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A Similarity Function for Global Quality
Assessment of Retinal Vessel Segmentations

Arturo Aquino, Manuel Emilio Gegúndez, José Manuel Bravo, Diego Marı́n

Abstract—Retinal vascularity assessment plays an important role
in diagnosis of ophthalmic pathologies. The employment of digital
images for this purpose makes possible a computerized approach and
has motivated development of many methods for automated vascular
tree segmentation. Metrics based on contingency tables for binary
classification have been widely used for evaluating performance of
these algorithms and, concretely, the accuracy has been mostly used
as measure of global performance in this topic. However, this metric
shows very poor matching with human perception as well as other
notable deficiencies. Here, a new similarity function for measuring
quality of retinal vessel segmentations is proposed. This similarity
function is based on characterizing the vascular tree as a connected
structure with a measurable area and length. Tests made indicate
that this new approach shows better behaviour than the current one
does. Generalizing, this concept of measuring descriptive properties
may be used for designing functions for measuring more successfully
segmentation quality of other complex structures.

Keywords—Retinal vessel segmentation, quality assessment, per-
formance evaluation, similarity function.

I. INTRODUCTION

D IGITAL retinal images are employed in diagnosis of
ophthalmic pathologies. Vessels assessment is an impor-

tant diagnosis key to detect and evaluate many of them that
produce vascular anomalies, such as diabetic retinopathy. As
previous step, it requires segmentation of the vascular tree
from the background. However, when number of vessels in an
image is large, or when a large number of images is acquired,
manual delineation of vessels becomes tedious or even im-
possible. That is why many methods for segmenting vessels
automatically have been proposed over the last years from
many different approaches. Mathematical morphology [1], [2],
[3], [4], matched filtering [5], [6], [7], [8], [9], [10], supervised
methods [11], [12], [13], [14], [15], [16] or model-based
locally adaptive thresholding [17] among other, are techniques
used in this topic.

Metrics based on contingency tables for binary classifi-
cation [18] have been widely used over the last years for
objectively evaluate quality of automated retinal vessel seg-
mentations [4], [6], [8], [9], [10], [11], [12], [13], [14], [15],
[16], [17]. Specifically, the accuracy (Acc) [18] has been
accepted as the metric for quantifying global quality of these
segmentations and therefore, it has been accepted as the
objective measure for comparing segmentation algorithms and
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for providing a global idea of their behaviour. It is calculated
as the ratio of pixels well-classified into the two classes, vessel
and background. For that, segmentations are compared pixel
by pixel with hand labelled images.

The difficulties of quality evaluation of retinal vessel seg-
mentations have been previously pointed out and discussed by
Niemeijer et al. in [13]. In the authors’ opinion, the exclusive
use of this metric is not suitable for assessing global quality of
these segmentations and presents some outstanding difficulties.

In this paper, a new similarity function for evaluating global
quality of retinal vascular tree segmentations as a complement
of the metrics based on contingency tables is proposed. This
similarity function is based on the authors’ perception that the
three main measurable features that describe the vascularity
are connectivity, area and length of all vessels. Since the new
function enhances the numeric assessment of the global quality
of this kind of segmentations, it can be considered potentially
useful for researchers of this field.

II. NEW SIMILARITY FUNCTION FOR QUALITY
ASSESSMENT OF RETINAL VESSEL SEGMENTATION

Here, in the first sub-section, the development of a new sim-
ilarity function for assessing quality of retinal vessel segmen-
tations is motivated. For that, the main identified weaknesses
of the Acc in its use for this purpose are described. The second
sub-section presents and describes the new proposal.

A. Motivation: Weaknesses of the Accuracy

Subjective distortion measure, obtained by subjective test-
ing, quantifies the dissatisfaction of the viewer in observing
the distorted image in place of the original. On the other
hand, objective distortion measure gives the distortion between
the original and the distorted image mathematically. For an
appropriate and comprehensive evaluation of quality, it is
desirable to obtain a good matching between both subjective
and objective distortion measure.

For a numerical assessment of the quality of a segmentation
generated by means of an automated process, a binary image
representing the “perfect” case to be compared with is needed.
This last, typically called ground truth or gold standard image,
is made by a medical expert by manually labeling the original
one.

To assess the degree of correspondence between subjec-
tive testing and objective measurement using the Acc, an
experiment was performed. Firstly, five different retinal vessel
segmentations from the same image having all of them an
Acc value of 0.9798 were generated. Then, a set of observers
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was asked for evaluating them, obtaining for the lowest scored
segmentation an average of 0.35 and for the highest one
0.95. This outstanding mismatching can be explained by
identifying objective deficiencies derived directly from the
nature of the metric and the vascularity. This last is a tree-
like connected structure composed of some main gross vessels
that progressively split in other thinner. Anatomically, thin
vessels constitute in average more than 50% of the components
of the vascular tree and, despite their small size, they are
relevant from a medical point of view, since they may suffer
damages and contribute diagnose information. Nevertheless, in
a digital image they only suppose about 21% of the pixels of
the whole vasculature. Furthermore, the whole vascular tree is
approximately only the 12% of the pixels of the retina.

