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Delay-Dependent Stability Criteria for Linear
Time-Delay System of Neutral Type

Myeongjin Park, Ohmin Kwon∗, Juhyun Park and Sangmoon Lee

Abstract—This paper proposes improved delay-dependent stability
conditions of the linear time-delay systems of neutral type. The pro-
posed methods employ a suitable Lyapunov-Krasovskii’s functional
and a new form of the augmented system. New delay-dependent
stability criteria for the systems are established in terms of Linear
matrix inequalities (LMIs) which can be easily solved by various
effective optimization algorithms. Numerical examples showed that
the proposed method is effective and can provide less conservative
results.

Keywords—Neutral systems; Time-delay; Stability; Lyapunov
method; LMI.

I. INTRODUCTION

Time-delay occurs in various physical, industrial and
engineering systems such as aircrafts, biological systems,
neural networks, networked control systems, and so on. It
has been shown that the delay is a source of oscillation, poor
performance or instability of control systems. Therefore, the
study on stability analysis for time-delay systems has been
widely investigated. For more details, see [1]-[22].

In general, stability analysis for time-delay systems can be
classified into two types. One is the delay-dependent stability
analysis which includes the information on the size of delay,
and another is the delay-independent stability analysis which
do not. Generally speaking, the former is less conservative
then the latter particularly when the time-delay is small.
In delay-dependent stability analysis, an important issue is
to enlarge the feasibility region of stability criteria or to
provide an upper bound of time delays for guaranteeing
asymptotic stability of time-delay systems. Therefore, a great
number of results on time-delay systems have been reported
in the literature [5]-[12]. Above all, Ariba and Gouaisbaut
[12] proposed some new stability criteria by an augmented
model of time-varying delay systems and presented one by a
form of the Lyapunov-Krasovskii’s functional that includes a
triple-integral term.

On the other hand, some practical systems can be modeled
by using the model of time-delay systems of the neutral
type, which have delays in both its state and the derivatives
of the state. This system refers to the time-delay systems
which are the amount of the past state variables affects the
current state variables. The examples of time-delay systems of
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neutral type include lossless transmission lines (LC circuit),
partial element equivalent circuit (PEEC) [23], the control of
constrained manipulators with delay measurements [24], the
system which need the information of the past state variables,
and so on. The various approach to the delay-dependent
stability analysis for time-delay system of neutral type have
been investigated in the literature [13]-[22], on account of
theoretical and practical importance for time-delay systems
of neutral type.

In this paper, we propose improved delay-dependent
stability criteria for linear time-delay systems of neutral type.
By constructing a suitable Lyapunov-Krasovskii’s functional
and a new augmented system, new delay-dependent criteria
are derived in terms of LMIs which can be solved efficiently
by using the interior-point algorithms [25]. Numerical
examples are included to show the effectiveness of the
proposed method. The organization of the paper is as follows.
In Section 2, we formulate the solved problem, and review
the general lemmas which are needed to derive new stability
criteria. In Section 3, we deal with new stability criteria
for time-delay systems. In Section 4, based on the results
in Section 3, three numerical examples and PEEC model
which is a practical example are given for a comparison of
the previous results. Finally, in Section 5, we summarize the
results in this paper.

Notation: Rn is the n-dimensional Euclidean space, Rm×n

denotes the set of m×n real matrix. Cn,h = C([−h, 0],Rn)
denotes the Banach space of continuous functions mapping the
interval [−h, 0] into R

n, with the topology of uniform conver-
gence. X > 0 (respectively, X ≥0) means that the matrix X is
a real symmetric positive definite matrix (respectively, positive
semi-definite). I denotes the identity matrix with appropriate
dimensions. ‖ · ‖ refers to the Euclidean vector norm and the
induced matrix norm. diag{· · ·} denotes the block diagonal
matrix. � represents the elements below the main diagonal of
a symmetric matrix.

II. PROBLEM STATEMENTS

Consider the following linear systems with time-delay

ẋ(t)− Cẋ(t− h) = Ax(t) +Adx(t− h), ∀t > 0,

x(s) = φ(s), ∀s ∈ [−h, 0], h > 0, (1)

where x(t) ∈ R
n is the state vector, A, Ad, C ∈ R

n×n are
known constant matrices with appropriate dimension, φ(s) ∈
Cn,h is a given continuous vector valued initial function, h is
a constant time-delay.
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In this paper, we assume ‖C‖ < 1 which implies that the
system (1) satisfies Lipschitz condition in ẋ(t − h) with a
constant less than 1 (see [1, pp.29-30] for details).

