
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3051

Another Formal Proposal For Stealth
Adrien Derock, DCNS/ESIEA and Pascal Veron, IMATH

Abstract— Taking into account the link between the efficiency of
a detector and the complexity of a stealth mechanism, we propose in
this paper a new formalism for stealth using graph theory.

Keywords—Detection, eradication, graph, rootkit, stealth.

I. INTRODUCTION

A
MONG the most advanced antiviral functionalities,

stealth is certainly one of the most sophisticated. Up to

now rootkits constitute the most accomplished programs taking

advantage of stealth techniques. Modeling these techniques is

a difficult business. Nevertheless we can give the following

definition:

Definition 1: The main goal of stealth is to steal a program

(legitimate or not) from user or any legitimate security pro-

gram supervision (software utilities or appliances).

From this definition, we can extract three elementary prop-

erties :

• Stealth applies to all programs (malicious or not);

• Stealth complexity relies on the user faculty. It seems

obvious that a beginner user has not the same potential

as a more experienced user. In the sequel of this paper

we will generalize all possible detection means by the

term detector;

• Lastly, stealth notion for all programs involves two main

abilities:

– Resist a detection process (inactive program). We

will talk about Camouflage;

– Resist at a detection process during program activity.

We will name that Total stealth.

Definition 2: A detector is a resource that enables detecting

modification in a system. This can be operated with presence

system tools, or simply by an investigation made by the user,

or even more by IT security software or hardware.

II. PREVIOUS WORKS

Stealth formalism outlines have been made only for theory

of computer viruses. Indeed stealth has always been considered

as malicious technology. Contrary to code armouring and

polymorphism, it does not exist to date rigid frame for stealth

concept. The first formalization was shown through Adleman

[1] works dating at 1988. In 2004, a quiet more accurate

definition is given by Zuo and Zhou [2]. Lastly Eric Filiol

has suggested a parallel between Steganography and Stealth

[3]. Moreover he has given a classification based on statistical

Adrien DEROCK is working in the information security
department at DCNS, the french naval ship builder, Toulon, France,
adrien.derock@dcnsgroup.com / He is also affiliated to Operational
Cryptology and Virology lab, ESIEA, Laval, France

Pascal Veron is PhD at Toulon university, and researcher at IMATH
laboratory, La Garde, France

tests analysis[4]. At this stage and in order to understand better

the content of this paper, it becomes necessary to introduce the

mathematical tools used in the theory of computer viruses.

A. Recursive functions

Founders works in the theory of computer system and

programs are those of Alan Turing [1] and Fred Cohen[5]. The

Turing machine still remains an important model for designing

computer science. The principle consists of a program loaded

on the machine. A data tape with input data is processing by

this program through a read/write head. The output data is

then written onto the data tape. Hence a Turing Machine can

be assimilated to a function f which computes f(x) with the

input x.

Definition 3: Among all possible functions, those who can

be computed by a Turing machine are called recursive func-

tions.

Using Gödel numbering [6], it can be proved that the set of

recursive functions is enumerable. Using a proper coding each

Turing machine can be represented by an integer p. Thus, one

can associate to each recursive function an index p which is

the coding of the associated Turing machine. Such a function

will be denoted as φp(d).
With this classical definition, one Turing machine can

only compute one particular function. That’s why Turing has

introduced quiet fastly the universal Turing machine : a Turing

machine which can emulate any other Turing machine. Such

a machine is denoted as φP0
(x) where,

• φP0
represents the universal recursive function with the

particular program P0 (a kind of operating system);

• x =< px, dx > represents the program px which has to

be applied to the input data dx;

The result of φP0
(x) is equivalent to the non universal Turing

machine φpx
(dx).

If we consider P , the set of all programs, a virus modifying

one program into another program is actually an application v
of P in itself. Then, when the program i is infected, we obtain

the program v(i) and the associated recursive function φv(i).

Knowing the fundamental principle of recursive functions, we

can now take a closer look at the proposed formalization of

stealth. These important concepts are well-detailed in [7].

B. Stealth through works from Adleman

According to Adleman, the form of an infected program can

response by three possibilities depending on the input provided

by the user:

• infection - The program after realizing the expected

features, infects other programs (it reproduces);

• functionality-added - The program, in addition to its

expected functions performs other actions. These actions

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3052

may be delayed or not, whether (usually) offensive or not

and their nature only depends on the initial infection;

• imitation - The program makes no infection or offen-

sive action but just performs instructions legitimately

expected.

