International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:4, No:12, 2010

A Simulation Software for DNA Computing
Algorithms Implementation

M. S. Muhammad, S. M. W. Masra, K. Kipli, and N. Zamhari

Abstract—The capturing of gel electrophoresis image represents
the output of a DNA computing algorithm. Before this image is being
captured, DNA computing involves parallel overlap assembly (POA)
and polymerase chain reaction (PCR) that is the main of this
computing algorithm. However, the design of the DNA
oligonucleotides to represent a problem is quite complicated and is
prone to errors. In order to reduce these errors during the design stage
before the actual in-vitro experiment is carried out; a simulation
software capable of simulating the POA and PCR processes is
developed. This simulation software capability is unlimited where
problem of any size and complexity can be simulated, thus saving
cost due to possible errors during the design process. Information
regarding the DNA sequence during the computing process as well as
the computing output can be extracted at the same time using the
simulation software.

Keywords— DNA computing, PCR, POA, simulation software

I. INTRODUCTION

EVER since Leonard M. Adleman [1] demonstrated the
ability of using molecules of Deoxyribonucleic Acid or
DNA as a medium for computation to solve a directed
Hamiltonian Path Problem (HPP), the interest in applying
DNA to solve similar computational problems have increased
tremendously [2, 3, 4]. An in vitro experimental work based
on DNA computing approach to solve an engineering
scheduling problem in the case of an elevator travel path
optimization for a typical building of N floors with M
elevators has been presented [5].

One of the main problems during the design process of
DNA computing is the synthesizing of DNA oligonucleotides
to represent both the input and output of the problem. A
mechanism for implementing the DNA computing approach
for a much larger and complex problem is needed. The main
aim of this research is therefore to develop a simulation
software capable of simulating the DNA computing process
that can verify the expected result before the actual in vitro
experiment is carried out. Since the complexity and costs of
the DNA oligonucleotides increases for larger and complex
problem, this simulation software will provide a helpful guide

M. S. Muhammad is with the Department of Electronics Engineering,
Universiti Malaysia Sarawak, MALAYSIA (phone: 082-583356; fax: 082-
583410; e-mail: msaufee@ feng.unimas.my).

S. M. W. Masra, K. Kipli and N. Zamhari are with the Department of
Electronics Engineering, Universiti Malaysia Sarawak, MALAYSIA, (e-mail:
wmmasnia@feng.unimas.my, kkuryati@feng.unimas.my and
znurdiani@feng.unimas.my).

for the DNA computing implementation as to eliminate errors
during the design process. Information regarding the DNA
oligonucleotides sequences for both the input and output could
also be extracted from the simulation programme. Before the
simulation software is presented, an overview of the elevator
scheduling problem and its DNA computing solution design is
first explained.

I1l. OVERVIEW OF AN ELEVATOR SCHEDULING PROBLEM

The elevator positions at an instance of a time for a 6 floors
building with 2 elevators can be illustrated as in Table I. If the
position of each elevator at floor 1, 2, 3, 4, 5, and 6 are
represented as nodes Vi, V,, Vs, Vg4, Vs, and Ve respectively,
each of the elevator travel path combinations can thus be
represented as a weighted graph. At the same time, the graph
edges thus represent the elevator’s travel path between floors.

TABLEI

ELEVATOR POSITIONS AT AN INSTANCE OF A TIME
Floor No | Elevator A | Elevator B | Hall Call

6 3.2

5

4 )

3 \

2

1 (3,5

Each of the graph edge weights can thus be mathematically
formulated as directly proportional to the elevators travelling
time between any floor using

wjj—y = U —iD Te + T 1)
where
i = elevator’s present floor position
j = elevator’s destination floor position
|j — 1| = total number of floors of elevator’s movement
Tc = elevator’s travelling time between two consecutive
floors

Ts= elevator’s stopping time at a floor

1917



International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:4, No:12, 2010

The output of the graph, given by sum of the graph weights
thus represents the total travelling time of the elevator, i.e.

G(Ex) = X ii=1 @)= 2
where G(Ey) is the graph output for elevator X.
The total travelling time of both the elevators can now be

calculated by summing up each of the elevator’s travelling
time, i.e.

