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Abstract—In this paper, we represent protein structure by using 

graph. A protein structure database will become a graph database. 
Each graph is represented by a spectral vector. We use Jacobi 
rotation algorithm to calculate the eigenvalues of the normalized  
Laplacian representation of adjacency matrix of graph. To measure 
the similarity between two graphs, we calculate the Euclidean 
distance between two graph spectral vectors.  To cluster  the graphs, 
we use M-tree with the Euclidean distance to cluster spectral vectors. 
Besides, M-tree can be used for graph searching in graph database.  
Our proposal method was tested with graph database of 100 graphs 
representing 100 protein structures downloaded from Protein Data 
Bank (PDB) and we compare the result with the SCOP hierarchical 
structure. 
 

Keywords—Eigenvalues, m-tree, graph database, protein 
structure, spectra graph theory.  

I. INTRODUCTION 
N protein structure databases, it is common to have 
similarity query, such as asking for proteins in the database 

which have similar structure to a given protein structure. In 
this paper, we use graph to represent protein structure. The 
similarity query of protein structures will become the graph 
searching. The challenge of this problem is the problem of 
graph comparison. Subgraph isomorphism is known to be NP 
complete. As a result, the graph comparison is a NP hard 
problem. Several research approaches for this problem have 
been proposed recently. In [7], the authors proposed a method 
for graph indexing called Closure-tree. Closure-tree is a 
hierarchical index. The graphs (database objects) are in the 
leafs and graph closures are in the internal nodes of closure 
tree. Graph closures can be considered as a cluster 
representation that aggregates structural and annotation 
information of the underlined graphs. In [4], the authors  
proposed a method for graph indexing based on listing all of 
short paths. This approach provided the additionally 
frequency information and built up the distinct short paths as 
key-table and used it for filtering when a query is processed. 
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In [19],[20] the authors used  frequent and discriminate graphs 
as features to index objects. In [15], the authors used frequent 
trees to index entities. The above methods require a candidate 
subgraph isomorphism in verification step and not all frequent 
features are good for indexing the graphs.  

In this paper, instead of using the subgraph isomorphism 
for graph comparison, we approach to spectral graph theory 
by using spectral vector to represent graph. The normalized 
Laplacian representation of the adjacency matrix of graph is 
used to calculate the eigenvalues by using Jacobi rotation 
algorithm. From a set of eigenvalues, we create spectral vector 
for graph. The Euclidean distance between two spectral 
vectors is used to measure the similarity between two graphs. 
The similarity searching efficiency of M-tree in multimedia 
databases has been proven in [5],[13],[14]. We used M-tree 
for clustering and similarity search in graph databases. The M-
tree is used to build a hierarchical cluster of graphs 
representing protein structures. The graph database of protein 
structures downloaded from PDB and SCOP are used for 
testing our proposed method. The rest of this papers is as 
follows 2) Using graph to represent the protein structure 3) 
Similarity between two graphs 4) Using M-tree for clustering 
and similarity search in graph database 5) Experiment and 
discussion 6) Conclusion.  

II. USING GRAPH TO REPRESENT PROTEIN STRUCTURE  
Protein is considered as polypeptide chains linked together. 

A polypeptide chain is a chain of amino acids (amino acid 
residues) linked together by peptide bonds. An amino acid 
consists of a central carbon atom (usually alpha Carbon Cα) 
and an amino group (NH2), a hydrogen atom (H), a Carboxy 
group (COOH) and a side chain (R) bound to the Cα. The 
backbone of the polypeptide is given by the repeated sequence 
of three atoms of each residue in the chain: the amide N, the 
alpha Carbon Cα and the Carbonyl C.  

Fig. 1 is a schematic representation of spatial neighbors of a 
residue “i” in a polypeptide chain [17]. A distance cut off is 
taken and the residues which fall within the radius are the 
spatial neighbors of residue “i”. Residues A,B,C and D are 
spatial neighbors of “i”. The spatial neighbors are indicated 
using dotted lines shown in segment of the polypeptide chain.  