In his definition, the concept of stealth appears in the third

possibility. Indeed the imitation is the main goal of stealth.

Detectors must notice a normal behaviour for the system. In

terms of recursive function, imitation can be considered by the

following relationship:

∀i ∈ N, φv(i) = φi

The infected program v(i) has exactly the same behaviour

compared to the original program. However, details of this

imitation are not available in this relationship.

C. Stealth by Zuo and Zhou

Zuo et Zhou [2] have provided an appreciable amount of

very interesting results on advanced computer viruses com-

plexity. As regards stealth, and according to Zuo and Zhou,

an execution of any program depends on two parameters : data

and execution context (environment). Hence, the corresponding

function φ depends as well on two parameters d and p:

d = (d1, · · · , dn), p = (p1, · · · , pn)

For instance p1 is the operating system, p2 the text editor

and so on . . . Authors’ aim was to present a particularly

interesting granularity at resources level. A program is not

self-sufficient to carry out its task. It appeals to system

resources, hence the importance of execution context. This

granularity enables a better modelling of stealth within a

system.

1) Formal framework: Here is the proposal from Zuo and

Zhou for formalizing stealth viruses. In its incubation stage,

a stealth virus makes the infected program perform the same

actions than the healthy one.

φv(i)(d, p) = φi(d, p)

A stealth virus when it is replicating has to select a program

in order to infect that last one. He must alter the associated

system call to delude detectors.

φv(i)(d, p) = φi(d, p[v(S(p)), h(sys)])

S means the selection function in charge of determining the

target object to proceed the infection. Thus p[v(S(p))] means

the execution context in which an element ps of the set p,

chosen by the function S, has been infected. h(sys) refers

to the modification of the appropriate system call so that the

element ps will not be identified as infected. For instance, this

system call can be one in charge of consulting the file system

at the requested place. By replying the suitable answer, the

system will appear safe. The behaviour of the system call is

explained below :

φh(sys)(x) = φsys(y), if x = v(y)

Otherwise, the system call behaviour is normal:

φh(sys)(x) = φsys(x)

Zuo and Zhou’s formalization gives a good definition of the

notion of stealth viruses. Here is the complete version:

φv(i)(d, p) =











D(d, p), if T (d, p)

φi(d, p[v(S(p)), h(sys)]), if I(d, p)

φi(d, p), else.

and

φh(sys)(x) =

{

φsys(y) if x = v(y)

φsys(x) else.

where

. I(d, p) is a boolean value which determines if the infec-

tion must be proceeded;

. T (d, p) is a boolean value which determines if the code

D(d, p) of the virus must be launched.

D. Stealth according to Filiol

Into this general lack of modelization, Filiol has proposed to

establish a parallel between steganography and stealth[3]. The

two concepts have the same goal, which is to hide information.

Lot of works have been done to formalize steganography.

Especially, formalism of Cachin[8], [9] can be stressed on in

order to formalize stealth.

Definition 4: (Steganography and steganalysis) The

steganography is the set of techniques which not only enable

the security of the information - COMSEC (COMmunication

SECurity) aspect - but also and above all the security

of the (information) transmission channel - TRANSEC

(TRANSmission SECurity) aspect. The steganalysis is the set

of detection techniques whose purposes is to detect the use

of steganography and to access the hidden information.

This definition gives an obvious parallel between stealth and

steganography:

• the COMSEC aspect is related to the malware itself (its

code and its actions);

• the TRANSEC aspect relates to the malware execution

and interactions with the targeted system.

For more details on the link between stealth and steganogra-

phy, the reader can refer to [3]. E. Filiol also used statistical

tests simulability to model [4] the problem of detecting stealth

mechanisms. The interest of testing simulability depend on the

fact that stealth can be defined as the capacity of defeating de-

tection and remaining undetected by using testing simulability.

