
International Journal of Earth, Energy and Environmental Sciences

ISSN: 2517-942X

Vol:1, No:1, 2007

1

 

 

 
Abstract—This study examined a habitat-suitability assessment 

method namely the Ecological Niche Factor Analysis (ENFA). A 
virtual species was created and then dispatched in a geographic 
information system model of a real landscape in three historic 
scenarios: (1) spreading, (2) equilibrium, and (3) overabundance. In 
each scenario, the virtual species was sampled and these simulated 
data sets were used as inputs for the ENFA to reconstruct the habitat 
suitability model. The ‘equilibrium’ scenario gives the highest 
quantity and quality among three scenarios. ENFA was sensitive to 
the distribution scenarios but not sensitive to sample sizes. The use of 
a virtual species proved to be a very efficient method, allowing one 
to fully control the quality of the input data as well as to accurately 
evaluate the predictive power of the analyses. 
 

Keywords—Habitat-Suitability Models, Ecological niche factor 
analysis, Climatic factors, Geographic information system.  

I. INTRODUCTION 
REDICTION of species distribution is an important 
element of conservation biology. Management for 

endangered species [1], [2], ecosystem restoration [3], species 
re-introductions [4], population viability analyses [5], [6], and 
human–wildlife conflicts [7] often rely on habitat-suitability 
modeling. Multivariate models are commonly used to define 
habitat suitability and, combined with geographical 
information systems (GIS), allowing one to create potential 
distribution maps [8]. Numerous multivariate analyses are 
developed for building habitat suitability or abundance models 
in the past decade [9]-[12]. 

Ecological niche factor analysis (ENFA) [12] is a heuristic 
modeling approach recently developed to predict potential 
species distribution from presence-only data. This approach, 
based on Hutchinson ecological niche theory [13], creates 
habitat suitability maps that indirectly reveal potential species  
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distribution [12], [14]. ENFA was originally created to predict 
fauna distributions that are especially susceptible to erroneous 
or ‘false’ absences due to an animal’s ability to disperse or 
hide during field surveys. Hirzel et al. [12] suggest that 
inclusion of these types of ‘false’ absences in predictive 
modeling could substantially bias analysis. Therefore, ENFA 
is an alternative approach to model potential species 
distributions when there is no reliable absence data. Even 
though this approach does not incorporate species absence 
data, ENFA has potential for predicting plant species 
distributions from presence-only data sets. 

ENFA compares the eco-geographical predictor distribution 
with a presence data set consisting of locations where the 
species had been detected with the predictor distribution of the 
whole area. Like the Principal Component Analysis, ENFA 
summarizes all predictors into a few uncorrelated factors 
retaining most of the information. But in this case, these 
factors have ecological meanings. The first factor is the 
‘marginality’, and reflects the direction in which the species 
niche mostly differs from the available conditions in the 
global area. Subsequent factors represent the ‘specialization’. 
They are extracted successively by computing the direction 
that maximizes the ratio of the variance of the global 
distribution to that of the species distribution. A large part of 
the information is accounted for by the first few factors. The 
species distribution base on these factors is used to compute a 
habitat suitability index for any set of descriptor values [12]. 

Modeling with ENFA is usually done by using the software 
Biomapper [12], [15], [16]. In this study, we rewrote the ENFA 
program with Mathematica [17], which is a mathematical and 
statistical package with visualization tools. We tested our 
ENFA program with virtual species data and real eco-
geographical and climatic data at Khao Nan National Park, 
Southern Thailand. 

II. MATHEMATICAL PROCEDURES OF ENFA 
Eco-geographical and climatic parameters are first 

normalized through the Box-Cox transformation [18]. Though 
multinormality is theoretically needed for factor extraction 
through eigensystem computation [19], this method seems 
quite robust to deviate from normality [20]. The parameters 
are then standardized by retrieving means and dividing by 
standard deviations: 
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where xij is the value of the variable xj in cell i, jx is the mean 

of this variable over all cells, and σxj is its standard deviation. 
Let Z be the N×V matrix of standardized measurements zij. 
The V×V covariance matrix among standardized variables is 
then computed as 

ZZ
N
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G =                                   (2) 

 
where ZT is the transposed matrix of Z. Because of 
standardization (3), RG is also a correlation matrix. 