G(Er) = G(Es) + G(Ep) ®)

The minimum total travelling time of both elevators thus
gives the optimal elevator travel path, i.e.

Optimal Travel Path = G (E1)min (4)

50 77 EndA—» Start8_
== VA3

Since the building is 6 floors high, the maximum number of
floors that the elevator can travel is (6 — 1) = 5 floors. Now, if
we assume that Tc = 55, Ts = 15 s, and representing 5 s of
time with 10 units, we have from (1)

w1=40 , w,=50, w3=60, w, =70, w5=80

A weighted graph representing all possible travel path
combinations of elevators A and B with either elevator
answering one or both of the hall calls can now be constructed
as shown in Fig. 1. Note that all possible end paths of elevator
A are joined with the start paths of elevator B. This is done in
order that the total output of the graph G (A, B) representing
the travel path combinations of the elevators can be calculated.

Since there are two hall calls with two available elevators, it
is clearly seen that there are 2° = 4 possible travel path
combinations for both elevators as tabulated in Table Il. The
required solution for the elevator scheduling problem is thus
the optimal path weight G (A, B) 3 =230 =115s.

Hall Calls

A=3 / B=4
4
F» p—ob‘——NVBAI
A=-/B=3,4
i

G(A B), =), oassly

Hall Calls
A=4 /B=3

{Vaa)
| = =
I

40: éANVB3 @
! A=3,4/B=-

e f
50 N EndA—» StartB
“V““"""u """
- .

Elevator A i

Elevator B

Fig. 1 Weighted graph showing all travel path combinations

TABLEII
TOTAL GRAPH OUTPUT OF ALL TRAVEL PATH COMBINATIONS

Hall Calls Elevator travel path combinations Total graph output
A=3 Va1 = Vaz > Vas > Vas > G (A, B); =150 + 150
B=4 Vgs = Vg3 = Vg2 > Vg, =300
A=- Va1 = Vaz > Vas > G (A, B), =100 + 150
B=3,4 Vg = Vgz = Ver = Vs =250
A=4 Va1 = Vaz = Vas = Vas — G(A,B);= 130+ 100
B=3 Vgs > Vg3 = Va2 =230
A=3,4 Var = Vaz = Vas = Vas— Vaz = | G(A, B); =180+ 100
B=- Vg = Vgz = Vi =280

1918



International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:4, No:12, 2010

11l. DNA COMPUTING ALGORITHM DESIGN

In order to solve the elevator scheduling problem using
DNA computing approach, the weighted graph of Fig. 1 is
first transformed to represent the start, intermediate and end
nodes, and also to differentiate the nodes of different travel
path combinations as depicted in Fig. 2. The nodes are then
assigned with a specific DNA sequence [6]. All the possible
travel path combinations of the elevator are then synthesized
so that the DNA oligonucleotides sequence length will directly
represent the weight between the nodes as tabulated in Table
I11. Parallel overlap assembly (POA) [7] is then employed for
initial pool generation to generate all the possible travel path
combinations, and polymerase chain reaction (PCR) [8, 9] for

End A L start B

...........

. i
50 \ EndA—»S'cmB .
“V“Qf""'i """
\.—/ .

Elevator A i

the amplification of the required optimal path. Finally, gel
electrophoresis [10] is performed to separate all the possible
travel path combinations according to its length, and the image
is captured where the DNA duplex representing the shortest
path could be visualized representing the required optimal
path solution of the problem as illustrated in Fig. 3. The PCR
gel image shows 4 bands indicating all the 4 possible travel
paths, i.e. G (A, B) 3 = 230bp, G (A, B), = 250bp, G (A, B)4 =
280bp and G (A, B) ; = 300bp. This confirms the expected
result that the optimal elevator’s travel path is given by
G (A, B)3=230bp = 115s.