To derive stability analysis of the system (1), we introduce
two equivalent systems. One is to transform the original
system (1) to the following equivalent system by integrating
both terms of Eq.(1)

∫ t

t−h

ẋ(s)ds− C

∫ t

t−h

ẋ(s− h)ds

= A

∫ t

t−h

x(s)ds+Ad

∫ t

t−h

x(s− h)ds, (2)

and another is the differentiating system (1)

ẍ(t)− Cẍ(t− h) = Aẋ(t) +Adẋ(t− h). (3)

Eq.(1)-(3) can be re-arranged to give the following new
augmented system:

E ż(t)− Cż(t− h) = Az(t) +Adz(t− h), (4)

where

E =

⎡

⎢

⎢

⎢

⎢

⎣

I 0 0
0 I 0
0 0 I
I 0 0
0 I 0

⎤

⎥

⎥

⎥

⎥

⎦

, C =

⎡

⎢

⎢

⎢

⎢

⎣

C 0 0
0 C 0
0 0 C
0 0 0
0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

,

A =

⎡

⎢

⎢

⎢

⎢

⎣

A 0 0
0 A 0
0 0 A
0 I 0
0 0 I

⎤

⎥

⎥

⎥

⎥

⎦

, Ad =

⎡

⎢

⎢

⎢

⎢

⎣

Ad 0 0
0 Ad 0
0 0 Ad

0 −I 0
0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

,

z(t) =

⎡

⎣

∫ t

t−h
x(s)ds

x(t)
ẋ(t)

⎤

⎦ . (5)

Remark 1: The augmented system (4) is a new one and
not considered in other literature. By differentiating and
integrating system (1), three equations (1), (2), and (3) can
be represented as one dynamic system which have more
information than system (1). Also, by constructing a suitable
Lyapunov-Krasovskii’s functional for augmented state z(t), a
less conservative stability condition may be derived, which
provide an improved feasible region for system (1).

The goal of this paper is to investigate the delay-dependent
stability analysis of system (1) with time-invariant delay.

Before deriving our main results, we give the following
fact and lemmas.

Fact 1: (Schur Complement) Given constant matrices Σ1,
Σ2, Σ3 with Σ1 = ΣT

1 and 0 < Σ2 = ΣT
2 , then Σ1 +

ΣT
3 Σ

−1
2 Σ3 < 0 if and only if
[

Σ1 ΣT
3

Σ3 −Σ2

]

< 0 or
[

Σ1 ΣT
3

Σ3 −Σ2

]

< 0. (6)

Lemma 1: [3] Let ζ ∈ R
n, Φ = ΦT ∈ R

n×n, and
B ∈ R

m×n such that rank(B) < n. The following statement
are equivalent:
(i) ζTΦζ < 0, ∀Bζ = 0, ζ �= 0,
(ii) B⊥T

ΦB⊥ < 0 where B⊥ is a right orthogonal
complement of B.

Lemma 2: [4] For any constant matrix M ∈ R
n×n, M =

MT > 0, a scalar γ > 0 and a vector function x : [0, γ] → R
n

such that the integrations concerned are well defined, then

γ

∫ γ

0

xT (s)Mx(s)ds

≥
(
∫ γ

0

x(s)ds

)T

M

(
∫ γ

0

x(s)ds

)

. (7)

To derive a less conservative stability criterion, we use the
following lemma, to be utilized in deriving an upper bound
of double-integral terms.

Lemma 3: For any scalar h > 0 and any constant matrix
M =MT > 0, the following inequality holds:

h2

2

∫ t

t−h

∫ t

s

xT (u)Mx(u)duds

≥
(
∫ t

t−h

∫ t

s

x(u)duds

)T

M

(
∫ t

t−h

∫ t

s

x(u)duds

)

.