The NS lines of Z corresponding to the NS cells where the 
focal species detected are then stored in a new NS×V matrix 
(say S), from which the V×V species covariance matrix is 
calculated: 
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Let u be a normed vector of the eco-geographical and 

climatic spaces. The variance of the global distribution on this 
vector is uTRGu, while that of the species distribution is uTRSu. 
The first specialization factor should thus maximize the ratio 
Θ(u) = uTRGu/uTRSu. However, this vector must also be 
orthogonal to the marginality factor m, given that the vector of 
means over V columns of S: 
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The problem, therefore, becomes that of finding the vector 

u that maximizes Θ(u) under the constraint mTu = 0. This is 
equivalent to finding u, such that 
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A change in variables allows us to rewrite the problem 
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where v = Rs
½u, zTzzy = , and z = Rs

-½m, W = Rs
-½RG   Rs

-½
 

is a symmetric matrix. It can be shown that the solution is 
given by the first eigenvector of 
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where Iv is a V×V identity matrix. 

Indeed, 
1) y is an eigenvector of H because Hy = (Iv-yyT)W(Iv-yyT) = 

0; 
2) H is symmetrical and thus admits a base of orthonormed 

eigenvectors so that 0yvλvHv T =⇒= ; and, 
3) vTHv is maximum for the first eigenvector, which also 

maximizes vTWv since vTy = 0 ⇒ vTHv = vT(Iv-yyT)W(Iv-yyT)v 
= vTWv 

The V eigenvectors of H are then back transformed, and the 
new eigenvectors (u = Rs

-½v) are stored in a matrix U. These 
vectors are Rs-orthogonal (all Su distributions have variance 1 
and are uncorrelated). Furthermore, due to the constraint that 
u be orthogonal to m, this system has one null eigenvalue. The 
corresponding eigenvector is thus deleted from U, and m is 
substituted instead as the first column. It should be noted that, 
although all marginality is accounted for by the first factor, 
this factor is not ‘‘pure,’’ in that the niche of the focal species 
may also display some restriction on it, in addition to its 
departure from the mean. ‘Marginality’ (m) and 
‘specialization’ (U) factors from this computation will be used 
to transform species distributions from an N×V matrix to an 
ecological niche factor value. 

The suitability map for the focal species can be computed 
by building on a count of all cells from the species distribution 
that lays as far or farther apart from the median than the focal 
cell on a factor axis. This count is normalized in such a way 
that the suitability index ranges from zero to one. Practically, 
this is performed by dividing the species range on each 
selected factor into a series of classes, in such a way that the 
median would exactly separate into two classes (Fig. 1). For 
every cell from the global distribution, we count the number 
of cells from the species distribution that are either in the same 
class or in any class farther apart from the median on the same 
side (Fig. 1). Normalization is achieved by dividing twice this 
number by the total number of cells in the species distribution. 
Thus, a cell laying in one of the two classes directly adjacent 
to the median would score one, and a cell laying outside the 
species distribution would score zero. 
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Fig. 1 the suitability of any cell from the global distribution is 
calculated from its situation (arrow) relative to the species 

distribution (histogram) on all selected niche factors. Specifically, it 
is calculated as twice the dashed area (the sum of all cells from the 

species distribution that lies as far or farther from the median dashed 
vertical line) divided by the total number of cells from the species 

distribution (surface of the histogram) 
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III. METHODS 
This study generated a virtual species completely 

characterized by its ecological niche, which would be modeled 
by a ‘true’ habitat suitability map. Three data sets were then 
generated to simulate three different scenarios. These data 
sets, in conjunction with environmental variables, were fed 
into the ENFA analysis, which produced ‘predicted’ habitat 
suitability maps. Finally, resulting models were evaluated by 
statistically comparing each ‘predicted’ map with the ‘true’ 
map. These steps (Fig. 2) will now be developed in full detail. 
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Fig. 2 Flow chart summarizing the steps involved in the study 

A. Ecogeographical and Climatic Parameters 
Although a virtual species is used, ecogeographical and 

climatic data were collected from a rectangular region of 
35.1×30.1 km2 located in Khao Nan National Park, Nakhon Si 
Thammarat, Southern Thailand (Fig. 3). This rectangular 
region is numerically modeled by GIS maps of 351×301 cells 
with 0.1×0.1 km2/cell. Ecogeographical and climatic data were 
composed of three ecogeographical parameters and six 
climatic parameters. Ecogeographical parameters were 
computed from military maps (DEM) including elevation, 
slope, and aspect. 