Based on the data of protein structure in PDB (Protein Data 
Bank), we have data of the protein structures. The following is 
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the information of protein named 1ARB (PROTEASE). 
HEADER    HYDROLASE(SERINE PROTEASE)              
15-APR-93   1ARB               
TITLE     THE PRIMARY STRUCTURE AND 
STRUCTURAL CHARACTERISTICS OF                
TITLE    2 ACHROMOBACTER LYTICUS PROTEASE I, 
A LYSINE-SPECIFIC SERINE            
TITLE    3 PROTEASE 

 
Fig. 1 Schematic representation of the spatial neighbors of amino 

acids in protein structure 

The information of a protein structure is as follows (The 
meaning of each columns is shown in Table I): 

ATOM      1  N   GLY A   1        11.726 -10.369  10.598  1.00 12.32          N   

ATOM      2  CA  GLY A   1      11.567  -9.015  10.090  1.00 11.91           C   

ATOM      3  C   GLY A   1       11.280  -8.099  11.303  1.00 12.02            C   

ATOM      4  O   GLY A   1       11.256  -8.584  12.493  1.00 12.20           O   

ATOM      5  N   VAL A   2       11.060  -6.876  11.020  1.00 12.56           N   

ATOM      6  CA  VAL A   2     10.798  -5.882  12.075  1.00 15.09            C   

ATOM      7  C   VAL A   2       9.497  -5.127  11.777  1.00 14.36             C   

ATOM      8  O   VAL A   2       9.248  -4.650  10.670  1.00 14.42             O   

ATOM      9  CB  VAL A   2      12.004  -4.895  12.060  1.00 17.17          C   

TABLE I 
MEANING OF COLUMNS 

1 – 6 
Record 
name *MASTER*  Meaning 

11 – 15 Integer numRemark Number of REMARK records 
16 – 20 Integer ″0″  
21 – 25 Integer numHet Number of HET records 
26 – 30 Integer numHelix Number of HELIX records 
31 – 35 Integer numSheet Number of SHEET records 
36 – 40 Integer numTurn Deprecated 
41 – 45 Integer numSite Number of SITE records 
46 – 50 Integer numXform Number of coordinate 

transformation records 
(ORIGX + SCALE +MTRIX) 

51 – 55 Integer NumCoord Number of atomic coordinate 
records 
records  (ATOM +HETATM) 

56 – 60 Integer numTer Number of TER records 
61 – 65 Integer numConect Number of CONECT records 
66 – 70 Integer numSeq Number of SEQRES records 

The protein database is shown in Fig. 2. 

 
Fig. 2 Protein database 

We use the graph vertices to represent amino acid residues 
of protein [16]. Since the protein backbone defines the overall 
protein conformation, we choose the Cα  atom to represent  
residue (amino acid).  

 

 
Fig. 3 Graph database of protein structures 

Two vertices called residues are connected by a bond edge 
when these residues are consecutive in the primary sequence. 
Starting from this simplified protein model, we compute 
proximity edges (spatial neighbors of residues). Two vertices 
will be connected by an edge if the distance between them 
does not exceed a threshold δ. Since we are interested in 
neighboring residues (spatial neighbors) within a physical 
interaction radius, we chose δ to vary over values ranging 
from 6.5–8.5°A [6],[8]. The graph created from the proximity 
of Cα  atoms of protein is shown in Fig. 4 and  a portion of 
graph database of protein structures is shown in Fig. 3. 
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Fig. 4 A Protein structure to be represented by graph 

III. SIMILARITY BETWEEN TWO GRAPHS 
Spectral graph theory is the study of the eigenvalues of 

matrix representing graphs [2],[3],[16]. There are several 
matrix representations of graphs. The first representation is 
the adjacency matrix as follows: 
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Another representation of the normalized Laplacian as 

defined in Biggs [12] is as follows: 
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Given graph G1 and G2 (Fig. 5) as follows: 

 