Besides all mentioned above, since automated segmenta-
tions are compared with ground truth images made by human
observers, another difficulty is therefore the subjectivity in-
troduced by these observers. Differences in vessels tracing,
width, length or even in painting some vessels or not can be
observed in gold standards made by different observers for
the same image. It is important to highlight that any function
for evaluating segmentation quality would be sensitive to
differences in vessels presence and absence in different gold
standards, as this is a difficulty derived of the use of human-
made gold standards. However, impact of slight differences in
vessels tracing or width should be minimized by any metric
for this purpose, and the Acc does not do it.

Summarizing, the following are the main identified deficien-
cies of the Acc:

1) High insensitivity to absence of thin vessels detection.
2) Low sensitivity to poor vascular tree segmentations.
3) Strong dependence with the gold standard used for

measuring.
4) Very poor matching with human perception.

B. New Similarity Function Description: The CAL Similarity
Function

The similarity function based on connectivity, area and
length (in the following CAL), is a product of three factors
that evaluate each of them. So, mathematically it can be
defined as

CAL = C ∗A ∗ L (1)

This function takes values from the interval [0, 1], where values
0 and 1 denote the worst and perfect cases of segmentation
respectively. Description of each factor is as follows:

• Connectivity (C): This factor assesses the fragmentation
degree of the segmentation with respect to the gold
standard. As the vascular tree is a connected structure,
a good vascular segmentation is expected to have only a
few connected components (ideally one). So, this factor
penalizes fragmented segmentations according to:

C = 1−min
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where min is the minimum function, #
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and segmentation S respectively, and
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) denotes the cardinal of S

G
. Note that here, for

simplifying, the word segmentation reffers the set of
vessel pixels exclusively, excluding therefore the set of
background pixels from this term. This is held in the rest
of this section.

• Area: This factor evaluates the degree of overlapping
areas between the segmentation and the gold standard:

A =
#((δ(S) ∩ S

G
) ∪ (S ∩ δ(S

G
)))

#(S ∪ S
G
)

(3)

where S
G

is the gold standard and S the segmentation to
be evaluated. Function δ is a morphological dilation using
a small disc of three pixels in diameter. Introduction of
this operator provides tolerance with slight differences in
vessel width.

• Length: Here the degree of coincidence between the
segmentation and the gold standard in terms total length
is measured. Formally it is expressed as,

L =
#((ϕ(S) ∩ δ(S

G
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G
)))
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))

(4)

where ϕ is an homotopic skeletonization [19] and δ is
again a morphological dilation (with the same defined
disc) for decreasing impact of slight differences in vessel
tracing.

III. MATERIAL

For the experimentation made in this study, the publicly
available DRIVE database [20] was used. This database has
been widely used by researchers to test their vessel seg-
mentation methodologies since, apart from being public, they
provide manual segmentations for performance evaluation.

The DRIVE database comprises 40 eye-fundus color images
taken with a Canon CR5 non-mydriatic 3CCD camera with a
45◦ field of view (FOV). Each image was captured at 768x584
pixels, 8 bits per color plane and, in spite of being offered in
LZW compressed TIFF format, they were originally saved in
JPEG format. The database is divided into two sets: a test
set and a training set, each of them containing 20 images. The
test set provides the corresponding FOV masks for the images,
which are circular (approximated diameter of 540 pixels)
and two manual segmentations generated by two different
specialists for each image. The training set also includes the
FOV masks for the images and a set of manual segmentations
made by the first observer.

The set used for all the experimentation presented in this
work is the test set of this database. This set, as it has been
described, offers two sets of gold standard images made by two
different observers. This material was necessary for making
some experiments described in this paper.

IV. EXPERIMENTATION

In this section, the behaviour of the CAL and Acc against
some examples representative of the four previously described
weaknesses of the current metric is compared.
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Fig. 1. (a) Gold standard. (b) Segmentation with none thin vessel detected.

A. Sensibility to Thin Vessels Segmentation

Let’s define as gross vessels those that directly emerge in
the optic disc and the direct ramifications of these ones, and
thin vessels as the rest. Then, to assess influence of poor thin
vessels detection in the Acc and CAL, let’s consider the case
illustrated in Figure 1. In this figure, image (b) is a vessel
segmentation in which none thin vessel has been detected
and all gross vessels have been perfectly detected, and image
(a) is the gold standard. Then, values obtained for image (b)
compared with image (a) using both functions are:

• Acc = 0.9749
• CAL = 1.0 ∗ 0.8190 ∗ 0.7323 = 0.5997

Note that, although none thin vessel pixel was detected, the
Acc indicates that image (b) is a segmentation close to be
perfect. The CAL function penalizes much more this defect.