 
Fig. 3 Study area (35.1×30.1 km2) at Khao Nan National Park (dark 

gray area), Nakhon Si Thammarat province, Thailand 
 
We collected climatic data from eight study sites around 

Khao Nan National Park from April-May 2006 and uploaded 
this data to the Thailand National Biodiversity Database 
System (NBIDS) [21]. These climatic parameters were 
composed of solar noon temperature, maximum temperature, 

minimum temperature, relative humidity, %cloud cover, and 
amount of rainfall. The climatic data were then interpolated 
using invert distance weighted methods to generate our study 
area. 

B. Virtual Ecological Niche: The ‘True’ Habitat 
Suitability Map 

On this spatial canvas, the virtual species was generated by 
creating a simulated ecological niche in an n-dimensional 
space [13]. It was modeled by a niche coefficient H 
( [0,1]H ∈ ), which can be viewed as the probability that each 
cell belongs to the niche; note that H is de facto a habitat 
suitability index. This value was built as summarized in (8). 

εHw
w

1H ii
i

+= ∑∑
                      (8) 

 
where H is the habitat suitability of the focal cell, Hi is the 
value of the ith partial niche coefficient, wi is the weight 
assigned to the ith partial niche coefficient, and ε is a random 
value. 

Global habitat suitability is composed of a weighted 
average of partial niche coefficients (Hi) and a stochastic 
coefficient (ε). The partial niche coefficients are the habitat 
suitability engendered by each predictor value. They are 
computed from four predictors that are picked out of the nine 
available predictors by four niche functions (i.e. elevation 
with Gaussian function, aspect with Gaussian function, the 
amount of rainfall with truncated linear, and minimum air 
temperature with decreasing linear function). Three types of 
functions are used to model three types of environmental 
optimum: 1) a Gaussian function to model a median optimum, 
2) a linear function to model an extreme optimum, and 3) a 
truncated linear function to model a buffer zone effect. Each 
of these Hi values is then weighted by a wi factor and the 
global niche coefficient is calculated as their weighted 
average. Finally, a random term ε, generated from a uniform 
distribution in the range [−0.05, 0.05], is added. The niche-
function parameters and the weights are arbitrarily tuned in 
order to generate about 50% of cells with H ≥ 0.5. 
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Fig. 4 The ‘true’ habitat suitability map generated to model the 
ecological niche of the virtual species. High suitability areas are 

indicated by white pixels 
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This produces the ‘true’ habitat suitability map (Fig. 4), 
representing the ‘real’ intrinsic preferences of our virtual 
species. By ‘true’ map, we mean that it represents the kind of 
information usually unreachable by ecologists, the information 
they are trying to reveal through field sampling and statistical 
analysis. The ‘true’ map will be constantly used as a basis to 
generate data and as a reference to assess the accuracy of 
habitat suitability analyses.  

C. Distribution Map 
Distribution maps are computed on the basis of the ‘true’ 

map, the distribution maps give the ‘true’ presence/absence of 
the virtual species, information usually unavailable to field 
ecologists. Three distribution scenarios are addressed in order 
to determine the advantages and drawbacks of each habitat 
suitability analysis. They can be viewed as three historical 
phases of colonization—the fundamental niche does not 
change but the realized one does: 1) a ‘spreading phase’ 
showing a density gradient from the north-west corner of the 
map to the south-east corner, 2) an ‘equilibrium phase’ where 
the species are abundant enough to occupy all the available 
suitable areas, and 3) an ‘overabundance phase’ where the 
species are so numerous that it has to spread in less suitable 
areas (Fig. 5). 