 
      (G1)                               (G2) 

Fig. 5 Two compared graphs 

The adjacency matrix of graph G1 is: 
 A B C D E 
A 0 1 0 0 1 
B 1 0 1 1 0 
C 0 1 0 1 0 
D 0 1 1 0 1 
E 1 0 0 1 0 

 
   The normalized Laplacian representation of graph G1: 

 A B C D E 
A 2 -1 0 0 -1 
B -1 3 -1 -1 0 
C 0 -1 2 -1 0 
D 0 -1 -1 3 -1 
E -1 0 0 -1 2 

A. Eigenvalues 
Consider a square matrix A. λ  is called as an eigenvalue of 

A if there exists a non-zero vector x such that Ax xλ= . In 

this case, x is called an eigenvector (corresponding to λ ).  

An example of eigenvalue and eigenvector are as follows. 
If   
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⎥
⎦

⎤
⎢
⎣

⎡
−−

=
12

36
A

 

we could find out the equation Ax xλ= : 
             Ax xλ=  

               
6 3 1 1
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Therefore, λ  and x are eigenvalues and eigenvectors, 
respectively, for A. 

We use Jacobi rotation algorithm to calculate eigenvalues 
of  the normalized Laplacian matrix. The time complexity of 
Jacobi rotation algorithm is polynomial degree, then we sort 
eigenvalues in descendant order. The spectral vector of graph 
G1 is as follows: 

{4.62; 3.62; 2.38; 1.38; 0.00} 

The adjacency matrix of  graph G2: 
 A B C D E F G 
A 0 1 0 0 0 0 1 
B 1 0 1 1 0 0 0 
C 0 1 0 0 1 1 0 
D 0 1 0 0 1 0 1 
E 0 0 1 1 0 1 0 
F 0 0 1 0 1 0 0 
G 1 0 0 1 0 0 0 

 
The normalized Laplacian matrix: 

   A B C D E F G 
A 2 -1 0 0 0 0 -1 
B -1 3 -1 -1 0 0 0 
C 0 -1 3 0 -1 -1 0 
D 0 -1 0 3 -1 0 -1 
E 0 0 -1 -1 3 -1 0 
F 0 0 -1 0 -1 2 0 
G -1 0 0 -1 0 0 2 

 
Sort the eigenvalues in descendant order, we have the 

spectral vector of graph G2 
{5.25; 3.80;  3.55; 2.45;  2.20; 0.75; 0.00} 

B. Eigen Distances  
The distance calculation itself is simply the Euclidean 

distance between two spectral vectors. To account for the 
different number of eigenvalues in different sized graphs, a 
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Pad ( v,  x)  function was defined which appended a number 
of x to the end of the shorter vector v until the appropriate 
length was reached for the longer vector [10]. In these above 
two graphs, the spectra vectors  are as follows: 

λG1= {4.62; 3.62; 2.38; 1.38;  0.00} 
λG2= {5.25 ; 3.80; 3.55; 2.45; 2.20; 0.75; 0.00} 
 

Since G1 has fewer eigenvalues, the corresponding spectral 
vector will be padded with 0 until the length 7 of G2: 

λG1={4.62; 3.62; 2.38; 1.38;  0.00, 0.00; 0.00} 
λG2= {5.25; 3.80; 3.55; 2.45; 2.20; 0.75; 0.00} 
 

The eigen distance is the Euclidean distance between λG1 
and λG2   is 2.89. 