In other words, stealth consists in simulating the distribution

DSys of a clean system. A strong consequence is that if such

non detection successfully occurs (up to the statistical risks) it

is only possible with respect to a given testing and a given

estimator. But it is intuitively impossible to design stealth

techniques in order to simulate all possible testing and taking

the infinite set E of all possible estimators. Current research

aims at proving this claim on a mathematical basis.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3053

III. NEW FORMAL PROPOSAL

We detail in this part a new formal definition for stealth. We

want to take into account all the aspects of the problem, by

considering all the works ever done and the latest techniques

which have changed the deal. To this end, as compared to the

previous models, the detector notion has been fully integrated

in our formal proposal. Indeed, stealth is in the balance of

power with the environment in which it is practicing its

faculties. Moreover, we will suggest a deeper granularity of

the system closer to the reality. Finally, stealth’s category used,

camouflage or total stealth, must appear in our formalism.

A. System’s Diagram

The overall diagram is based on several components defi-

nition. Traditionally, a computer system SY S is considered

as a stack of layers. Each layer is linked up to the next

layer down until the last one (the hardware layer). Deeper

is the layer, higher is the privilege. The privilege is a notion

much spreading. That concept allows to establish a program

hierarchy. The main idea is to separate applications according

to their importance, their criticality.

Fig. 1. General diagram of a system

This diagram is no longer enough to represent a system

that has evolved considerably. Indeed, with the emergence

of virtual machines, an additional layer must be added. The

hypervisor1 layer has to be considered[10]. The figure 2 show

us that layer.

Fig. 2. Evolved diagram of a system

Thanks to the precedent diagram, we can introduce the

following concepts : a system SY S is a set with layers

Li. These layers are contiguous and can communicate with

one another. That relation between the layer is represented

by ILC, that is to say Inter Layer Communication. We can

classify all those layers in several categories by considering

the privilege level used in the layer. This classification depends

on privilege class in which we can extract four main classes:

• PrivUser: user space privilege. A user application has all

its instruction executed in this class of privilege;

1virtual monitor or hardware virtualization are some technologies targeted
by hypervisor concept

• PrivKernel: kernel space privilege. Most device drivers

and operating system services need this privilege;

• PrivHypervisor: hypervisor level privilege. Virtual ma-

chine monitors have program executed with this privilege;

• PrivHardware: Hardware layer. Instruction dealing with

the hardware use this privilege class.

Fig. 3. Model of the system

In order to reduce the complexity of our model, we consider a

low granularity of the system. More the system’s granularity

considered is complex, bigger is the number of layers. By

considering the granularity level, a layer can be divided in

several layers or many layers can be regrouped in only one.

Anyway, fundamentals of our model are not impacted by this

notion of granularity. The model can be illustrated with an

oriented graph (see figure 4). Since there is a bidirectional link

Fig. 4. An oriented graph and a non oriented graph

between each layer, we simplify the graph by considering a

non-oriented graph (see figure 4). Thus, this illustration can

be modelled using graph theory.

Definition 5: A non oriented graph G is a couple (P, E)
in which P is the set of all vertices. E represents an element

from (P × P). The number of vertices defines what is called

the order of the graph (the cardinality of P).

The reader can find more details about graph theory in [11].

We defined as a simple graph, the one illustrated in figure 4.

In a deeper granularity, each graph vertex can reveal a tree

(see figure 5).

Definition 6: A tree is a graph with no cycles such that any

two vertices are always connected by exactly one path.

In the graph we consider, all vertices are numbered by

considering the appropriate layer range. The first vertex (small-

est number) is graph’s root. Actually, the hardware layer is

numbered with 0. An integer n > 0 is affected to the user

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3054

Fig. 5. Zoom on the graph in relation to system granularity

application layer and all layers between are numbered with an

integer between 1 and n− 1. Each vertex owns one and only

one successor and predecessor.

Definition 7: The graph’s height H is the minimum

number of vertices of a path needed to reach one vertex from

the root. We define also the vertex degree d by considering

the number of adjacent vertices.

We have delibaretely used the label P as system layers set.

That label reminds us the environment in which recursive

function are executed in Adleman’s and Zuo and Zhou’s

formalism.

B. Stealth mechanisms in our diagram

According to the diagram proposed to model the system,

how is included the stealth mechanism named Stealth ?

Stealth is considered like a reflector, or even more a mirror

which always sends an image of a safe system despite its infec-

tion. In case of camouflage, the environment P is modified so

that the detector used cannot be warned (COMsec in steganog-

raphy). In case of total stealth, data D and communications

E are even more modified. (TRANsec in steganography).