The ‘equilibrium’ distribution map is computed as follows. 
To each cell of the ‘true’ habitat suitability map is added a 
random value taken in the range [−0.2, 0.2] (uniform 
distribution); this is made in order to introduce some 
stochasticity into the model. If the resulting habitat suitability 
coefficient is larger than 0.7, the cell is marked as occupied. 

The ‘overabundance’ distribution map is computed in a 
similar way but with a 0.5 habitat suitability threshold to 
simulate the overflowing density. 

The ‘spreading’ distribution needs an additional operation: 
each cell of the ‘true’ habitat suitability map is beforehand 
multiplied by a value decreasing in 1/d2, d being the distance 
to a point arbitrarily placed north-westward to south-eastward 
corner of the map. This gradient function is tuned to produce 

values ranging from 0 to 1, 0.5 lying approximately in the 
middle of the map. This new gradient map is then submitted to 
the same operations as the ‘equilibrium’ scenario (habitat 
suitability threshold = 0.7). 

This generating method allow us obtain distribution maps 
with a presence density correlated with area suitability. 

D. Sample Maps 
These distribution maps are then used to simulate ‘field’ 

sampling data usually resulting from the trapping, detecting or 
observation activities of field biologists. Since ENFA needs 
only presence data, ENFA data sets are generated by 
randomly sampling points in the distribution maps in order to 
obtain the targeted sample size. 

E. Result habitat suitability maps 
The simulated data sets are then submitted as dependent 

variables to the ENFA. The independent variables are a set of 
five predictors out of the nine available; four of them are 
arbitrarily taken among those used to generate the ‘true’ 
habitat suitability map and other is new. In order to evaluate 
quality and quantity of the three scenarios, sampling sizes of 
250 to 5000 points are simulated ten times for all scenarios 
and analyses, except for the spreading scenario in which only 
250 to 4000 points are simulated. This is because the 
spreading scenario has only 4000 occupied cells and therefore, 
it is impossible to get more than 4000 points sample size in 
this case 

F. Evaluation 
The accuracy of the ‘result’ habitat suitability maps has 

finally to be assessed. With a real species, we would have 
used independent evaluation data and calculated various 
statistics to assess the accuracy of the classification [22]. But 
here, with a virtual species, the ‘true’ habitat suitability that 
the models are supposed to reproduce is perfectly known. 
More adapted statistics based on the Pearson correlation 
coefficient between the two maps could thus be used. In order 
to get round the pseudo-replication, engendered by spatial 
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(a) (b) (c) 

Fig. 5 Distribution maps of the virtual species for three colonization scenarios. Black points are the cells where the species is present and the white 
ones are those where the species is absent. Map (a) represents the ‘spreading’ scenario: the species entered the area from the northwest and is 

currently propagating in all directions, settling down in the most suitable areas. Map (b) represents the ‘equilibrium’ scenario in which the species 
occupies uniformly all the suitable areas. Map (c) represents the ‘overabundance’ scenario in which very high densities force the species to occupy 

less adequate areas 
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auto-correlation between cells, we proceed as follows: 1000 
cells are picked randomly and a determination coefficient R2 
(proportion of variance explained by the model) is computed 
between the values of these cells in the ‘result’ map and the 
‘true’ map [23]. Each scenario is replicated ten times and the 
mean and standard deviation of R2 are computed. The mean R2 
(<R2>) is used to assess the accuracy of the models. Their 
sensitivities to distribution scenario and sample size are also 
assessed with a Student t-test for each method. In order to 
compare results, two sampling sizes are addressed: 500 and 
2000 points for all scenarios and analyses. 