IV. USING M-TREE FOR CLUSTERING AND SIMILARITY 
SEARCH IN GRAPH DATABASES 

Suppose that we have a graph database with n protein 
structures. Each protein structure is represented by a graph. 
The normalized Laplacian representation of adjacency matrix 
for every graph is calculated. Then we use  Jacobi rotation 
algorithm to calculate spectral vectors. For representing n 
protein structures, we use n spectral vectors. Let Lmax be the 
maximum number of components of n spectral vectors. We 
lengthen all spectral vectors with the number of components   
smaller than Lmax by padding with 0 at the right of vectors. A 
spectral vector is a data object of database. The M-tree is used 
for clustering spectral vectors representing the protein 
structure [4]. The M- tree partitions objects on the basis of 
their relative distances (Euclidean distance between spectral 
vectors). The M-tree organizes the data objects into fixed 
nodes. Each nodes can store up to M entries (the capacity of 
M-tree nodes). The data objects are stored in leaf nodes, 
whereas internal nodes store the so-called routing objects.  A 
routing object is a database object to which a routing role is 
assigned by a specific promotion algorithm. An entry for a 
routing object Or also includes a pointer denoted ptr(T(Or)),  
which refers the root of a sub-tree,  T(Or),  called the covering 
tree of Or (see Fig. 6). A routing object Or hence defines a 
region in the metric space M, centered on Or and with radius 
r(Or). For each (ground) database object, one entry having the 
format entry(Oj)={Oj; oid(Oj); d(Oj); P(Oj))} is stored in a 
leaf node, where oid(Oj) is the identifier of the object, which 
is used for providing the access to the whole objects resident 
on a separate file (protein structure). 

 
Fig. 6 The covering tree of Or. 

All objects in the covering tree of Or are within the distance 
r(Or) from Or, r(Or) > 0 and r(Or) is called the covering 
radius  of  Or. Finally, a routing object O is associated with a 
distance to P(Or), its parent object, that is the routing object 
which references the node where the O entry is stored. To 
build M-tree Paolo used a batch bulk loading algorithm [5], 
[13]. 

The similarity query SimQuery(Q,rQ,C) requests for all 
database objects such that d(Oj,Q)<r(Q). Algorithm SimQuery 
starts from the root node and recursively traverses all the paths 
which can not be excluded from leading to objects satisfying 
d(Oj,Q) < r(Q) [13],[14]. 

V. EXPERIMENT AND DISCUSSION 

A. Discussion of the Accuracy of M-tree Clustering  
Classification of protein domains based on their tertiary 

structure provides a valuable resource that can be used to 
understand protein function and evolutionary relationships. 
SCOP is the most widely used database. SCOP is 
hierarchically organized and protein domains are used as basic 
units of classification. We recognize that a manual method 
was used to produce SCOP, so the quality of classification is 
very high. We use SCOP as a gold standard for measuring the 
quality of our proposed method. We also evaluated the quality 
of clusters using a measure called "cluster purity"[1]. It is 1 
when all domains in the same cluster have perfect agreement 
in their class labels, and it is defined as: 

||max1),( ∑ ∈ ∈
∩

=
MA SB A

BA
N

SMityClusterPur  

In the above equation, A is a cluster in the set of clusters M 
created by M-Tree, B is a cluster in the set of  S families of 
SCOP and N is the cardinality of M. The SCOP structure is 
very large, so we select only the proteins and the clusters 
belonging to the test set. It means that, we have:  

UU
SBMA BA

∈∈ =  

Cluster Purity is a value between 0 and 1. If cluster value is 
1 then all the cluster A of M will be the subset of a cluster B 
of S. The higher value of Cluster Purity, the higher quality of 
cluster. 

We use the proteins structural classification from SCOP 
database (see more at http://scop.mrc-
lmb.cam.ac.uk/scop/data/scop.b.html) as gold standard to 
evaluate our method. We used both prokaryotic and 
eukaryotic serine proteases in the super family ‘Trypsin-like 
serine proteases’ (see more at http://scop.mrc-
lmb.cam.ac.uk/scop/data/scop.b.c.hh.b.A.A.html) to test M-
tree method. SCOP hierarchical structure [11] in the 
Superfamily ‘Trypsin-like serine proteases’ is described as 
follows:   

Trypsin-like serine proteases [50494] (4) 
   1. Prokaryotic proteases [50495]  

 1.1  Achromobacter protease [50496] 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

2031

 

 

   1.1.1. Achromobacter lyticus[50497] (2) 
                              1. 1arb  
                              2. 1arc  
1.2  alpha-Lytic protease [50498] 
   1.2.1. Lysobacter enzymogenes [50499] (41) 
                              1. 2h5c 
                              2. 1ssx  
         .............  
1.3.  Protease A [50500] 
1.3.1.Streptomyces griseus [50501] (5) 
                               1. 2sga  
                               2. 3sga  
         .............  