The mirror can be positioned between two layers, for in-

stance L3 and L4 or even more replace completely one or sev-

eral layers (see figure 6). All the layer placed above, (L5) will

see a normal image of the part of the system under the mirror.

To achieve that, Inter layer Communication canal (ILC3−4)

is intercepted and modified. The modification is done in the

set E of communications. Once the mirror installed, lots of

customizations can be done. These modifications are done in

the set of layers, P . The position of the mirror notices us about

the kind of Stealth used which depends on the class of the

layer affected :

• Stealthuser for user space stealth mechanisms;

• Stealthkernel for kernel space stealth mechanisms;

• Stealthhypervisor for hypervisor space stealth mecha-

nisms;

• Stealthhardware for hardware space stealth mechanisms.

Remark: here is given a taxonomy of stealth mechanisms.

This taxonomy was already proposed by several authors[12]

(often without hypervisor aspect) from a technical point of

view whereas, our classification depends on our formal model.

We can now introduce our formal proposal. A stealth

mechanism belongs to the set

{Stealthuser, Stealthkernel, Stealthhypervisor, Stealthhardware}

and will be denoted as φStealth(i). After the stealth mechanism

installation, we obtain a new environment and modified data

Fig. 6. Model of the system with Stealth

and we named Ω and Λ the functions associated to these

changes. We obtain then the following relations:

φStealth(i)(Ω(d), Λ(p)) = φi(d, p) (Total stealth) (1)

φStealth(i)(d, Λ(p)) = φi(d, p) (Camouflage) (2)

This formalism distinguishes the two aspects of stealth. How-

ever, stealth depends strongly on detector features. Let’s take

an interest for the problem of detector position with regard to

stealth position.

C. Stealth vs detector

It has been mentioned above, that an important relation

links up stealth and detector. We introduce thus, relative

stealth concept. Absolute stealth exists only if the infinite set

of detectors is simulated by stealth mechanism. But this is

theoretically impossible. So contrary to what is said by some,

it does not exist and it will never exist absolute stealth.

1) Detector position: A basic condition on the detector ∆ is
necessary to complete the formalism. That condition depends
on the position of the detector. If the detector is underneath
stealth mechanism, modifications provided to the system are
visible.

φStealth(i)(Ω(d), Λ(p)) = φi(Ω(d), Λ(p)), if H(Stealth) > H(∆)
(3)

Otherwise, the detector sees nothing abnormal.

φStealth(i)(Ω(d), Λ(p)) = φi(d, p), if H(Stealth) < H(∆) (4)

Equality between Stealth level and detector level will remain

unclear.

H(Stealth) = H(∆) (5)

A naive solution can be given to avoid this case. The solution

would consist to put the detector even lower down to allow

modifications’ detection. Nevertheless we have to take the

following relation into account:

H(Stealth) = H(∆) = 0 (6)

This case shows us how blurred is the equality relation above.

How will we do then ? We will deal about this case later.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3055

2) Detector’s sensitivity and efficiency: Detector’s position

is necessary but not sufficient. If the detector is underneath

Stealth, and if this last one is designed to deceive anyway

the detector, then our proposition above has to be completed.

So, we have to take into account the ability of Stealth to

deceive the detector [4]. Detector can response by different

ways, however we can distinguish two functional means :

• On access detection : entity listening activity,

• On demand detection : entity which will scan the whole

system.

In order to model the ability of the Stealth mechanism to

deceive the detector, we will introduce and re-use notions

detailed by Filiol on [4] and [3]. These notions call up concept

like indistinguishability of two population distributions. The

distributions which are built thanks to detector are submitted

to algorithms which decide if they are identical or not. More

accurate is the detector’s distribution extraction process, more

the decision will be sure. For instance, let consider two almost

identical photos:

• One taken with 2 Megapixels camera;

• The other one taken with 10 Megapixels camera;

If we decide to compare the two photos with a screen or

an impression with a resolution below 2 megapixels, we will

rule on that they are the same photos. At the contrary, with an

upper resolution, the two photos will be revealed completely

different. All depend so on sensitivity of the detector. We then

distinguish two cases of simulability :

• Strong simulability: Stealth is fixed at a lower down

level face to detector. This case has already been treated.