Hall Calls

A=3/B=4
60 40
é—w r—b‘——NV4Epy
2 A=-/B=3,4

G(A, B).= ), oa+slx

Hall Calls
A=4 /B=3

50
k @
8 A=3,4 /B=-

Elevator B

Fig. 2 Weighted graph for DNA computing approach showing different node locations and travel paths

320bp
300bp
280bp
260bp
240bp
220bp
200bp
180bp
160bp

140bp

120bp

"'_ )

100bp

1-POA

2-PCR

~«—— 300bp - G(A, B):
~«—— 280bp - G(A, B)s

«—— 250bp - G(A, B):
<« 230bp - G(A, B):

Fig. 3 Gel electrophoresis image showing computing output

1919



International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:4, No:12, 2010

TABLE I
SYNTHESIZED DNA OLIGONUCLEOTIDES FOR ALL ELEVATOR TRAVEL PATH COMBINATIONS
Edges Sequences (5’ - 3")
Visp = Vap CGGCGGTCCACTAAATACTAaggtcgtttaaggaagtacgCACTCTTTGTGAACGCCTTC
V3ip = Vsp CACTCTTTGTGAACGCCTTCccgtcggttaagcaagtaatgtactatgct TGAACCGGCCCTTTATATCT
Vaip — Viep CACTCTTTGTGAACGCCTTCgcgtcgcttaccgaagcacgCTATAAGGCCAAAGCAGTCG
Vaip — Vap CACTCTTTGTGAACGCCTTCacgtcgtgtaacgaagtcctGTGGGTTAGAGGTAGTCCGG
Vsip = Vaep TGAACCGGCCCTTTATATCTacgtgttttacccaagtcagTCATTCGAGTTATTCCTGGG
Vaep — Vgsp TCATTCGAGTTATTCCTGGGGGACCTGCATCATACCAGTT
Vsep — Vesp CTATAAGGCCAAAGCAGTCGGGACCTGCATCATACCAGTT
Vap = Vsig GTGGGTTAGAGGTAGTCCGGcgctegttgaagccagtaccCCGCTGATCCTTGCTAAGTA
Vap = Vseg GTGGGTTAGAGGTAGTCCGGgcgtcttttaATGCCTGGCTAAAGTGAGAC
Vsig = Vaeg CCGCTGATCCTTGCTAAGTAgcggcgtgtcacgaactacgAAATGACCTTTTTAACGGCA
V3eq = Veso AAATGACCTTTTTAACGGCATGCACGCAAAACTATTTCAT
Vseq = Veso ATGCCTGGCTAAAGTGAGACTGCACGCAAAACTATTTCAT
Vesp = Vaig GGACCTGCATCATACCAGTTacgtggtttaaggaagtacggtactatgctAAGCAATGTGGTTGTAGGGA
Vaig = Vap AAGCAATGTGGTTGTAGGGAacgtcgctgcaagaactacgAAAGCCCGTCGGTTAAGTTA
Voip = Vaep AAAGCCCGTCGGTTAAGTTAggtcttttaatcaactaatgGGAATCCATTGATCGCTTTA
Vesg = Var TGCACGCAAAACTATTTCATccgtgggttaaagaagtcctgtactctcctTCTGCACTGTTAATGAGCCA
V3r = Voep TCTGCACTGTTAATGAGCCAacgtcttgtcCTAATTTTAGAAATGGCGCG

IVV. DEVELOPMENT OF DNA SIMULATION SOFTWARE

The DNA  computing  implementation  involves
oligonucleotides sequences design to represent both the
problem inputs and outputs. As the problem grows larger, the
complexity of the oligonucleotides design gets complicated. In
order to assist in the design, we developed a simple simulation
programme that is able to simulate the expected DNA process
during the computational stage.

The Microsoft Visual Basic platform software programme
developed is able to simulate the POA and PCR physical
processes of the computation. The flowchart of the designed
software programme is shown in Fig. 4. It is a simple user
friendly programme that allows the user to choose between the
two processes as shown in Fig. 5.

Once the process is chosen, a new menu appears that guides
the user to enter the input data, start the simulation process

and save the output results. Note that for convenience, the
weighted graph of Fig. 2 is relabelled as shown in Fig. 6.

The simulation result is stored in the MS Access database
and can be manipulated using the MS Excel. The simulation
results for the POA and PCR processes of the problem
discussed is shown in Fig. 7 and Fig. 8 respectively. Here, it
can be seen that after 4 cycles of POA, all the possible travel
path combinations of the elevator are generated. The sequence
and length of DNA oligonucleotides representing the travel
time is also shown in the simulation output. This verifies the
theoretical as well as the in vitro experimental results of the
problem. Finally, for the PCR simulation process, as expected,
after 2 cycles of PCR process, 22 = 4 sequences are replicated
that will represent the DNA computational output of the
problem.

