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A New Effective Local Search Heuristic for the
Maximum clique problem

S. Balaji

Abstract—An edge based local search algorithm, called ELS, is
proposed for the maximum clique problem (MCP), a well-known
combinatorial optimization problem. ELS is a two phased local search
method effectively £nds the near optimal solutions for the MCP. A
parameter ’support’ of vertices de£ned in the ELS greatly reduces
the more number of random selections among vertices and also the
number of iterations and running times. Computational results on
BHOSLIB and DIMACS benchmark graphs indicate that ELS is
capable of achieving state-of-the-art-performance for the maximum
clique with reasonable average running times.
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I. INTRODUCTION

LOCAL search (or local improvement) is a practical
tool and a common technique for £nding near-optimal

solutions in reasonable time for combinatorial optimization
problems. In many cases, local search can be incorporated into
more sophisticated methods called meta-heuristics, in order to
obtain more high-quality solutions. The basic idea of local
search is start from a feasible solution x and repeatedly replace
x with better x’ which is selected from neighborhood of x
de£ned as the set of neighbor solutions that can be reached
by making slight modi£cations to x. If no better solutions can
be found in its neighborhood, local search immediately stops
and returns as £nal the best solution found during search.

The concept of local search was £rst applied by Lin and
Kernighan to the traveling salesman problem (TSP) in 1973 [1]
and graph partitioning problem (GPP) in 1970 [2]. The basic
concept is to search a portion of the large neighborhood within
a reasonable amount of computation time. In the early 2000,
for TSP and GPP, the variable depth search based heuristics
have been incorporated into several metaheuristic frameworks,
such as iterated local search [3,4] and evolutionary algorithm
[5,6]. Generally, the performance of metaheuristics embedded
with local search is remarkably effective for the hard problems
TSP and GPP. For some other hard problems effective local
search algorithms have been proposed. For the generalized
assignment problem, Yagiura et al. [7] suggested an algorithm.
For the unconstrained binary quadratic programming problem
(UBQP), Merz and Katayama [8] proposed a memetic algo-
rithm with the variant VDS-based local search and reported
that the memetic algorithm is highly effective.

More recently K. Katayama et al. [9] proposed a local search
algorithm inspired by VDS for the maximum clique problem
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(MCP) and they claimed that their algorithm capable of £nding
better average solutions than compared metaheurstics. Pullan
[10,24] proposed a phased local search algorithm for both
MCP and weighted MCP and he claimed that it achieves state-
of-the-art performance for those problems. Judging from these
contributions, we can expect that metaheuristics embedded
with local search heuristics to offer promising approaches
to other hard problems, such as the minimum vertex cover
problem and its associated decision problems.

Such an embedding into metaheuristic frame works would
not be possible without developing backbone of local search
for the maximum clique problem. In this paper an edge based
local search proposed for the MCP. It is referred as ELS. Edges
considered in the proposed algorithm are whole edge set of a
graph, edges incident on a particular vertex of a graph and the
set of all edges of an induced subgraph of G. ELS ef£ciently
iterates searches for the best neighbor solution with the help
of these edge based condition until better one is found.

To show the effectiveness of ELS for the MCP, ELS is
repeatedly applied for each of several well known DIMACS
benchmark graphs [11]. Based on extensive computational ex-
periments, it is worthwhile to note that ELS is simple, capable
of £nding better average solutions than those of state-of-the-
art metaheuristics, in particular KLS [9], on a broad range
of widely studied benchmark instances and hence represent
an improvement in heuristic MCP solving algorithms. For
most graphs, this approach is comparable to the best available
metaheuristic PLS [10] that is based on vertex penalties.