(8)

Proof: From Lemma 2, the following inequality holds

(t− s)

∫ t

s

xT (u)Mx(u)du

≥
(
∫ t

s

x(u)du

)T

M

(
∫ t

s

x(u)du

)

, (9)

where t− h ≤ s ≤ t.
By using Fact 1, Eq.(9) is equivalent to the following

[

∫ t

s
xT (u)Mx(u)du

∫ t

s
xT (u)du

∫ t

s
x(u)du (t− s)M−1

]

≥ 0. (10)

Integration of (10) from t− h to t yields
[

∫ t

t−h
ϕ(t, s)ds

∫ t

t−h

∫ t

s
xT (u)duds

∫ t

t−h

∫ t

s
x(u)duds

∫ t

t−h
(t− s)M−1ds

]

≥ 0, (11)

where ϕ(t, s) =
∫ t

s
xT (u)Mx(u)du.

Eq.(11) is equivalent to inequality (8) according to Fact 1.

III. MAIN RESULTS

In this section, we propose new stability criteria for time-
delay system (1). Before introducing our main results, the
notation of several matrices are defined for simplicity:

B = [A Ad − E C] ,
ζT (t) =

[

zT (t) zT (t− h) żT (t) żT (t− h)
]

. (12)

Now, we have the following theorem.
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Theorem 1: For a given positive scalar h, the system (1)
with time-invariant delay is asymptotically stable if ‖C‖ < 1
and there exist positive definite matrices P = [Pij ]3×3, Q1 =
[Q1,ij ]3×3, Q3 = [Q3,ij ]3×3, R = [Rij ]3×3, and any matrix
Q2 = [Q2,ii]3×3 satisfying the follow LMIs:

B⊥T

ΦB⊥ < 0. (13)

where

Φ =

⎡

⎢

⎢

⎣

Q1 −R R P +Q2 0
� −Q1 −R 0 −Q2

� � Q3 + h2R 0
� � � −Q3

⎤

⎥

⎥

⎦

.

(14)

Proof: Let us choose the well-known Lyapunov-
Krasovskii’s functional candidate as

V = V1 + V2 + V3, (15)

where

V1 = zT (t)Pz(t),

V2 =

∫ t

t−h

[

z(s)
ż(s)

]T [ Q1 Q2

� Q3

] [

z(s)
ż(s)

]

ds,

V3 = h

∫ t

t−h

∫ t

s

żT (u)Rż(u)duds. (16)

First, the time-derivative of V1 can be calculated as

V̇1 = 2zT (t)P ż(t). (17)

Second, the time-derivative of V2 can be obtained as

V̇2 =

[

z(t)
ż(t)

]T [ Q1 Q2

� Q3

] [

z(t)
ż(t)

]

−
[

z(t− h)
ż(t− h)

]T [ Q1 Q2

� Q3

] [

z(t− h)
ż(t− h)

]

.

(18)

Finally, calculating the time-derivative of V3 lead to

V̇3 = h2żT (t)Rż(t)− h

∫ t

t−h

żT (s)Rż(s)ds. (19)

By using Lemma 2, an upper bound of integral term of V̇3
can be obtained as

−h
∫ t

t−h

żT (s)Rż(s)ds

≤ −
(
∫ t

t−h

ż(s)ds

)T

R
(
∫ t

t−h

ż(s)ds

)

=

[

z(t)
z(t− h)

]T [ −R R
� −R

] [

z(t)
z(t− h)

]

. (20)

From (16)-(20), the time-derivative of V has a new upper
bound as

V̇ ≤ ζT (t)Φζ(t), (21)

where ζ(t) and Φ are defined in (12) and (14), respectively.
In addition, the system (1) with time-invariant delay can

be rewritten as Bζ(t) = 0 where B is defined in (12). By

Lemma 1, the inequality ζ(t)Φζ(t) < 0 is equivalent to the
inequality B⊥T

ΦB⊥ < 0. Therefore, if for all ζ(t) such that
Bζ(t) = 0, the LMI (13) are satisfied, then the system (1)
with time-invariant delay is guaranteed to be asymptotically
stable. This completes our proof.

Theorem 1 is derived by utilizing a well-known double
integral form of Lyapunov-Krasovskii’s functional. If a
triple-integral form of Lyapunov-Krasovskii’s functional are
included, an improved delay-dependent stability criterion
which will be introduced in Theorem 2 can be derived.

