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Abstract—In this paper we study the transformation of Euler 

equations  

( ) 1 ,u u u P f
t ρ

∂
+ ⋅∇ = − ∇ +

∂
0,u∇ ⋅ =  

where ( , )u x t is the velocity of a fluid, ( , )P x t  is the pressure of 

a fluid and ( , )x tρ is density. First of all, we rewrite the Euler 
equations in terms of new unknown functions. Then, we introduce 
new independent variables and transform it to a new curvilinear 
coordinate system. We obtain the Euler equations in the new 
dependent and independent variables. The governing equations into 
two subsystems, one is hyperbolic and another is elliptic.  
 

Keywords—Euler equations, transformation, hyperbolic, elliptic 

I. INTRODUCTION 
N In the paper we consider the two-dimensional for flow of 
ideal incompressible fluid through the channel depicted in 
fig. 1. The incompressible Euler equations can be 

formulated in a convenient alternative manner, by introducing 
two scalar variables in place of the primitive variables the 
velocity u  and the pressure P . The vorticity-stream function 
formulation has been a popular tools of computing two-
dimensional incompressible flows [ ]1 , [ ]2 . Sometimes, it is 

convenient to use another two scalar variables which are 
differed from vorticity and stream function[ ]3 , [ ]4 . In this 
paper, we will   use the modulus of the velocity and the flow 
angle (angle between the direction of velocity vector and the 
direction of Ox  axis) as two new unknown functions instead 
the primitive variables.  

II. MATHEMATICAL FORMULATION  
The motion of a homogeneous ideal incompressible fluid is 

described by the Euler equations [ ]5 . 

( ) 1 ,u u u P f
t ρ

∂
+ ⋅∇ = − ∇ +

∂
0,u∇ ⋅ =  
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where ( , )u x t is the velocity of a fluid, ( , )P x t  is the 
pressure of a fluid and ( , )x tρ is density. 

The Euler equations of the two-dimensional steady 
incompressible ideal fluid are  

,u u Pu v
x y x

∂ ∂ ∂
+ = −

∂ ∂ ∂
                          (1)  

,v v Pu v
x y y

∂ ∂ ∂
+ = −

∂ ∂ ∂
                          (2)  

0,u u
x y

∂ ∂
+ =

∂ ∂
                                (3)  

where ( , )u x y and ( , )v x y are components of the velocity in 
the x  and y  direction respectively, ( , )P x y is the pressure 
of a fluid. Without loss of generality we set the density equal 
to one. ( 1)ρ = . 

 
 

Fig. 1 Sketch of a  domain. 
 

Let us assume that flow occurs in the domain Ω  depicted 
in Fig 1. We assume that the solid impermeable boundaries 

0Γ is described by curves which are given by equations in the 
natural form 

( ), 1, 2.ik k l i= =  
It is convenient to rewrite the Euler Equations in terms of 

new unknown functions ( , )w x y and ( , )q x y which are 
determined by the relations ( , ) cos ( , )u w x y q x y=  and 

( , )sin ( , )v w x y q x y= . Actually, ( , )w x y  is the modulus 
of the velocity vector and problems ( , )q x y  is the angle 
between the direction of the velocity vector and the Ox axis. 
We will call q  as the flow angle. In this paper, we study the 
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transformation for two kinds of the boundary value problem in 
Fig. 2. 

 
Fig. 2.Sketch of a physical domain. 

 
Problem 1 boundary conditions: 
Impermeable boundaries AD  and :BC 0( , )x y ∈Γ  

0.u n⋅ =                                 (4)  

Inflow part 1: ( , )AB x y ∈Γ  

1 1( , ), ( , ).q q x y w w x y= =                       (5)  

Outflow part 2: ( , )CD x y ∈Γ  

2 ( , ).q q x y=                            (6)  
Problem 2 boundary conditions: 
Impermeable boundaries AD  and :BC 0( , )x y ∈Γ  

0.u n⋅ =                                (7)  

Inflow part 1: ( , )AB x y ∈Γ  

1 1( , ), ( , ).q q x y w w x y= =                      (8)  

Outflow part 2: ( , )CD x y ∈Γ  

2 ( , ),
0.