II. MAXIMUM CLIQUE PROBLEM

Let G = (V,E) be an arbitrary undirected simple graph
where V is the set of n vertices and E ⊆ V × V is the set of
edges in G. For a subset S ⊆ V , let G[S] = (S,E ∩ S × S)
be a subgraph induced by S. A graph G = (V,E) is complete
if all its vertices are pairwise adjacent, i.e., ∀vi, vj ∈ V with
vi �= vj , {vi, vj} ∈ E. A Clique C is a subset of V such
that the induced subgraph G[C] is complete. The cardinality
of C is the number of vertices contained in C, denoted by
|C|. The objective of maximum clique problem (MCP) is to
£nd a clique of maximum cardinality in G. The MCP and
MVC problems are related in that a graph G has a maximum
clique of size k if and only if the complemented graph G has
a minimum vertex cover of size n-k.

The MCP is a prominent combinatorial optimization prob-
lem with many applications. For example mobile networks,
computer vision, cluster analysis, coding theory, tiling, fault
diagnosis, biological analysis. More recently, applications in
bioinformatics have become important [12,13].
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The MCP is NP-hard and the associated decision problem
is NP-complete [14]; furthermore, it is inapproximable in the
sense that no deterministic polynomial-time algorithm can £nd
cliques of size n1−ε for any ε > 0, unless NP = ZPP
[15]. The best polynomial-time approximation algorithm for
maximum clique problem achieves an approximation ratio of
O(n/(logn)2) [16].

To solve the MCP exactly, several exact methods such
as branch and bound algorithm have been proposed [18,19],
but their effectiveness and applicability are limited to rel-
atively very small (or) sparse graphs. Therefore, large and
hard instances of MCP are typically solved using heuris-
tic approaches, in particular, greedy construction algorithms,
stochastic local search algorithms such as simulated annealing
[17], genetic algorithms [20], dynamic local search[23] and
phased local search [24]. Other recent heuristics include a trust
region technique [21], neural network [22], sampling technique
combined with parameterized k-vertex cover algorithm [25],
evolutionary formulaion [26] and more surrogate constraint
heuristics [27]. These have been proposed for the MCP or
strongly related problems, i.e., the maximum independent set
problem and the minimum vertex cover problem.

From the recent literature on MCP algorithm, it seems
that, most algorithms have been constructed by taking into
account of some troublesome parameters and vertices with
maximum degree or minimum degree were added into a
feasible solution. These selection process yields more number
of random selections (due to tie in maximum or minimum
degree) and it indeed yields more number of combinations
of feasible solution. Therefore time taken by an algorithm
to get a near optimal solution from these more number of
feasible solutions becomes very high. In order to avoid the
more number of random selections as much as possible and
to make a heuristic better a new parameter called support of
a vertex is de£ned and implemented in our previous research
[29].Based on our previous work, a novel edge based local
search algorithm is proposed for MCP. This edge based local
search algorithm re£nes the procedure with the modi£ed
de£nition of the parameter support, in order to increase its
strength, produce best solution for large set of instances. The
modi£ed de£nition is given by adding degree of vertex with
its s(v) value. i.e.

For each v ∈ V , support of a vertex is de£ned by
s(v) = d(v) + Σu∈N(v)dG(u)

The quantity Σu∈N(v)dG(u) is the sum of the degree of
vertices which are adjacent to v.

It is worthy to note that the selection of vertices with
maximum support value or minimum support value into
a feasible solution decidedly reduce the number of random
selections and the number of trials and also the execution time
to get a near optimal solution [30].

In this paper we will look at some different approach to
solve the maximum clique problem based on the relation
between maximum clique and minimum vertex cover problem.
i.e., MCP is approximated by the edge based local search
approach proposed for the MVC. Edges considered in the
proposed algorithm are whole edge set of a graph, edges

incident on a particular vertex of a graph and the set of all
edges of an induced subgraph of G. This local search method
ef£ciently iterates searches for the best neighbour solution with
the help of these edge based condition until better one is found.

To show the effectiveness of the proposed method for
the MCP, it is repeatedly applied for each of several well
known DIMACS benchmark graphs . Based on the extensive
computational experiments, it is worthwhile to note that VSA
is simple, capable of £nding better average solutions than
those of state-of-the-art metaheuristics, in particular KLS [9],
on a broad range of widely studied benchmark instances and
hence represent an improvement in heuristic MCP solving
algorithms. For most graphs, this approach is comparable to
the best available metaheuristic PLS [10] that is based on
vertex penalties.