Theorem 2: For a given positive scalar h, the system (1)
with time-invariant delay is asymptotic stable if ‖C‖ < 1
and there exist positive definite matrices P = [Pij ]3×3, Q1 =
[Q1,ij ]3×3, Q3 = [Q3,ij ]3×3, R = [Rij ]3×3, S, and any matrix
Q2 = [Q2,ii]3×3 satisfying the follow LMIs:

B⊥T

Φ̂B⊥ < 0. (22)

where

Φ̂ =

⎡

⎢

⎢

⎣

Q1 −R R P +Q2 0
� −Q1 −R 0 −Q2

� � T 0
� � � −Q3

⎤

⎥

⎥

⎦

,

T = Q3 + h2R+ S,

S =

⎡

⎣

−S hS 0
� −h2S 0
� � (h2/2)2S

⎤

⎦ . (23)

Proof: Let us choose the Lyapunov-Krasovskii’s func-
tional candidate that contains a triple-integral term as

V = V1 + V2 + V3 + V4, (24)

where

V1 = zT (t)Pz(t),

V2 =

∫ t

t−h

[

z(s)
ż(s)

]T [ Q1 Q2

� Q3

] [

z(s)
ż(s)

]

ds,

V3 = h

∫ t

t−h

∫ t

s

żT (u)Rż(u)duds,

V4 =
h2

2

∫ t

t−h

∫ t

s

∫ t

u

żT (v)ΠTSΠż(v)dvduds, (25)

and Π in V4 is defined as Π = [0 0 I].
First, with the similar method of the proof of Theorem 1,

the time-derivative of V1, V2 and V3 can be calculated as

V̇1 = 2zT (t)P ż(t),

V̇2 =

[

z(t)
ż(t)

]T [ Q1 Q2

� Q3

] [

z(t)
ż(t)

]

−
[

z(t− h)
ż(t− h)

]T [ Q1 Q2

� Q3

] [

z(t− h)
ż(t− h)

]

,

V̇3 ≤ h2żT (t)Rż(t)

+

[

z(t)
z(t− h)

]T [ −R R
� −R

] [

z(t)
z(t− h)

]

.

(26)
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Calculating the time-derivative of V4 lead to

V̇4 = (h2/2)2żT (t)ΠTSΠż(t)

−(h2/2)

∫ t

t−h

∫ t

s

żT (u)ΠTSΠż(u)duds

= (h2/2)2ẍT (t)Sẍ(t)

−(h2/2)

∫ t

t−h

∫ t

s

ẍT (u)Sẍ(u)duds. (27)

and Π is defined in (25).
By using Lemma 3, an upper bound of double-integral term

of V̇4 can be obtained as

−(h2/2)

∫ t

t−h

∫ t

s

ẍT (u)Sẍ(u)duds

≤ −
(
∫ t

t−h

∫ t

s

ẍ(u)duds

)T

S

(
∫ t

t−h

∫ t

s

ẍ(u)duds

)

=

[

ẋ(t)
∫ t

t−h
ẋ(t)ds

]T [ −h2S hS
� −S

] [

ẋ(t)
∫ t

t−h
ẋ(t)ds

]

.

(28)

Using the similar method shown in the proof of Theorem
1, the LMIs (22) can be easily obtained.

IV. NUMERICAL EXAMPLES

In this section, we provide four examples to show the less
conservativeness of the proposed new stability criterion in
this paper.

Example 1: Consider the neutral system (1) with the fol-
lowing parameters

A =

[ −2 0
0 −0.9

]

, Ad =

[ −1 0
−1 −1

]

,

C =

[

c 0
0 c

]

, 0 ≤ c < 1. (29)

Table I shows the results of the upper bound of time-delay
with different c. It can be seen that Theorem 2 in this paper
provides larger delay bound than the previous results given
in Table I.

The example shows that Theorem 1 and 2 obtain the less
conservative results step by step. Based on the well-known
Lyapunov-Krasovskii functional (16) with the current state of
new augmented system (4), Theorem 1 is proposed, which
is proved to less conservative than the results in [7], [16]
and [14]. In Theorem 2, for further improved result, we add
the triple-integral term of ẍ(t) on (16) since we consider
the current state

∫ t

t−h(t)
x(s)ds of the integrating system (2).

These results in Theorems indicate that the presented stability
conditions relieve the constraint of the stability caused by
time-delay.