• Weak simulability: Stealth is positioned above the detec-

tor. Despite, it simulates all answers in order to produce a

statistical distribution D∆
Stealth indistinguishable with re-

gard to system distribution D∆
SYS. This case is formalized

below.

Remark : Notice that the system distribution depends on the

detector which generates it. That’s why it is denoted as D∆
SYS.

The following relation must be so considered (the relation is

true for any integer n big enough and for any polynomial P):

∑

x∈answers

∣

∣

∣
ProbD∆

Stealth

[x]− ProbD∆

SYS

[x]
∣

∣

∣
≤

1

P (n)
(7)

• ProbQ[x] is the probability to obtain the event x accord-

ing to a given distribution law Q.

• n represents the security coefficient[4].

We can now introduce the computational indistinguishability.

That is to say, it exists a polynomial algorithm that can

distinguish two given distributions. Therefore we have, for any

probabilistic polynomial algorithm A,

∣

∣

∣
Probx←D∆

Stealth

(A(x) = 1)− Probx←D∆

SYS

(A(x) = 1)
∣

∣

∣
≤ ǫ

(8)

Where x← D means that x is chosen with distribution D. The

relation gives us the notion of computational indistinguisha-

bility for two distributions and with regard to a detector. We

remark that the two aspects of indistinguishability are relative

to the detector . We name by:

• INDS(D∆
stealth, D∆

SYS) the predicate which is true if

both distributions satisfy the relation 7. Then we will say

that they are statistically indistinguishable.

• INDC(D∆
stealth, D∆

SYS) the predicate which is true if

both distributions satisfy the relation 8. Then we will say

that they are computationally indistinguishable.

3) General Formalism of stealth: The previous formalism
is so enriched and leads to this new definitions :

. Total Stealth

φStealth(i)(Ω(d), Λ(p)) =

8

>

>

>

>

>

<

>

>

>

>

>

:

φi(d, p), if H(Stealth) < H(∆)

φi(d, p), if H(Stealth) > H(∆)

and INDCorS(D∆
Stealth, D∆

SYS)

φi(Ω(d), Λ(p)), if H(Stealth) > H(∆)

and ¬INDCorS(D∆
Stealth, D∆

SYS)

(9)

. Camouflage

φStealth(i)(d, Λ(p)) =

8

>

>

>

>

>

<

>

>

>

>

>

:

φi(d, p), if H(Stealth) < H(∆̄)

φi(d, p), if H(Stealth) > H(∆̄)

and INDCorS(D∆
Stealth, D∆

SYS)

φi(d, Λ(p)), if H(Stealth) > H(∆̄)

and ¬INDCorS(D∆
Stealth, D∆

SYS)

(10)

∆̄ represents an on demand detector. Indeed, this kind of

detection is essential for this category of Stealth [3].

D. Resolution of Particular cases

In section III-C, the model is undefined for the following

particular case H(Stealth) = H(∆). Worse, it becomes

unclear when H(Stealth) = H(∆) = 0. We can give

a solution to this problem for particular detectors. Let us

denote by ∆Stealth a stealth detector, that is to say a detector

which hides its distribution D∆Stealth

SYS of the system. Then

it is theoritically impossible for an aggressor to build a

stealth code generating a distribution indistinguishable from

the true distribution hidden by ∆Stealth. That is to say that

INDC or S(D∆Stealth

Stealth , D∆Stealth

SYS) is always false. As a result,

when H(Stealth) = H(∆Stealth), then from equation 6, we

have

φStealth(i)(Ω(d), Λ(p)) = φi(Ω(d), Λ(p)).

E. Detection and eradication of stealth mechanisms

Thanks to previous formalism and the model proposed with

graph theory, the problem of detecting stealth mechanisms is

more affordable2. The detection process has been discussed

many times [12], [13], [4]. Our approach is based on the

formalism proposed above. So Total stealth modifies both

edges (the nature of communications) and vertices of the

graph while the camouflage does not alter those last ones.

The presence of a stealth mechanism refers to the presence

2we consider from here the detection of total stealth.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3056

of an additional vertex or modified one and/or the presence

of additional edges or modifications upon ones which are

adjacent. The degree of granularity of the graph considered

will affect the nature of the change. The various cases to be

taken into account are summarized below.