III. EDGE BASED LOCAL SEARCH ALGORITHM (ELS)

Notations: E - edge set of a graph G(V,E);
E′(v)- set of all edges incident with v in a given graph G;
ES(v) - set of all edges incident with v in a induced subgraph
G[S];
Vc - minimum vertex cover of a graph G.
Vwc - minimum weighted vertex cover of a graph G.

A. Algorithm

The Pseudocode of ELS as follows:
Input: G(V,E) with adjacency matrix A = (aij)
Generate: Complemented graph G(V,E) with an adjacency
matrix B = (bij)
Output: Max. Clique C(G) = V − Vc
1. Vc ← φ
2. ∀v ∈ V and ∀e ∈ E
3. while E �= φ do
4. d(v) = |N(v)| and s(v) = d(v) + Σu∈N(v)dG(u)
5. u ← maxv∈V s(v) if multiple vertices with same
maximum s(v) is found then select one vertex randomly
among them.
6. D ← D ∪ {u}
7. E ← E − E′(u)
8. end while
9. (V,E,D) /*Local search procedure*/
10. repeat ∀v ∈ G[D], update d(v) and s(v)
11. w ← maxv∈Ds(v), apply the condition as in step 5,
for selecting a vertex having minimum s(v)
12. if ED(w) ⊆ ∪v∈D−{w}E(v)
13. if ∀v ∈ D − {w} , E ⊆ E′(v)
14. then Vc ← D − {w} ;D ← D − {w}
15. else if ∀v ∈ D − {N(w) ∩D} , E ⊆ E′(v)
16. then Vc ← D − {w} ;D ← D − {w}
17. else Vc ← Vc ∪ {w} ;D ← D − {w}
18. else
19. Vc ← Vc ∪ {w} ;D ← D − {w}
20. until D �= φ
21. end
22. return updated Vc
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The ELS operates as follows: The algorithm is working
in two phases. First phase of the algorithm greedily select
vertices in to a vertex cover, which is described in the
lines 3-8 and the second phase of the algorithm is a local
search (pruning) technique stated in the lines 9-21. In this
technique an edge based local search procedure is applied and
it re£nes the solution space, obtained in the £rst phase of the
algorithm, in order to make it as a near optimal solution for
the minimum vertex cover problem. The description of the
algorithm follows:

For a given graph G, a complemented graph has been
generated and this graph is being input to the ELS algorithm.
After calculating degree and support of each vertices of G
(line 4), to select a vertex in to a temporary vertex cover set D
search starting in the line 5. This search space terminates when
an edge set E becomes empty. In this search a vertex with
maximum support value added into the set D. Once a vertex
is selected into D, the corresponding vertex and its incident
edges removed from G. i.e., in the line 7, the adjacency matrix
of G updated by putting zero in to the row and column entries
of the corresponding vertex which has been included in D. In
selecting a vertex with maximum support value if multiple
vertices have equivalent maximum support value, to add a
vertex into the set D, a random selection is executed among
them.

The second phase of the algorithm is a pruning technique
(line 9-21). In this phase an edge based local search procedure
is applied. This variant was inspired by the local search
procedure used in the GRASP program for the maximum
clique designed by Feo et al. [28]. Based on the above,
a simple and effective procedure with minimum number of
iterations is implemented in the local search. i.e., an edge
based local search procedure is applied to determine whether
it is possible to remove any of the vertices from D and replace
them with one or no vertices while still remaining a minimum
vertex cover.