Example 2: Consider the neutral system in the form of (1)
with

A =

[ −0.9 0.2
0.1 −0.9

]

, Ad =

[ −1.1 −0.2
−0.1 −1.1

]

,

C =

[ −0.2 0
0.2 −0.1

]

. (30)

TABLE I
UPPER BOUNDS OF TIME-DELAY WITH DIFFERENT c (EXAMPLE 1).

c 0 0.1 0.5 0.9
Fridman et al. [7] 4.47 3.49 1.14 0.13

Xu et al. [16] 4.47 3.58 1.46 0.32
Wu et al. [14] 4.47 4.35 3.67 1.41

Ours (Theorem 1) 4.47 4.42 3.69 1.41
Ours (Theorem 2) 5.30 5.21 4.20 1.49

TABLE II
UPPER BOUNDS OF TIME-DELAY (EXAMPLE 2).

Mathods Upper bounds
Zhao et al. [18] 1.7856
Kwon et al. [19] 1.8266
Nian et al. [22] 1.9132

Ours (Theorem 2) 2.0054

TABLE III
UPPER BOUNDS OF TIME-DELAY WITH DIFFERENT β (EXAMPLE 4).

β -2.105 -2.103 -2.1
Yue et al. [15] 1.1413 0.3892 0.2553

Kwon et al. [20] 1.1410 0.3892 0.2553
Ours (Theorem 2) 1.4483 0.4917 0.3214

In Table II, the results of the upper bound of time-delay for
guaranteeing stability are compared with the previous results.
It also can be shown that the proposed stability criterion for
this system improves the stability region.

Example 3: Consider the system (1) with

A =

[ −1.7073 0.6856
0.2279 −0.6368

]

,

Ad =

[ −2.5026 −1.0540
−0.1856 −1.5715

]

,

C =

[

0.0558 0.0360
0.2747 −0.1084

]

. (31)

In [16], for the above system, the obtained the upper
bound of time-delay was 0.5735. By Theorem 1 in [21], it
was shown that the upper bound of time-delay with the same
condition was 0.6189. By applying Theorem 2, it can be
obtained that the upper bound of time-delay is 0.6612, which
is larger delay bound than one in [16] and [21].

When C = 0, the upper bound of time-delay obtained
0.6903 in [16] and 0.7918 in [21]. However, by using
Theorem 2, one can obtain the upper bound of time-delay is
0.8431. This result of our criterion gives a larger delay bound
than one in [16] and [21].

Example 4: Consider the following PEEC model:

A = 100×
⎡

⎣

β 1 2
3 −9 0
1 2 −6

⎤

⎦ ,

Ad = 100×
⎡

⎣

1 0 −3
−0.5 −0.5 −1
−0.5 −1.5 0

⎤

⎦ ,

C =
1

72
×
⎡

⎣

−1 5 2
4 0 3
−2 4 1

⎤

⎦ . (32)
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In Table III, the results for different condition of β are
compared with the results in [15] and [20]. From Table III,
it can be shown that our result for this example gives larger
upper bound of time-delay than the ones in [15] and [20].

V. CONCLUSION

In this paper, new delay-dependent stability criteria for
linear time-delay systems of neutral type is proposed. To
obtain a less conservative result, an augmented Lyapunov-
Krasovskii’s functional that includes a triple-integral term
is used to improve the feasible region of stability criterion.
Numerical examples have been given to show the superiority
of the presented criteria and its improvement over the existing
results.

ACKNOWLEDGMENT

This research was supported by the MKE(The Ministry of
Knowledge Economy), Korea, under the ITRC(Information
Technology Research Center) support program supervised by
the NIPA(National IT Industry Promotion Agency) (NIPA-
2009-(C1090-0904-0007)).

REFERENCES

[1] J. Hale and S. M. V. Lunel, Introduction to Functional Differential
Equations. New York: Springer-Verlag, 1993.

[2] J.P. Richard, ”Time-delay systems: an overview of some recent advances
and open problems,” Automatica, vol.39, pp.1667-1694, 2003.

[3] M.C. de Oliveira, ”Investigating duality on stability conditions,” Syst.
Control Lett., vol.52, pp.1-6, 2004.

[4] K. Gu, ”An integral inequality in the stability problem of time-delay
systems,” in Proc. IEEE Conf. Decision Control, Sydney, Australia, Dec.
2000, pp.2805-2810.

[5] P.G. Park, ”A Delay-Dependent Stability Criterion for Systems with
Uncertain Time-Invariant Delays,” IEEE Trans. Autom. Control, vol.44,
pp.876-877, 1999.