P P x y
u n

=
⋅ >

                         (9)  

The problem 2 differs from the problem 1 in the boundary 
conditions on the outflow part .CD  On ,CD  only pressure 
and condition for sign of normal component of the velocity 
vector are given.  

III. EULER EQUATIONS IN TERMS OF NEW 

UNKNOWN FUNCTION ( , )x yω AND ( , )q x y  
We eliminate the pressure from the Euler equations by 

eliminating the mixed derivatives. Taking the derivatives in 
(1)  and (2)  with respect to y  and ,x  respectively, we 
obtain 

2 2 2

2 ,u u u v u u Pu v
y x x y y y y x y

⎛ ⎞ ⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞+ + + =−⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠
 

 
2 2 2

2 .u v v v v v Pu v
x x x x y x y y x

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞⎛ ⎞ ⎛ ⎞+ + + =−⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠
 

Then, we eliminate the terms containing the pressure by 
subtracting these two equations and use the condition 

2 2

,P P
x y y x

∂ ∂
=

∂ ∂ ∂ ∂
 

We have  
2 2

2

2 2

2 0.

u u u v u uu v
y x x y y y y

u v v v v vu v
x x x x y x y

⎛ ⎞ ⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞+ + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠
⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞⎛ ⎞ ⎛ ⎞− − − − =⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

    (10)  

Substitution of ( , ) cos ( , )u w x y q x y=  and 
( , )sin ( , )v w x y q x y=  into continuity (3)  yields 

cos sin sin cos 0.w q w qq w q q w q
x x y y

∂ ∂ ∂ ∂
− + + =

∂ ∂ ∂ ∂
       (11)  

 On the other hand, substitution of the expressions 
( , ) cos ( , )u w x y q x y=  and ( , )sin ( , )v w x y q x y=  into 

(10)  gives us the following equation  
2

2 2
2 2 2

2

22
2 2 2

4cos sin 4 cos sin 4 (cos )

2 cos sin cos sin 4 (cos )

2 cos sin 4 (cos ) 2 cos sin

cos si

w q q w w qqw q w q q w q
y x y x x x

q w q qw q q w q q w q
x x y x

q q w qw q q w q w q q
x y y y y

w q

∂ ∂ ∂ ∂ ∂ ∂
− − −

∂ ∂ ∂ ∂ ∂ ∂

⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞+ − −⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
− + −⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠

+
22 2 2

2
2 2

2 22 2
2 2 2

2

2
2 2 2

2

n 2cos

2 (cos ) cos sin cos sin (cos )

(cos ) 2 3 0.

w q w w w w wq w w q
y y y x x y y x

w w w qw q q q q q w q
x y y x x

q q q w q q ww q w w w
y y x x x y y

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞− − − +⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠

⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞+ + − −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
∂ ∂ ∂ ∂ ∂ ∂ ∂

+ + + − =
∂ ∂ ∂ ∂ ∂ ∂ ∂

   (12)  

Differentiating (11)  with respect to x  and  y  , we obtain  
22 2 2

2 2

2

cos 2sin cos sin sin

cos cos sin cos 0,

w w q q q wq q w q w q q
x x x x x x y

w q w q q q qq q w q w q
y x x y y x x y

∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞− − − +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
∂ ∂ ∂ ∂ ∂ ∂ ∂

+ + − + =
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

 

2 2

22 2

2 2

cos sin sin cos sin

sin 2cos sin cos 0.

w w q w q q q qq q q w q w q
x y x x y x y x x y

w w q q qq q w q w q
y y y y y

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
− − − −

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

⎛ ⎞∂ ∂ ∂ ∂ ∂
+ + − + =⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
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Then, we use these two equations together to find 
2q

x y
∂
∂ ∂

  and 

2

.w
x y

∂
∂ ∂

 After that, substitute the value of mixed derivatives 

into (12) , we get the following 
 

2
2 2 2

2

2
2 2 2

2
2 2

3 2 cos sin 2 (cos )