In order to implement the above idea, degree and support
values are updated for all the vertices in the subgraph induced
by D. Among these vertices, a vertex with minimum support
value is selected. If one or more vertices have the same criteria,
a random selection is made among them. Then add or drop
move adopted to achieve a near optimal solution in the local
search. An add or drop moves based on the following cases:

case 1: For a vertex with minimum support value if its edges
in the induced subgraph G[D] is a subset of union of all edges
of the induced subgraph G[D] (D is a vertex set updated by
excluding the minimum support value vertex) then add or
drop moves proceeded by the following three sub cases 1(a),
1(b) and 1(c). If the case 1 fails, the corresponding minimum
support value vertex will be added in to the £nal MVC set Vc.

case 1(a): If the edge set E of G is a subset of set of all
edges of G[D] where D is a vertex set updated by excluding
the minimum support value vertex then the corresponding
minimum support value vertex is dropped from the £nal MVC
set Vc. If this condition fails, search move follows case 1(b).

case 1(b): If the set of all edges E of G is a subset of
set of all edges of G[D], where D is a vertex set updated by
removing a vertex set

{N(min. support value vertex) ∩D} from itself, then the
corresponding minimum support value vertex dropped from
the £nal MVC set Vc.

case 1(c): If both the above two conditions 1(a) and 1(b)
fails then simply add the corresponding minimum support
value vertex in to the £nal MVC set Vc.

In all the above main and sub cases after adding a vertex in
the £nal MVC set Vc or dropping a vertex from the £nal MVC
set Vc, the corresponding vertex removed from the temporary
vertex cover set D. These add or drop moves repeated until the
temporary vertex cover set D is non empty. The £nal step (line
23) of second phase of the algorithm returns a £nal MVC set
Vc. Finally the maximum clique C of a graph G is extracted
from the MVC set Vc of a graph G by C = V − Vc and
ω = n− |Vc|.

A vertex with maximum support value in a complemented
graph (less support in the original graph) is selected into a
vertex cover of a complemented graph and exceedingly which
is not included in the clique of the original graph. As a
consequence a vertex with maximum support value in the
original graph, which in turn adjacent with more number of
vertices and forms maximum sized complete subgraph, has
been added into the clique of a given graph. In such a way
the ELS £nds the maximum clique of a graph.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In order to evaluate the performance of VSA extensive
computational experiments were carried out on following two
sets of benchmark instances.

A. BHOSLIB benchmark

Benchmarks with Hidden Optimum Solutions for Graph
Problems (Maximum Clique, Maximum Independent Set,
Minimum Vertex Cover and Vertex Coloring) (BHOSLIB)1.
The maximum independent set / minimum vertex cover bench-
mark instances are directly transformed from forced satis£able
SAT benchmarks, with the set of vertices and the set of edges
respectively corresponding to the set of variables and the set
of binary clauses in SAT instances. The benchmark clique
instances are the complements of above mentioned graph
instances and these instances range in size from less than 500
vertices and 83500 edges to greater than 1500 vertices and
7400000 edges.

B. DIMACS benchmarks

These benchmarks were constructed using the maximum
clique instances from the second DIMACS Implementation
Challenge [11] which has been used extensively for bench-
marking purposes in the recent literature on maximum clique
algorithm. The 80 DIMACS maximum clique instances were
generated from problems in coding theory, fault diagnosis
problems, Keller’s conjuncture on tilings using hypercubes and
the Steiner triple problem, in addition to randomly generated
graphs and graphs where the maximum clique has been
‘hidden’ by incorporating low-degree vertices. These problems

1http://www.nlsde.buaa.edu.cn/kexu/benchmarks/graph-bencmarks.htm
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range in size from less than 50 vertices and 1000 edges to
greater than 3300 vertices and 500000 edges.

All experiments for this study were performed on a Dell
Vostro 1400 workstation with Intel Pentium Core2 Duo 1.6
GHz CPU and 1 GB of RAM. When executing the required
user times, for DIMACS benchmark instances are 0.24 CPU
seconds for r300.5, 1.02 CPU seconds for r400.5 and 5.32
CPU seconds for r500.5. In the performed experiments of
ELS, described local search is repeatedly applied with different
feasible solutions. i.e., in a single trial of local search method
of ELS (line 9) is repeatedly executed up to |D| times where
D ⊆ V is a temporary vertex cover which is obtained during
the greedy search of £rst phase of the ELS.

