parameters defined on CPS gives very accurate
approximation.

We note that the SM’s accuracy for problem 1 is more
accurate than CPS. RTA gives the least accurate solution
when compared to SM and CPS. Thus we find that for
problem 2, the parameters defined on SM gives very accurate
approximation.

We note that the RTA’s accuracy for problem 2.3 is more
accurate than CPS and SM. SM gives the least accuracy
compared to RTA and CPS at x = 0.5 and at x = 0./, SM and
CPS gives a mean absolute value relatively the same. Thus we
see that for problem 3, the parameters defined on RTA gives
good accuracy.

V.CONCLUSION

In this paper, we have studied three methods for solving the
one-dimensional convection-diffusion equation. The first
method, SM, consists of finding the solution of the system of
ordinary  differential equations which arises from
discretisation of the convection-diffusion with respect to the
spatial variable. The resulting exponential matrix term was
approximated by a polynomial obtained by using a Krylov
subspace method. We next studied the Restrictive Taylor

approximation (RTA) method. This time the exponential
matrix was approximated by an expression derived from the
Taylor series approximation. Finally, we studied the
Chebyshev Pseudospectral Collocation method which is used
from the spatial discretisation.
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TABLE |

COMPARISON OF SM. RTA AND CPS’S ARSOI UTF FRRORS AT X = (). AND X = ().5 FOR PRORI FM 1

Absolute errorsat x =0.1

Absolute errors at x=0.5

Time t
SM RTA CPS SM RTA CPS
1 1.2894e-005 6.7584e-004 4.4148e-008 3.9094e-004 2.8050e-003 2.2772e-007
2 3.7845e-007 2.5208e-005 4.7615e-008 6.8890e-005 7.2700e-004 2.9006e-007
3 3.8452¢-008 2.3145e-006 4.9108e-008 9.5392e-006 1.4102e-004 3.0894e-007
4 5.0364e-008 2.1025e-006 5.0577e-008 8.4640e-007 3.0323e-005 3.1966e-007
5 5.2083e-008 2.1653e-006 5.2087e-008 2.1159e-007 1.5436e-005 3.2939e-007
36 1.2928e-007 5.3916e-006 1.2970e-007 1.4737e-006 6.7588e-005 8.1984e-007
37 1.0981e-007 6.1610e-006 1.3357e-007 2.1112e-005 3.2069e-004 8.4107e-007
38 9.3904e-007 6.4395e-005 1.3738e-007 1.7394e-004 1.8412e-003 8.4085e-007
39 3.6908e-005 1.9355e-003 1.3550e-007 1.1193e-003 8.0338e-003 7.0949e-007
Error 1.3858e-006 7.2434e-005 8.5287e-008 4.6208e-005 3.7577e-004 5.3312e-007
TABLE Il
COMPARISON OF SM, RTA AND CPS’s ABSOLUTE ERRORS AT X = (). AND X = ().5 FOR PROBLEM 2
Timet Absolute errorsat x = 0.1 Absolute errors at x = 0.5
SM RTA CPS SM RTA CPS
1 8.3458e-006 2.3530e-002 1.5409e-005 1.5434e-004 1.3006e-001 8.8238e-005
2 1.9577e-005 4.1244e-004 1.9703e-005 9.8454e-005 1.2307e-002 1.2347e-004
3 2.4680e-005 2.2087e-004 2.4681e-005 1.5398e-004 2.0218e-003 1.5599e-004
4 3.0909e-005 2.7560e-004 3.0909e-005 1.9533e-004 1.7688e-003 1.9546e-004
5 3.8708e-005 3.4514e-004 3.8708e-005 2.4478e-004 2.1841e-003 2.4479e-004
3.6 4.1400e-002 3.6914e-001 4.1400e-002 2.6141e-001 2.4103e+000 2.6180e-001
37 5.1840e-002 4.6535e-001 5.1846e-002 3.1986e-001 5.3248e+000 3.2752e-001
38 6.4287e-002 1.7393e+000 6.4900e-002 2.8227e-001 5.8540e+001 4.0490e-001
39 3.4727e-002 1.4814e+002 7.9240e-002 1.0857e+000 8.1866e+002 4.4308e-001
Error 9.1349¢-003 3.9025e+000 1.0292e-002 7.6577e-002 2.2932e+001 1.1412e-001
TABLE I
COMPARISON OF SM, RTA AND CPS’S ABSOLUTE ERRORS AT X = (.1 AND X = ().5 FOR PROBLEM 3
Timet Absolute errorsat x = 0.1 Absolute errors at x = 0.5
SM RTA CPS SM RTA CPS
1 8.3458e-006 3.8701e-005 2.5637e-005 1.5434e-004 1.1186e-004 7.1696e-005
2 1.9577e-005 3.1223e-005 2.9621e-005 9.8454e-005 1.6231e-004 1.2897e-004
3 2.4680e-005 3.0136e-005 3.0055e-005 1.5398e-004 1.8483e-004 1.6397e-004
4 3.0909e-005 3.0111e-005 3.0109e-005 1.9533e-004 1.9074e-004 1.8086e-004
5 3.8708e-005 3.0133e-005 3.0131e-005 2.4478e-004 1.9122e-004 1.8757e-004
3.6 4.1400e-002 3.0808e-005 2.6089e-003 2.6141e-001 1.9482e-004 5.836ie—003
37 5.1840e-002 3.0828e-005 1.6659¢e-002 3.1986e-001 1.9516e-004 7.9375e-003
38 6.4287e-002 3.0982e-005 9.6472e-003 2.8227e-001 1.9196e-004 2.0856e-002
39 3.4727e-002 2.7928e-005 2.7770e-002 1.0857e+000 2.2184e-004 1.2473e-002
Error 9.1349¢-003 3.0639e-005 1.6969e-003 7.6577e-002 1.9040e-004 1.5399e-003
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