   2. Eukaryotic proteases [50514]  
2.1  Trypsin(ogen) [50515] 
2.1. Cow (Bos taurus) [50516] (273) 
                               1. 1hj9  
                               2. 1utn  
         .............  
2.2  Pig (Sus scrofa) [50517] (26) 
                               1. 2a31 
                               2. 2a32 
         .............  

   3. Viral proteases [50596]  
               ……………… 
   4. Viral cysteine protease of trypsin fold [50603]  

According to SCOP, we have these proteins following 
arrangement into groups ([50497], [50499], [50501], etc..). 
We chose randomly some proteins belongs to groups and 
downloaded the accessible codes of proteins (the PDB files). 
The next, we built a database of protein graphs in DBMS SQL 
Server 2005 and generated links between nodes based on the 
proximity of amino acids (residues) in peptide chain to 
represent protein structure by graph. Neighboring residues 
within a physical interaction radius, we chose the threshold to 
vary over values ranging from 6.5–8.5°A and then used Jacobi 
rotation algorithm to calculate the eigenvalues of normalized 
Laplacian representation of adjacency matrix. Some 
eigenvalues of protein 1dua are shown in Fig. 7. 

 
Fig. 7 The result of calculating egienvalues of graphs 

We chose a test data set with 100 proteins. Let 
S={S1,S2,…, S9} be a set of clusters of SCOP containing 
these proteins. Then, we use M-tree for clustering these 
proteins.  Let M={M1, M2, M3,…, M8}  be a set of clusters of  
M-Tree. We use the formula of Cluster Purity  to calculate the 
values in Table II. In this table, the value of each cell is ratio 
between the cardinality of the intersection between cluster Mi 
and Sj and the cardinality of cluster Mi. The last row contains 
the maximum value for each column. 

TABLE II 
THE CLUSTER PURITY 

 
Using this measure, the cluster purity of the M-Tree clusters 

is as follows: 

8225.0)133.011115.075.0(
8
1

=+++++++  

This high cluster purity value shows that our clustering 
method produces clusters that have a high degree of 
agreement with the SCOP classes. When processing  a 
similarity search,  a query is submitted to the M-tree. A graph 
representing for this protein will be created  and the spectral 
vector for this matrix will be generated by Jacobi rotation 
algorithm. After padding this spectral vector with 0 to 
lengthen the length of vector to LMax, this  vector will be 
used as a query for searching  in M-tree.  

B. Discussion of Processing Time 
The time complexity of Jacobi rotation algorithm for 

calculating eigenvalues is polynomial degree. The time 
duration of creating the graphs from PDB data and the spectral 
vectors for 100 protein structures is about 30 minutes. The 
time duration of creating M-trees for 100 spectral vectors is 2 
minutes. We believe that this time duration is reasonable. 
Moreover, M-tree is a fast structure for indexing a large 
volume of data [12],[13]. So, we chose M-tree for clustering 
and similarity search in protein structure databases. Besides,  
M-tree is an incremental algorithm, so we can add more 
protein structure incrementally without running M-tree for 
whole new data. 

VI. CONCLUSION 
In this paper, we propose a method of graph clustering and 
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searching in protein structure database. Jacobi rotation 
algorithm is used to calculate the eigenvalues of the 
normalized  Laplacian representation of adjacency matrix of 
graph representing protein structure. We use Euclidean 
distance between two spectral vectors to measure similarity 
between graphs. A M-tree structure is used to index the 
spectral vectors and to increase efficiency of similarity 
searching in protein structure graph database. Experiment 
results encourage us to develop more applications of graph 
indexing and graph searching.  
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