TABLE I
ELS PERFORMANCE ON BHOSLIB BENCHMARKS

Instance ω(G) avg worst CPU(s) S

frb30-15-1 30 30 30 0.04 100

frb30-15-2 30 30 30 0.09 100

frb30-15-3 30 30 30 0.18 100

frb30-15-4 30 30 30 0.15 100

frb30-15-5 30 30 30 0.26 100

frb35-17-1 35 35 35 2.58 100

frb35-17-2 35 35 35 2.79 100

frb35-17-3 35 35 35 2.62 100

frb35-17-4 35 35 35 2.84 100

frb35-17-5 35 35 35 2.92 100

frb40-19-1 40 40 40 3.59 100

frb40-19-2 40 39.86 39 3.47 87

frb40-19-3 40 40 40 3.73 100

frb40-19-4 40 39.67 39 3.92 82

frb40-19-5 40 40 40 4.52 100

frb45-21-1 45 45 45 4.56 100

frb45-21-2 45 44.89 44 5.32 89

frb45-21-3 45 45 45 6.41 100

frb45-21-4 45 45 45 8.43 100

frb45-21-5 45 45 45 9.17 100

C. BHOSLIB benchmark results

To evaluate the performance of ELS on the BHOSLIB
benchmark instances, 100 independent trials were performed
for each instance using different feasible solution of temporary
vertex cover set D (line 9 of ELS). The results from these ex-
periments are displayed in TABLE I and TABLE II. The ELS
performance results (averaged over 100 independent trials)
are shown for the complete set of 40 BHOSLIB benchmark
instances. For each instance, maximum clique size is given
by the 2 digits immediately following ‘frb’ in the instance
name; ‘w(G)’ gives the maximum clique size, ‘avg’ gives the
average maximum clique size and ‘worst’ gives the minimum
clique size for the 100 ELS trials; ‘CPU(s)’ is the run-time
in CPU seconds, averaged over all successful runs, for each
instance; ‘S’ gives the number of successful trials (from a
total of 100) in which the optimal maximum clique size
was located. It is to be noted that ELS reaches best known
solutions with a success rate of 100 over all 100 trials per
instance for 20 of the 40 instances and £nds the best known

solution for remaining instances in some of the least trials.
Moreover ELS 100 independent trials were performed on the
newly introduced benchmark instance frb100-40-1 of 4000
vertices, the ELS found the clique size of 96 instead of 100.
As can be seen, the results for ELS are encouraging if not an
improvement on these results.

TABLE II
ELS PERFORMANCE ON BHOSLIB BENCHMARKS

Instance ω(G) avg worst CPU(s) S

frb50-23-1 50 50 50 10.49 100

frb50-23-2 50 50 50 14.62 100

frb50-23-3 50 49.89 49 16.34 78

frb50-23-4 50 49.73 49 17.43 73

frb50-23-5 50 49.69 49 19.48 56

frb53-24-1 53 52.94 52 25.43 23

frb53-24-2 53 52.81 52 28.32 9

frb53-24-3 53 53 53 34.25 100

frb53-24-4 53 52.76 52 29.46 49

frb53-24-5 53 52.25 51 33.48 93

frb56-25-1 56 55.84 55 58.63 57

frb56-25-2 56 55.16 54 62.65 23

frb56-25-3 56 55.04 54 60.48 46

frb56-25-4 56 55.83 55 68.93 6

frb56-25-5 56 55.64 55 70.43 38

frb59-26-1 59 58.56 58 89.92 5

frb59-26-2 59 58.34 58 84.68 3

frb59-26-3 59 58.12 57 88.26 15

frb59-26-4 59 58.78 58 90.17 9

frb59-26-5 59 58.02 57 90.86 2

D. DIMACS benchmark results

To evaluate the performance of ELS on the DIMACS
benchmark instances, 100 independent trials were performed
for each instance using different feasible solution. The results
from these experiments are displayed in TABLES III, IV, V
and VI. The results in the tables indicate that the ELS reach
the best known solution for all 80 DIMACS instances with a
success rate of 100 over all 100 trials per instance for 66 of
the 80 instances and for the remaining one of the least success
rate of 3 over all 100 trials for the MANN a81 instance.