Case 1: Vertex modified (the stealth mechanism has been

integrated on the system).

Fig. 7. Modification of vertices

Case 2: Vertex added (the stealth mechanism has been

inserted on the system).

Fig. 8. Add of vertices

Case 3: modification of paths .

Fig. 9. Modification of paths

Case 4: modification of edges.

Fig. 10. Modification of edges

1) Stealth mechanism detection: Let G = (P, E) be a

graph, we denote by:

• ΣP an application from P to {0, 1}n (vertices valuation).

• ΠE an application from P × P to {0, 1}n (edges valua-

tion).

Whenever we’re talking about modifications, we’re always

talking about a comparison between a current state and a

reference state. The comparison requires to save the reference

state or at least its main features. Making a backup of this

reference state of the system SY S consist of making a backup

of the associated graph with vertices valuation and edges

valuation.

We have then to take into account the two following graphs:

• The reference graph GR with the valuation functions

associated to vertices and edges, ΣPR
and ΠER

;

• The current graph GC with its valuation functions asso-

ciated to vertices and edges, ΣPC
and ΠEC

.

Remark: Considering that all graphs involved by our model

are almost trees, they have at most Card(P)− 1 edges. Thus

the number of valuation to be saved is linear in relation to

vertices number.

Before any detection process, the current graph is created,

all degree of each vertices are extracted and all valuation

functions are calculated in advance. This stage corresponds in

our Stealth formalism to the extraction of the current system’s

distribution and is done using the adjacency matrix of the

graph. This calculation needs, considering this n× n matrix :

• n calls to valuation functions (edges and vertices);

• n2 additions for the calculation of vertices’ degree;

• n additions for the calculation of the graph’s cardinal.

The complexity of the extraction stage relies on graph build-

ing’s cost and each valuation function’s cost. Next to the

extraction stage, there is the detection stage and the eradication

stage.

a) Detection in the case of the first figure: In this case,

PR = PC = P . The figure 7 represents a vertex modification

in the graph. Due to this modification, the valuation of this

vertex is changed. We obtain then the following relation :

∃p ∈ P | ΣPR
(p) 6= ΣPC

(p)

For instance, this valuation can be calculated by a hash

function applied to the data contained in a vertex.

Complexity: this detection needs at most Card(PR) compar-

isons.

b) Detection in the case of the second figure: The figure

8 represents the case where a vertex is added in the graph. The

cardinality of the graph is so mandatory altered. The following

relation is then true: Card(GR) 6= Card(GC). Complexity :

this detection needs only one comparison.

c) Detection in the third figure: The figure 9 show a

modification of a path toward a vertex. That is possible

especially by an edge removed and another one added. That

is to say that some vertex will have their degree changed. The

detection comes down to compare degrees of the vertices of

GC with ones of the graph GR.

Remark : this detection can be made also by comparing edges

and vertices valuations, what is more costly.

Complexity: n comparisons.

d) Detection in the fourth figure: The figure 10 under-

lined a non legitimate use of a communication channel in

the system. A vertex functionality must have been hijacked

to enable another kind of communication than ones allowed.

We are in the case in which GR = GC and

∃e ∈ E|ΠGR
(e) 6= ΠGC

(e)

Remark: This modification should modify all adjacents

vertices. Complexity: this detection needs at most n− 1 calls

to the vertex valuation function. That is, so a linear detection.

2) Stealth mechanism eradication: The detection has been

demonstrated as an affordable problem with our model. At

the contrary eradication is said to be more complicated [14].

However the difficulty of the eradication problem remains also

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3057

on the extraction of a relevance reference graph.

So, we have to keep in mind that stealth is not commonly

content with adding data on a system. Indeed the system is

affected and by deleting the data corresponding to the stealth

mechanism, the system will be damaged. That involves a

strong constraint, which is the obligation to rebuild the system.

A reconstruction of the system implies a full knowledge of this

one. In our model this knowledge is acquired in the reference

graph. The extraction of this graph is the main point of the

eradication process. Once this reference graph well-extracted

the eradication process turn into an elementary principle.

The graph of the current system have to be extracted in

accordance with the reference graph extraction process. Then

all common parts of both graphs have to be identified.