2 (cos ) cos sin 2 (cos )

cos sin 2 cos sin 2(cos )

cos si

q w w w q q w q qw w w q q w q
y x y y y y x x y

q w q w q w qw w q w q q w q
x x y y y x x

q w q w ww q q w q q q
x y x y x

q

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
− − − − −

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂
− + − −⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

∂ ∂ ∂ ∂ ∂⎛ ⎞+ − +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

+
2 2 2

2 2
2n cos sin 0.w w q q qq q q w w

y x x x y
⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞− − + =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

  (13)  

To eliminate the terms underlined, it is convenient to use 

continuity (11).The multiplication of (11)  by sinw q
x

∂
∂

 

gives us the value of 
2

cos sin .w q q
x

∂⎛ ⎞
⎜ ⎟∂⎝ ⎠

 The multiplication  

these values, of (11)  by cos qw q
x

∂
∂

 gives us the value of 

2(cos ) .w qw q
x x

∂ ∂
∂ ∂

 The multiplication of (11)  by 

sin qw q
y

∂
∂

 give us the value of  cos sin .w qw q q
x y

∂ ∂
∂ ∂

    

Then the substituting these values, 
22

2cos sin , cos sin , (cos )w w w qq q q q w q
x y x x

⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞
⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 

and cos sin ,w qw q q
x y

∂ ∂
∂ ∂

 into (13)  instead of the terms 

underlined, after simplification, we obtain 

2 2 0.q qw w
x x y y

⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ + =⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
        (14)  

All above algebraic manipulation are done by MAPLE 
program.  

IV. TRANSFORMATION FROM CARTESIAN 

COORDINATES ( , )x y TO GENERALIZED 
CURVILINEAR COORDINATES ( , )ϕ ψ  

The computation of flow fields in and around complex 
shapes such as ducts, engine, complete aircraft or automobiles, 
etc., involves computational boundaries that do not coincide 
with coordinate lines in a physical domain. For finite 
difference methods, the imposition of boundary conditions for 

such problems motivate the introduction of a mapping or 
transformation from physical ( , )x y domain to a generalized 
curvilinear coordinate space. The generalize coordinate 
domain is constructed so that a computational boundary in a 
physical domain coincides with a coordinate line in a 
generalized coordinate space. 

The use of generalized coordinates implies that a distorted 
region in a physical domain is mapped into a rectangular 
region in the generalized coordinate space as shown in Fig.3. 

 

 
a) Physical domain                           b) Computational domain 

Fig. 3   Physical and computational domain 
 

Next, we introduce new independent variables ϕ   and ψ . 
We will choose  ψ  which is similar to a stream function and  
ϕ  as an independent function which is similar to the 
potential. It is assumed that there is a unique, single-valued 
relationship between the generalized coordinates and the 
physical coordinates which can be written as  

( , ), ( , )x y x yϕ ϕ ψ ψ= =                (15)  
and by implication 

       ( , ), ( , ).x x y yϕ ψ ϕ ψ= =  
The specific relationship is given by the equations for total 

differentials of  ϕ   and ψ , respectively  
cos sin ,x y

q qd dx dy dx dyϕ ϕ ϕ
φ φ

= + = +           (16)  

sin cos .x yd dx dy cw qdx cw qdyψ ψ ψ= + = − +        (17)  

In (16) and (17), c  is a constant, and ( , )x yφ  is a new 
unknown function. These values are chosen such that the new 
variables ( , )ϕ ψ  are functionally independent, i.e. the 
Jacobian is not equal to zero 

( , )( , ) 0.
( , )

cwJ x y
x y
ϕ ψ

φ
∂

= = ≠
∂

 

Equation (16) has to deter mine  unique function ( , ).x yϕ  
It  means that the mixed derivatives are equal, i.e. 