For a comparative study on performance of ELS, published
results of state-of-art-heuristics PLS [10], KLS [9], SAA
[17] and Q-MS [30] are shown in the TABLE III, IV, V
and VI. In the displayed tables ‘ω(G)’ is the best known
maximum clique. The maximum clique size found by ELS,
PLS [10], KLS [9], SAA [17] and Q-MS [30] are shown in
the correspondingly labeled ‘ω(G)’ columns; ‘avg’ gives the
average maximum clique size and ‘worst’ gives the minimum
clique size for the 100 ELS trials; ‘CPU(s)’ is the run-time
in CPU seconds of ELS, averaged over all successful runs,
for each instance; ‘SCP(s)’ lists the scaled (to the reference
computer used in this study) CPU time for the PLS algorithm;
‘S’ gives the number of successful trials (from a total of 100)
in which the optimal maximum clique size was located. Entries
of ‘< ε’ represents that the average CPU time is less than
0.005 seconds. Each of the heuristics PLS and KLS were
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TABLE III
SIMULATION RESULTS FOR DIMACS BENCHMARK GRAPHS

G Opt. ELS PLS KLS SAA Q-MS

brock200 1 21 21 21 - 21 21

brock200 2 12 12 12 11 12 12

brock200 3 15 15 15 - 14 15

brock200 4 17 17 17 16 16 17

brock400 1 27 27 27 - 25 27

brock400 2 29 29 29 25 25 29

brock400 3 31 31 31 - 25 31

brock400 4 33 33 33 25 25 33

brock800 1 23 23 23 - 21 23

brock800 2 24 24 24 21 21 24

brock800 3 25 25 25 - 21 25

brock800 4 26 26 26 21 21 26

C125.9 34 34 34 34 34 34

C250.9 44 44 44 44 44 44

C500.9 57 57 57 57 57 55

C1000.9 68 68 68 68 68 64

C2000.5 16 16 16 16 16 16

C2000.9 77 77 77 77 74 72

C4000.5 18 18 18 18 17 17

c-fat200-1 12 12 12 - 12 12

c-fat200-2 24 24 24 - 24 24

c-fat200-5 58 58 58 - 58 58

c-fat500-1 14 14 14 - 14 14

c-fat500-2 26 26 26 - 26 26

c-fat500-5 54 54 54 - 64 64

c-fat500-10 126 126 126 - 126 126

DSJC500.5 13 13 13 13 13 13

DSJC1000.5 15 15 15 15 15 14

gen200 p0.9 44 44 44 44 44 44 42

gen200 p0.9 55 55 55 55 55 55 55

gen400 p0.9 55 55 55 55 53 55 51

gen400 p0.9 65 65 65 65 65 65 65

gen400 p0.9 75 75 75 75 75 75 75

Hamming6-2 32 32 32 - 32 32

Hamming6-4 4 4 4 - 4 4

Hamming8-2 128 128 128 - 128 128

Hamming8-4 16 16 16 16 16 16

Hamming10-2 512 512 512 - 512 512

Hamming10-4 40 40 40 40 40 36

Johnson8-2-4 4 4 4 - 4 4

Johnson8-4-4 14 14 14 - 14 14

carried out 100 trials for each instance whereas SAA was
carried out 20 trials for each instance. The running times of
PLS is shown on the TABLE V and TABLE VI but the running
times of KLS, SAA and Q-MS are not shown on those tables
because SAA and Q-MS user times were not reported in [17,
30] and published results of PLS claimed that it outperformed
the KLS both in solution quality and running times. Computer
used in the ELS is 5 times faster than the one used in the
PLS (2.2 GHz Pentium IV), the average running times of PLS
shown in the table are all adjusted with the scaling factor
0.92. From these comparative results shown in the TABLE
III, IV, V and VI, ELS achieves excellent performance on the
80 DIMACS benchmark instances.