Fig. 11. Eradication of stealth mechanism

Once equal subgraphs discovered, that is to say the good

parts of the system identified, the rest of the graph has to be

replaced by the good one form of the reference graph. In the

figure 11 we can see two examples of eradication process.

The first one show us the detection of vertices modifications

and the second one, a detection of vertex added. Once the

equal parts detected, elements needed to be replaced are

in evidence. In [12], this concept is well explicited. The

antirootkit tool, pathfinder is designed like this: the vertex of

the reference graph are valuated with instructions execution

number (see figure 12).

linux:/home/tools/rktest # patchfinder -c

referenz_2.4.16

* FIFO scheduling policy has been set.

* each test will take 1000 iteration

* testing... done.

* dropping realtime schedulng policy.

test name | current | clear | diff | status

open_file | 7110| 1442| 5668| ALERT!

stat_file | 7050| 1255| 5795| ALERT!

read_file | 608| 608| 0| ok

open_kmem | 7124| 1510| 5614| ALERT!

readdir_root | 6497| 2750| 3747| ALERT!

readdir_proc | 14422| 2401| 12021| ALERT!

read_proc_net_tcp | 11750| 11750| 0| ok

lseek_kmem | 220| 220| 0| ok

read_kmem | 327| 327| 0| ok

Fig. 12. Example of information given by the tool Patchfinder

The same approach can be made by considering the size of

functions in bytes.

IV. CONCLUSION

A work of general formalism was proposed in this paper.

This formalism allows to frame all the aspects of stealth in

the programs and evenmore in systems. The definitions which

were able to be raised give us a better vision of the advantage

and the inconveniences of these mechanisms which can be

both used in a friendly and hostile way. The consideration of

the works already made, the relativity of stealth mechanisms

with the detector and the system, the use of graph theory, allow

to propose an innovative formal frame. It leads quite naturally

to rethink the way of protecting the system, notably by using

the mechanisms of stealth in order to fight the hostile codes.

We shall conclude the debate on stealth by supporting ardently

that any concept of protection using it will show itself more

effective than any classical mechanism of protection.

REFERENCES

[1] L. Adleman, “An abstract theory of computer viruses,” in Proceedings

on advances in cryptology, Crypto’88. Springer-Verlag, 1990, pp. 354–
374.

[2] Z. Zuo and M.-t. Zhou, “Some further theoretical results about computer
viruses,” The Computer Journal, vol. 47, no. 6, pp. 627–633, 2004.

[3] E. Filiol, Techniques virales avancées. Springer Verlag France, the
english version is pending (due January 2009) under the reference Ad-
vanced Computer Viruses techniques, IRIS International Series, Springer
Verlag France, 2007.

[4] ——, “Formal model proposal for (malware) program stealth,” in
Proceedings of Virus Bulletin Conference, VB2007, 2007.

[5] F. Cohen, “Computer viruses: Theory and experiments,” Computers &

Security, vol. 6, no. 1, pp. 22–35, 1987.
[6] K. Godel, “Über formal unenscheidbare sätze der principia mathematica

und verwandter systeme,” Monatshefte fr Math. Phys, vol. 37, 1931.
[7] E. Filiol, Computer Viruses : from theory to applications. IRIS

International Series, 2nd, Springer Verlag France, 2003.
[8] C. Cachin, “An information-theoretic model for steganography,” Inf.

Comput., vol. 192, no. 1, pp. 41–56, Mar. 2004.
[9] ——, “Digital steganography,” Encyclopedia of Cryptography and Se-

curity, Feb. 2005.
[10] M. Myers and S. Youndt, “An introduction to hardware-assisted

virtual machine (hvm) rootkits,” Aug. 2007. [Online]. Available:
http://crucialsecurity.com/

[11] C. Berge, Théorie des graphes et ses applications. Dunod, 1958.
[12] A. Bunten, “Unix and linux based rootkits techniques and countermea-

sures,” Apr. 2004.
[13] K. kasslin, M. Stlahberg, S. Larvala, and A. Tikkanen, “Hide’n seek

revisited - full stealth is back,” 2005.
[14] E. Filiol, “Les virus du futur(s),” Laboratoire de virologie et de cryp-

tologie, ESAT, Rennes, France, Oct. 2007.