2 2( , ) ( , ) .x y x y
x y y x

ϕ ϕ∂ ∂
=

∂ ∂ ∂ ∂
                  (18)  

Substitution of 
y
ϕ∂

∂
 and 

x
ϕ∂

∂
from (16) into (18) gives the 

equation 
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sin ( , ) cos ( , ) .
( , ) ( , )
q x y q x y

x x y y x yφ φ
⎛ ⎞ ⎛ ⎞∂ ∂

=⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
     (19)  

Equation (19) may be used as an additional equation for the 
new unknown function ( , )x yφ . From (16) and (17), we have 
the value of partial derivatives 

sin cos; ;
( , ) ( , )

sin ; cos .

q q
y x y x x y

cw q cw q
x y

ϕ ϕ
φ φ

ψ ψ

∂ ∂
= =

∂ ∂
∂ ∂

= − =
∂ ∂

      (20)  

To transform the system of (11), (14) and (19) to new 
independent variables, we need to know the values of 

, ,x x y
ϕ ψ ϕ

∂ ∂ ∂
∂ ∂ ∂

 and 
y
ψ

∂
∂

. It is easy to show that 

1 0
.

0 1

x x
x y

y y
x y

ϕ ϕ
ϕ ψ

ψ ψ
ϕ ψ

∂ ∂ ∂ ∂⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ⎡ ⎤⎢ ⎥ ⎢ ⎥ = ⎢ ⎥∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥ ⎣ ⎦
⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦⎣ ⎦

 

Really, we have 

,x xdx d d

y ydy d d

ϕ ψ
ϕ ψ

ϕ ψ
ϕ ψ

∂ ∂
= +

∂ ∂
∂ ∂

= +
∂ ∂

 

or in a matrix from 

.

x x
dx d
dy y y d

ϕϕ ψ
ψ

ϕ ψ

∂ ∂⎡ ⎤
⎢ ⎥∂ ∂⎡ ⎤ ⎡ ⎤⎢ ⎥=⎢ ⎥ ⎢ ⎥∂ ∂⎢ ⎥⎣ ⎦ ⎣ ⎦
⎢ ⎥∂ ∂⎣ ⎦

 

Solving this matrix equation, for the right-hand column 
matrix, we have 

1

.

x x
d dx
d y y dy

ϕ ϕ ψ
ψ

ϕ ψ

−∂ ∂⎡ ⎤
⎢ ⎥∂ ∂⎡ ⎤ ⎡ ⎤⎢ ⎥=⎢ ⎥ ⎢ ⎥∂ ∂⎢ ⎥⎣ ⎦ ⎣ ⎦
⎢ ⎥∂ ∂⎣ ⎦

 

This matrix from can be compared with the matrix form 

.
d dxx y
d dy

x y

ϕ ϕ
ϕ
ψ ψ ψ

∂ ∂⎡ ⎤
⎢ ⎥∂ ∂⎡ ⎤ ⎡ ⎤⎢ ⎥=⎢ ⎥ ⎢ ⎥∂ ∂⎢ ⎥⎣ ⎦ ⎣ ⎦
⎢ ⎥∂ ∂⎣ ⎦

 

Therefore 

1x x
x y

y y
x y

ϕ ϕ
ϕ ψ

ψ ψ
ϕ ψ

−∂ ∂ ∂ ∂⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥=
∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦⎣ ⎦

 

Following the standard rules for finding the inverse matrix, 
this equation is written as follows 

y y
x x

x x
y y

x y

x y

ψ ϕ

ψ ϕ
ϕ ψ

ϕ ϕ
ϕ ψ

ψ ψ

∂ ∂⎡ ⎤−⎢ ⎥∂ ∂
⎢ ⎥∂ ∂⎡ ⎤ ∂ ∂⎢ ⎥−⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦⎢ ⎥ =

∂ ∂∂ ∂⎢ ⎥
⎢ ⎥ ∂ ∂∂ ∂⎣ ⎦

∂ ∂
∂ ∂

 

or 

1
x x

y y
y y J

x x

ψ ϕ
ϕ ψ

ψ ϕ
ϕ ψ

∂ ∂⎡ ⎤ ∂ ∂⎡ ⎤−⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥=
∂ ∂⎢ ⎥ ∂ ∂⎢ ⎥−⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦⎣ ⎦

       (21)  

where the Jacobian J  is defined as  

2 2( , ) cos sin 0.
( , )

x y cw q cw q cwJ
x y

x y

ϕ ϕ
ϕ ψ

ψ ψ φ φ φ

∂ ∂
∂ ∂∂

= = = + = ≠
∂ ∂∂
∂ ∂

Since the Jacobian 0,J ≠  then φ  and  w  are not equal to 
zero. Finally, we can rewrite (21) in the form 

1 1 sincos , ,

1 1 cossin , .

y y

x x

x x qq
J J cw

y y qq
J J cw

ψ φ ϕ
ϕ ψ

ψ φ ϕ
ϕ ψ

∂ ∂
= = = − = −

∂ ∂
∂ ∂

= − = = =
∂ ∂

    (22)  

The first step: We transform the continuity (3). Substitution 
of cosu w q=  and sinv w q=  into this equation yields 

cos sin 0w q w q
x y

∂ ∂
+ =

∂ ∂
 

or 

cos sin sin cos 0.w q w qq w q q w q
x x y y

∂ ∂ ∂ ∂
− + + =

∂ ∂ ∂ ∂
      (23)  

V. RESULTS 
By using the chain rule, we have the formulas to change 

partial derivatives 
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() () () cos () ()sin ,

() () () sin () ()cos .

q cw q
x x x

q cw q
y y y

ϕ ψ
ϕ ψ φ ϕ ψ

ϕ ψ
ϕ ψ φ ϕ ψ

∂ ⋅ ∂ ⋅ ∂ ∂ ⋅ ∂ ∂ ⋅ ∂ ⋅
= + = −

∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ⋅ ∂ ⋅ ∂ ∂ ⋅ ∂ ∂ ⋅ ∂ ⋅

= + = +
∂ ∂ ∂ ∂ ∂ ∂ ∂

      (24)  

21 0,w qcw
φ ϕ ψ

∂ ∂
+ =

∂ ∂
 

 
1 .qc
w

φ
ϕ ψ
∂ ∂⎛ ⎞ =⎜ ⎟∂ ∂⎝ ⎠

                      (25)  

The second step: We have to use the condition 
2 2

.
x y y x

ϕ ϕ∂ ∂
=

∂ ∂ ∂ ∂
                          (26)  

Substitution of and from equation yields 
cos sinq q

y xφ φ
⎛ ⎞ ⎛ ⎞∂ ∂

=⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
                   (27)  

or 

sin cos cos sin .q qq q q q
y y x x

φ φφ φ∂ ∂ ∂ ∂
− − = −

∂ ∂ ∂ ∂
 

Substituting (24) into (27) and making simplifications, we get 
the following equation in the term of new variables 

1 .q
cw

φ
ψ ϕ

∂ ∂
= −

∂ ∂
                        (28)  

The third step: Substituting partial derivatives from (24) 
into equation 

2 2 0,q qw w
x x y y

⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ + =⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 

We obtain 

2 3 2 3cos sinsin cos 0.q q q q q qw cw q w cw q
x φ ϕ ψ φ ϕ ψ
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂

− + + =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 

By simplifying, we get then the equation in the terms of new  
variables as follows 

2
2 3 0.w q qc w wφ

ϕ φ ϕ ψ ψ
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂

+ =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
                (29)  

In order to transform (1),(3) and (26) to (25), (28) and (29), 
a program by MAPLE. 

VI. CONCLUSION 
The Euler equations are expressed in terms of new unknown 

functions which are the flow angle (angle between the 
direction of the velocity vector and direction of the Ox  axis) 
and the modulus of the velocity vector. The new independent 
variables are used to transform the physical domain to the 
canonical computational domain. Then, the governing 
equations into two subsystems, one is hyperbolic  

 

1 ,qc
w

φ
ϕ ψ
∂ ∂⎛ ⎞ =⎜ ⎟∂ ∂⎝ ⎠

 

1 q
cw

φ
ψ ϕ

∂ ∂
= −

∂ ∂
 

and another is elliptic 
2

2 3 0.w q qc w wφ
ϕ φ ϕ ψ ψ

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
+ =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
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