TABLE IV
SIMULATION RESULTS FOR DIMACS BENCHMARK GRAPHS

G Opt. ELS PLS KLS SAA Q-MS

Johnson16-2-4 8 8 8 - 8 8

Johnson32-2-4 16 16 16 - 16 16

keller4 11 11 11 11 11 11

keller5 27 27 27 27 27 26

keller6 59 59 59 59 51 53

MANN a9 16 16 16 - 16 16

MANN a27 126 126 126 126 126 125

MANN a45 345 345 344 345 334 342

MANN a81 1100 1100 1098 1100 1080 1096

p hat300-1 8 8 8 8 8 8

p hat300-2 25 25 25 25 25 25

p hat300-3 36 36 36 36 36 35

p hat500-1 9 9 9 - 9 9

p hat500-2 36 36 36 - 36 36

p hat500-3 50 50 50 - 50 48

p hat700-1 11 11 11 11 11 11

p hat700-2 44 44 44 44 44 44

p hat700-3 62 62 62 62 62 62

p hat1000-1 10 10 10 - 10 10

p hat1000-2 46 46 46 - 46 45

p hat1000-3 68 68 68 - 68 65

p hat1500-1 12 12 12 12 12 12

p hat1500-2 65 65 65 65 65 64

p hat1500-3 94 94 94 94 94 91

san200-0.7.1 30 30 30 - 17 30

san200-0.7.2 18 18 18 - 15 18

san200-0.9.1 70 70 70 - 61 70

san200-0.9.2 60 60 60 - 60 60

san200-0.9.3 44 44 44 - 44 40

san400-0.5.1 13 13 13 - 7 13

san400-0.7.1 40 40 40 - 21 40

san400-0.7.2 30 30 30 - 16 30

san400-0.7.3 22 22 22 - 17 18

san400-0.9.1 100 100 100 - 57 100

san1000 10 10 10 - 8 15

sanr200-0.7 18 18 18 - 18 18

sanr200-0.9 42 42 42 - 42 41

sanr400-0.5 13 13 13 - 13 13

sanr400-0.7 21 21 21 - 21 20

ELS seems to be competitive with PLS in terms of the
running times of average solution results for the 80 DIMACS
instances and no information of previous solution obtained
by the local search has been preserved and used in the local
search steps of ELS. From this point of view, ELS is simplest
method.

V. CONCLUSION

Local search algorithms are known to be highly effective for
several combinatorial optimization problems. It is worthwhile
considering a new local search based on a new parameter
’support’ of vertex and edges of a graph for solving the
hard problems like maximum clique problem. Based on this
motivation a new heuristic algorithm ELS is developed and
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TABLE V
SIMULATION RESULTS FOR DIMACS BENCHMARK GRAPHS

G ELS PLS

avg worst CPU(s) S SCP(s)