1920



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942
Vol:4, No:12, 2010

DNA Process Simulation

Parallel Overlap Assembly (POA) |

I Double Stranded |
' Sequences Generated |

| Single Stranded
' Sequences Generated |

Path
Completed ?

Fig. 4 Simulation software flowchart

\ End A lsfane

~
V3EP
1011/ \1112 1213/ N
[60] '\ [40] |501 '\\
VéSP Vs:o Vap
I

- A i Polymerase Chain Reaction (PCR)

EXIT

Fig. 5 Simulation software process menu

Hall Calls
A=3/B=4

VAEP A=-/B=3,4
EndA»»SforH!
540
Vise | Var Vsep :
26:I40] ' G(A'B)x=2wu+s1x
| .
|
. 69 End : start
4 6 nd A = Sta B
! —_—— - Y i gi==
S [401@ a Hall Calls
| Vap Vsea A=4/B=3
! 14-15 ’ \ 15-16
6-7 | [40] |
! 160] \ J (407
I Vsso Vorp A=3,4 / B=—

Vsm
—_ |
78 A% ‘JE‘.’:‘.!.S_“?'E?;
1501 ./ 8-14

Vsiq Viea |
Elevator A ) Elevator B

Fig. 6 Relabeled weighted graph for simulation software

1921



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942
Vol:4, No:12, 2010

Path DNA Sequence Cycle #| Length
12 CGGCGGTCCACTAAATACTAaggtcgtitaaggaagtacgCACTCTTTGTGAACGCCTIC 1 60
23 CACITCTTTGTGAACGCCTICccgtcggttaagcaagtaatgtactatgctt GAACCGGCCCTITATATCT 1 70
2-5 CACTCTITGTGAACGCCTICgcgtcgcttaccgaagcacg CTATAAGGCCAAAGCAGTCG 1 60
2-6 CACTCTITGTGAACGCCTTCacgtcgtgtaacgaagtcctGTGGGTTAGAGGTAGTCCGG 1 60
3-4 TGAACCGGCCCTITATATCTacgtgttttacccaagtcag CATICGAGTTATICCTIGGG 1 60
4-10 TCATTCGAGTTATTCCTGGGGGACCTGCATCATACCAGTT 1 40
5-10 CTATAAGGCCAAAGCAGTCGGGACCTGCATCATACCAGTT 1 40
6-7 GTGGGTTAGAGGTAGTCCGGcgctcgttgaagccagtaccCCGCTGATCCTTGCTAAGTA 1 60
6-9 GTGGGTTAGAGGTAGTCCGGgcgtcttttaATGCCTGGCTAAAGTGAGAC 1 50
78 CCGCIGATCCTIGCTAAGTAgcggcgtgtcacgaactacgAAATGACCTITITAACGGCA 1 60
8-14 AAATGACCTITITTAACGGCATGCACGCAAAACTATITCAT 1 40
9-14 ATGCCTGGCTAAAGTGAGACTGCACGCAAAACTATITCAT 1 40
10-11 GGACCTGCATCATACCAGTTacgtggtttaaggaagtacggtactatgctAAGCAATGTGGTIGTAGGGA 1 70
11-12 AAGCAATGTGGTIGTAGGGAacgtcgctgcaagaactacgAAAGCCCGTCGGTTAAGTTA 1 60
12-13 AAAGCCCGTCGGTTAAGTTAggtcttttaatcaactaatg GGAATCCATIGATCGCTITA 1 60
14-15 TGCACGCAAAACTATITCATccgtgggttaaagaagtcctgtactctcctiCTGCACTGTTAATGAGCCA 1 70
15-16 TCTGCACTGTTAATGAGCCAacgtcttgtcCTAATTTTAGAAATGGCGCG 1 50
Path DNA Sequence Cycle # | Length
1-2-3 CGGCGGTCCACTAAATACTAaggtcgttta . . . gtactatgctTGAACCGGCCCTITATATCT 2 110
1-2-5 CGGCGGTCCACTAAATACTAaggtcgttta . . . ccgaagcacgCTATAAGGCCAAAGCAGTCG 2 100
1-2-6 CGGCGGTCCACTAAATACTAaggtcgttta . . . acgaagtcctGTGGGTTAGAGGTAGTCCGG 2 100