[6] E. Fridman and U. Shaked, ”An Improved Stabilization Method for Linear
Time-Delay Systems,” IEEE Trans. Autom. Control, vol.47, pp.1931-
1937, 2002.

[7] E. Fridman and U. Shaked, ”Delay-dependent stability and H∞ control:
constant and time-varying delays,” Int. J. Control, vol.76, pp.48-60, 2003.

[8] S. Xu, J. Lam, and Y. Zou, ”Simplified descriptor system approach
to delay-dependent stability and performance analyses for time-delay
systems,” IEE Proc.-Control Theory Appl., vol.152, pp.147-151, 2005.

[9] S. Xu and J. Lam, ”Improved Delay-Dependent Stability Criteria for
Time-Delay Systems,” IEEE Trans. Autom. Control, vol.50, pp.384-387,
2005.

[10] O.M. Kwon and Ju H. Park, ”On Improved Delay-Dependent Robust
Control for Uncertain Time-Delay Systems,” IEEE Trans. Autom. Control,
vol.49, pp.1991-1995, 2004.

[11] P.G. Park and J.W. Ko, ”Stability and robust stability for systems with
a time-varying delay,” Automatica, vol.43, pp.1855-1858, 2007.

[12] Y. Ariba and F. Gouaisbaut, ”An augmented model for robust stability
analysis of time-varying delay systems,” Int. J. Control, vol.82, pp.1616-
1626, 2009.

[13] J.H. Park and S. Won, ”Asymptotic Stability of Neutral Systems with
Multiple Delays,” J. Optim. Theory Appl., vol.103, pp.183-200, 1999.

[14] M. Wu, Y. He, and J.-H. She, ”New Delay-Dependent Stability Crite-
ria and Stabilizing Method for Neutral Systems,” IEEE Trans. Autom.
Control, vol.49, pp.2266-2271, 2004.

[15] D. Yue and Q.-L. Han, ”A Delay-Dependent Stability Criterion of
Neutral Systems and its Application to a Partial Element Equivalent
Circuit Model,” IEEE Trans. Circuits Syst. II-Express Briefs, vol.51,
pp.685-689, 2004.

[16] S. Xu, J. Lam, and Y. Zou, ”Further results on delay-dependent robust
stability conditions of uncertain neutral systems,” Int. J. Robust Nonlinear
Control, vol.15, pp.233-246, 2005.

[17] Ju H. Park and O. Kwon, ”On new stability criterion for delay-
differential systems of neutral type,” Appl. Math. Comput., vol.162,
pp.627-637, 2005.

[18] Z. Zhao, W. Wang, and B. Yang, ”Delay and its time-derivative de-
pendent robust stability of neutral control system,” Appl. Math. Comput.,
vol.187, pp.1326-1332, 2007.

[19] O.M. Kwon, Ju H. Park, and S.M. Lee, ”On stability criteria for
uncertain delay-differential systems of neutral type with time-varying
delays,” Appl. Math. Comput., vol.197, pp.864-873, 2008.

[20] O.M. Kwon and Ju H. Park, ”Augmented Lyapunov functional approach
to stability of uncertain neutral systems with time-varying delays,” Appl.
Math. Comput., vol.207, pp.202-212, 2009.

[21] M.N.A. Parlakci, ”Extensively augmented Lyapunov functional approach
for the stability of neutral time-delay systems,” IET Contr. Theory Appl.,
vol.2, pp.431-436, 2008.

[22] X. Nian, H. Pang, W. Gui, and H. Wang, ”New stability analysis
for linear neutral system via state matrix decomposition,” Appl. Math.
Comput., vol.215, pp.1830-1837, 2009.

[23] A. Bellen, N. Guglielmi, and A.E. Ruehli, ”Methods for Linear Systems
of Circuit Delay Differential Equations of Neutral Type,” IEEE Trans.
Circuits Syst. I-Regul. Pap., vol.46, pp.212-216, 1999.

[24] S.I. Niculescu and B. Brogliato, ”Force measurements time-delays and
contact instability phenomenon,” Eur. J. Control, vol.5, pp.279-289, 1999.

[25] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix
Inequalities in System and Control Theory. Philadelphia: SIAM, 1994.

[26] P. Gahinet, A. Nemirovskii, A. Laub, and M. Chilali, LMI Control
Toolbox User’s Guide. Natick, Massachusetts: The MathWorks, Inc.,
1995.