B. Sensibility to Poor Segmentations

Let’s consider three different segmentations of the same
image. The first one contains the 50% of the vascularity
(Figure 2, image (b)), in the second segmentation only the
25% of vessel pixels were detected (Figure 2, image (c)) and
the last segmentation is an “absurd” case that represents 0%
of vessel detection (Figure 2, image (d)). If image (a) is the
gold standard and these segmentations are evaluated with the
Acc and CAL, these results are obtained:

• 50% of vascularity detected:
– Acc = 0.9478
– CAL=1.0 ∗ 0.5005 ∗ 0.4900=0.2452

• 25% of vascularity detected:
– Acc = 0.9220
– CAL=1.0 ∗ 0.2547 ∗ 0.2490=0.0634

• 0% of vascularity detected:
– Acc = 0.8962
– CAL = 0.9999 ∗ 0 ∗ 0 = 0

Although segmentations (b) and (c) visually compared with
the gold standard (a) are too deficient, they obtain a global
measure of quality using the Acc that may be defined as
excellent, as both obtained a score above 0.9. On the other
hand image (d), despite of being a null segmentation, obtains
with this metric a score of almost 0.9. The behaviour of the
CAL similarity function is closer to what can be expected,
grading low the images (b) and (c) and with 0 the image (d).

Fig. 2. (a) Gold standard. (b) Segmentation of (a) with 50% of vascularity
detected. (c) Segmentation of (a) with 25% of vascularity detected. (d)
Segmentation of (a) with 0% of vascularity detected.

C. Dependence with the Gold Standard

This aspect is studied by comparing two manual segmenta-
tions of the same image made by the two different observers.
In Figure 3, image (a) is a gold standard made by the first ob-
server, and image (b) is the gold standard made by the second
one. Both images were modified to avoid differences in vessels
presence or absence and significative differences in vessels
length. By this way, only slight variations in vessels tracing
or width can be studied. Image (c) is the colour composition
of both images in which black colour indicates coincidence
in background, pixels in yellow colour are coincidences of
both segmentations in vessels, and red and green colours show
disagreements in vessels; red pixels are from the first observer
and green ones from the second observer. Then, considering
image (b) as a segmentation to be evaluated, and image (a) as
the gold standard image to be compared with, the following
measures of quality are obtained:

• Acc = 0.9689
• CAL = 1.0 ∗ 0.9312 ∗ 0.9565 = 0.8907

On the other hand, image (d) is a degradated version of image
(a), generated by cutting and erasing many vessels. The quality
values obtained for this case are:

• Acc = 0.9888
• CAL = 0.9998 ∗ 0.8725 ∗ 0.8272 = 0.7216

As it can be checked, paradoxically, although any human
observer would say that image (d) is clearly better segmenta-
tion than (b) when visually comparing with the gold standard
image (a), the Acc indicates the opposite. That is result of the
sensitivity of this metric to the previously discussed variations.
As results indicate, this sensitivity is reduced with the CAL
function.
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TABLE I
BEHAVIOUR COMPARISON OF THE SUBJECTIVE POLLING, Acc AND CAL ON THE SEGMENTATION CASES DESCRIBED IN THIS PAPER. DATA IN TERMS

OF AVERAGE VALUES

Fig.1 (b)-(a) Fig.2 (b)-(a) Fig.2 (c)-(a) Fig.2 (d)-(a) Fig.3 (b)-(a) Fig.1 (d)-(a)

Poll 0.4375 0.1750 0.10 0.0 0.925 0.6125
Acc 0.9749 0.9478 0.9220 0.8962 0.9689 0.9888
CAL 0.5997 0.2452 0.0634 0.0 0.8907 0.7216

Fig. 3. (a) Gold standard from the 1st observer. (b) Gold standard from the
2nd observer. (c) Color composition of (a) and (b). (d) Degradated version of
(a).

D. Degree of Matching with Human Perception

For evaluating this issue, 20 observers were asked for mark-
ing quality of all segmentation cases proposed in Figures 1, 2
and 3. Results obtained with this opinion poll are summarized
in Table 1. In it, each column represents a segmentation case.
Each case is codified as Fig.n (x)-(y), where n is the number
of the figure and (x) and (y) are the gold standard and the
segmentation used in that case respectively. As it can be
checked, the new proposal significatively enhances correlation
between subjective and objective quality evaluation.

V. DISCUSSION AND CONCLUSION

In this paper, a new similarity function for assessing qual-
ity of retinal vessel segmentations has been presented. This
measure is derived from the authors’ observation that three
main properties describe the vascularity: connectivity, area
and total length. Weaknesses of the Acc as a metric for this
purpose have been identified and discussed. Experiments made
show that the new proposal presents better behaviour in those
situations.

This work was motivated by the authors’ interest in the
field of retinal vessel segmentation. Developing segmenta-
tion algorithms, the authors realized that any evident visual

enhancing had very low incidence in quality measurements
and that these measurements did not match with what they
expected according with their subjective perception. It was
also found that quality values were always very high and that
difference between results visually good and poor was only a
few hundredths. Furthermore, sometimes the authors obtained
measurements that indicated worse results for some versions
of the algorithms when they expected an enhancing.

For all mentioned, the new similarity function presented
here constitutes a good complement to the metrics based on
contingency tables for binary classification for the evaluation
of global quality of retinal vessel segmentations.

The CAL function has been designed for measuring seg-
mentation quality of a certain structure and therefore is not
applicable in general cases. However, generalizing, the applied
concept of measuring descriptive properties may be useful for
designing other specialized similarity functions for enhancing
segmentation quality assessment of other complex shapes.
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