10-11-12 GGACCTGCATCATACCAGTTacgtggttta . . . aagaactacgAAAGCCCGTCGGTTAAGTTA 2 110
11-12-13 AAGCAATGTGGTIGTAGGGAacgtcgctgc . . . tcaactaatgGGAATCCATIGATCGCTITA 2 100
14-15-16 TGCACGCAAAACTATITCATccgtgggtta . . . acgtcttgtcCTAATTTTAGAAATGGCGCG 2 100
Path DNA Sequence Cycle # | Length
1-2-3-4 CGGCGGTCCACTAAATACTAaggtcgttta . . . cccaagtcagCATTCGAGTTATICCTIGGG 3 150
1-2-5-10 CGGCGGTCCACTAAATACTAaggtcgttta . . . AAMAGCAGTCGGGACCTGCATCATACCAGTT 3 120
1-2-6-7 CGGCGGTCCACTAAATACTAaggtcgttta . . . agccagtaccCCGCTGATCCTIGCTAAGTA 3 140
1-2-6-9 CGGCGGTCCACTAAATACTAaggtcgttta . . . gcgtcttttaATGCCTGGCTAAAGTGAGAC 3 130
9-14-15-16 ATGCCTGGCTAAAGTGAGACTGCACGCAAA . .. acgtcttgtcCTAATITTAGAAATGGCGCG 3 120
10-11-12-13 GGACCTGCATCATACCAGTTacgtggttta . . . tcaactaatgGGAATCCATIGATCGCTTTA 3 150
4-10-11-12-13 TCATTCGAGTTATTCCTGGGGGACCTGCAT . . . tcaactaatgGGAATCCATIGATCGCTITA 3 170
7-8-14-15-16 CCGCTGATCCTIGCTAAGTAgcggcgtgtc . . . acgtcttgtcCTAATITTAGAAATGGCGCG 3 160
Path DNA Sequence Cycle # | Length
1-2-3-4-10-11 CGGCGGTCCACTAAATACTAaggtcgttta . . . gtactatgctAAGCAATGTGGTTGTAGGGA 4 220
1-2-5-10-11-12 CGGCGGICCACTAAATACTAaggtcgttta . . . aagaactacgAAAGCCCGTCGGITAAGTTA 4 210
1-2-6-7-8-14 CGGCGGTCCACTAAATACTAaggtcgttta . . . TTTAACGGCATGCACGCAAAACTATITCAT 4 200
1-2-6-9-14-15 CGGCGGTCCACTAAATACTAaggtcgttta . . . gtactctcctTCTGCACTGTTAATGAGCCA 4 200
2-3-4-10-11-12 CACTCTITGTGAACGCCTTCccgtcggtta . . . aagaactacgAAAGCCCGTCGGTTAAGTTA 4 220
2-5-10-11-12-13 CACTCTITGTGAACGCCTTCgcgtcgctta . . . tcaactaatgGGAATCCATIGATCGCTITA 4 210
2-6-7-8-14-15 CACTCTITGTGAACGCCTTCacgtcgtgta . . . gtactctcctiCTGCACTGTTAATGAGCCA 4 210
2-6-9-14-15-16 CACTCTITGTGAACGCCTTCacgtcgtgta . . . acgtcttgtcCTAATITTAGAAATGGCGCG 4 190
3-4-10-11-12-13 TGAACCGGCCCTITATATCTacgtgtttta . . . tcaactaatgGGAATCCATIGATCGCTITA 4 210
6-7-8-14-15-16 GTGGGTTAGAGGTAGTCCGGcgctcgttga . . . acgtcttgtc CTAATTTTAGAAATGGCGCG 4 200
1-2-3-4-10-11-12 CGGCGGTCCACTAAATACTAaggtcgttta . . . aagaactacgAAAGCCCGTCGGITAAGTTA 4 260
1-2-5-10-11-12-13 CGGCGGTCCACTAAATACTAaggtcgttta . . . tcaactaatgGGAATCCATIGATCGCTITA 4 250 G(A, B), |
1-2-6-7-8-14-15 CGGCGGTCCACTAAATACTAaggtcgttta . . . gtactctcctTCTGCACTGTTAATGAGCCA 4 250
2-3-4-10-11-12-13 CACTCTITGTGAACGCCTICccgtcggttaa . . . tcaactaatgGGAATCCATIGATCGCTTTA 4 260
2-6-7-8-14-15-16 CACTCTITGTGAACGCCTTCacgtcgtgta . . . acgtcttgtcCTAATITTAGAAATGGCGCG 4 240
1-2-3-4-10-11-12-13 CGGCGGTCCACTAAATACTAaggtcgttta . . . tcaactaatgGGAATCCATIGATCGCTTTA 4 300 G(A, B),