IV. RESULTS AND DISCUSSION 
<R2> ± S.D. of ‘spreading’, ‘equilibrium’, and 

‘overabundance’ of 500 points scenarios are similar to 2000 
points scenarios (Table I). This result confirms the previous 
work of Hirzel et al. [24]. They showed that <R2> of 
‘spreading’, ‘equilibrium’, and ‘overabundance’ of 300 and 

 
TABLE I 

<R2>AND (S.D.) OF THE PROPORTION OF EXPLAINED VARIANCE OBTAINED BY 
COMPARING ‘RESULT’ MAP WITH ‘TRUE’ MAP 

Scenarios  <R2> S.D. 
Spreading, 500 points 0.47 0.04 
Equilibrium, 500 points 0.53 0.03 
Overabundance, 500 points 0.46 0.05 
Spreading, 2000 points 0.47 0.04 
Equilibrium, 2000 points 0.55 0.02 
Overabundance, 2000 points 0.49 0.03 

The greater the value of <R2> shows the higher the predictive power of the 
‘result’ map. 

 
                                                                                             

1200 points scenarios were ranging from 0.55-0.60 with the 
SD of 0.03-0.05. Due to the stochasticity added in the process 
of building the ‘true’ habitat suitability map, it is impossible to 
obtain R2 = 1. The best model would have been the map 
computed just before the addition of stochasticity and this one 
gives the maximum R2 = 0.59. The ‘equilibrium’ scenario had 
the highest <R2> among three scenarios; there were no 
differences among 16 sample sizes and no interaction term 
between scenario and sample size (Two-way ANOVA: 
scenarios: F2, 432 = 133.262, P<0.001; sample size: F15, 432 = 
1.469, NS; scenario x sample size interaction: F30, 432 = 1.337, 
NS, Fig. 6). The ‘equilibrium’ scenario had the fewest S.D. 
among three scenarios (One-way ANOVA: F2, 45 = 15.780, 
P<0.001) and post-Hoc tests showed that the S.D. of the 
‘equilibrium’ scenario was lower than both the ‘spreading’ 
scenario (P<0.01, Fig. 6) and the ‘overabundance’ scenario 
(P<0.001, Fig. 6). Our results suggest that the ‘equilibrium’ 
scenario had the highest quantity and quality among the three 
scenarios. Our results also indicate that ENFA was sensitive to 
the distribution scenarios but not sensitive to sample sizes 
(Table II, Fig. 6). The reason that the ‘overabundance’ 
scenario was not the best scenario was because most 
individuals in this species tend to occupy a low suitability 
area. This might lead to a low R2. The ‘Spreading’ scenario 
was not the best scenario because if a species starts spreading 
from an area that has other uncorrelated parameters, then the 
‘spreading’ scenario may interpret these uncorrelated 
parameters as essential parameters. Therefore, this also could 
cause a low R2.  

Our results suggest that 1) ENFA will be most suitable to 
model plants or native species that occur in an area for 
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Fig. 6 <R2> ± S.D. of three scenarios ‘spreading’ (white), ‘equilibrium’ (gray), and ‘overabundance’ (black) 

 
TABLE II 

SENSITIVITY ANALYSES OF THE METHODS 

 Spreading, 
500 points 

Equilibrium, 
500 points 

Overabundance, 
500 points 

Spreading, 
2000 points 

Equilibrium, 
2000 points 

Equilibrium, 500 points *     
Overabundance, 500 points NS(0.67) *    
Spreading, 2000 points NS(0.95) * NS(0.62)   
Equilibrium, 2000 points ** NS(0.07) ** **  
Overabundance, 2000 points NS(0.26) * NS(0.16) NS(0.28) ** 

Significant results: NS non Significant, *P<0.01, ** P<0.001 
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sometime and might reach their equilibrium stage, 2) ENFA 
might not best model invasive species and 3) since ENFA not 
affect by the number of sample sizes in all three scenarios; 
therefore, ENFA may be suitable to model habitat-suitability 
for rare species. 

The virtual species approach proved to be the most 
serviceable. When comparing models on a real data basis, it is 
only possible to make assumptions about what is the true 
habitat suitability by using various expert and statistical 
evaluation methods. Many factors are out of reach and may 
introduce a bias that cannot be accurately assessed [8], [10], 
[24]-[25]. Therefore, real data are only a snapshot of a 
dynamical situation and can only give a partial and 
instantaneous comprehension of the fundamental ecological 
niche. By generating a virtual species, the ‘true’ is now 
completely reachable and resulting models can be accurately 
compared to it. 
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