Fig. 7 POA process simulation showing all the possible travel path combinations

1922



International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:4, No:12, 2010

Fig. 8 PCR process simulation of travel path combinations for 2 cycles

V.CONCLUSION

This paper presents and discusses an elevator scheduling
optimization problem solution using DNA computing
algorithm. The expected computation output result is verified
by the in vitro experimental that has been carried out. In order
to assist in designing and synthesizing the DNA
oligonucleotides for a larger and complex problem, a
simulation programme capable of simulating the POA and
PCR physical processes has been developed. The applicability
and feasibility of the DNA computing approach could
therefore be extended into many more complex problems of

this type of nature with this successful DNA computing
design, in vitro experimental implementation, and simulation
software,.

ACKNOWLEDGMENT

The authors would like to thank Universiti Malaysia
Sarawak (UNIMAS) for providing financial support to attend
the conference and present the paper.

1923



[1]
[2]

[3]

[4]

[5]

[6]

[7

(8]

[9]
[10]

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:4, No:12, 2010

REFERENCES

L.M. Adleman, “Molecular computation of solutions to combinatorial
problems,” Science, 266, pp 1021-1024 (1994).

Z. lbrahim, Y. Tsuboi, O. Ono and M. Khalid, “Direct-proportional
length-based DNA computing for shortest path problem,” International
Journal of Computer Science and Applications, 1(1), pp 46-60 (2004).
J.Y. Lee, S.Y. Shin, S.J. Augh, T.H. Park and B.T. Zhang, “Temperature
gradient-based DNA computing for graph problems with weighted
edges,” Lecture Notes in Computer Science, 2568, pp 73-84 (2003).

Y. Yamamoto, A. Kameda, N. Matsuura, T. Shiba, Y. Kawazoe and A.
Ahochi, “Local search by concentration-controlled DNA computing,”
International Journal of Computational Intelligence and Applications, 2,
pp 447-455 (2002).

M.S. Muhammad, Z. Ibrahim, O. Ono and M. Khalid, “Direct-
proportional length-based DNA computing implementation for elevator
scheduling problem”, Proceedings of the IEEE International Region 10
Conference (TENCON2005), Melbourne, pp 711-715 (2005).

F. Udo, S. Sam, B. Wolfgang and R. Hilmar, “DNA sequence generator:
A program for the construction of DNA sequences,” Proceedings of the
Seventh International Workshop on DNA Based Computers, Florida, pp
23-32 (2001).

P.D. Kaplan, Q. Ouyang, D.S. Thaler and A. Libchaber, “Parallel
overlap assembly for the construction of computational DNA libraries,”
Journal of Theoretical Biology, 188(3), pp 333-341 (1997).

J.Y. Lee, HW. Lim, S.I. Yoo, B.T. Zhang and T.H. Park, “Efficient
initial pool generation for weighted graph problems using parallel
overlap assembly,” Proceedings of the 10th International Meeting on
DNA Computing, Milan, pp 357-364 (2004).

J.P. Fitch, Engineering Introduction to Biotechnology, SPIE Press,
Washington, (2001).

G. Paun, G. Rozenberg and A. Salomaa, “DNA computing: new
computing paradigms,” Lecture Notes in Computer Science, 1644, pp
106-118 (1998)

1924