brock200 1 21 21 < ε 100 0.08

brock200 2 12 12 < ε 100 0.05

brock200 3 15 15 < ε 100 0.06

brock200 4 17 17 < ε 100 0.07

brock400 1 27 27 < ε 100 2.46

brock400 2 29 29 < ε 100 0.74

brock400 3 31 31 < ε 100 1.54

brock400 4 33 33 < ε 100 3.67

brock800 1 23 23 1.29 100 56.49

brock800 2 24 24 1.53 100 15.73

brock800 3 25 25 2.59 100 21.91

brock800 4 25.75 25 2.63 100 8.88

C125.9 34 34 0.08 98 0.08

C250.9 44 44 0.09 100 0.06

C500.9 57 57 0.06 100 0.23

C1000.9 67.56 66 1.02 100 0.90

C2000.5 16 16 1.83 97 4.38

C2000.9 76.64 75 26.22 96 97.99

C4000.5 17.52 17 29.82 94 189.00

c-fat200-1 12 12 < ε 100 0.08

c-fat200-2 24 24 < ε 100 0.12

c-fat200-5 58 58 < ε 100 0.19

c-fat500-1 14 14 < ε 100 0.25

c-fat500-2 26 26 < ε 100 0.37

c-fat500-5 54 54 < ε 100 0.86

c-fat500-10 125.89 123 1.83 98 0.47

DSJC500.5 13 13 < ε 100 2.01

DSJC1000.5 14.84 14 0.12 100 5.21

gen200 p0.9 44 44 44 < ε 100 1.21

gen200 p0.9 55 55 55 < ε 100 0.08

gen400 p0.9 55 55 55 1.01 100 4.03

gen400 p0.9 65 65 65 1.05 100 5.01

gen400 p0.9 75 75 75 < ε 100 7.03

Hamming6-2 32 32 < ε 100 0.06

Hamming6-4 4 4 1.12 100 0.04

Hamming8-2 128 128 < ε 100 1.51

Hamming8-4 16 16 < ε 100 2.61

Hamming10-2 511.02 507 0.01 100 100

Hamming10-4 39.37 38 < ε 100 100

implemented. It is worthy to note that the parameter de£ned
in the heuristic not only greatly reduce the random selec-
tions among vertices in the feasible solution but also the
number of iterations and running times in getting the near
optimal solution. Although that alone gives ELS a remarkable
advantage, an even more signi£cant advantage is that its
two phased procedure. The feasible solution obtained by the
greedy approach in the £rst phase re£ned in the second phase
for getting near optimal solution with the help of an edge
based procedure. This search technique yields highly effective
cliques even in a short running time.

The computational results on the DIMACS benchmark
graphs demonstrated that ELS was outperformed recent meta-
heuristic components such as k-opt local search, simulated

TABLE VI
SIMULATION RESULTS FOR DIMACS BENCHMARK GRAPHS

G ELS PLS

avg worst CPU(s) S SCP(s)

Johnson8-2-4 4 4 < ε 100 5.89

Johnson8-4-4 14 14 < ε 100 8.32

Johnson16-2-4 8 8 < ε 100 0.08

Johnson32-2-4 16 16 < ε 100 0.12

keller4 11 11 < ε 100 0.32

keller5 27 27 < ε 100 0.45

keller6 59 59 < ε 100 170.69

MANN a9 16 16 < ε 100 2.61

MANN a27 125.69 123 3.86 65 3.43

MANN a45 344.45 339 32.97 43 276.43

MANN a81 1098.67 1091 45.62 3 264.32

p hat300-1 8 8 < ε 100 0.34

p hat300-2 25 25 < ε 100 0.24

p hat300-3 36 36 < ε 100 0.62

p hat500-1 9 9 < ε 100 0.76

p hat500-2 36 36 < ε 100 0.23

p hat500-3 50 50 < ε 100 0.55

p hat700-1 11 11 < ε 100 0.82

p hat700-2 44 44 1.05 100 3.21

p hat700-3 62 62 2.32 100 7.61

p hat1000-1 9.56 9 < ε 95 2.54

p hat1000-2 45.87 45 < ε 93 3.62

p hat1000-3 67.98 66 < ε 88 2.82

p hat1500-1 11.85 11 < ε 92 7.81

p hat1500-2 64.74 63 < ε 82 9.48

p hat1500-3 93.02 92 < ε 76 1.01

san200-0.7.1 30 30 < ε 100 1.23

san200-0.7.2 18 18 < ε 100 4.02

san200-0.9.1 69.46 67 1.15 100 2.56

san200-0.9.2 59.56 58 0.09 100 1.12

san200-0.9.3 43.98 43 1.01 100 2.23

san400-0.5.1 13 13 < ε 100 5.13

san400-0.7.1 40 40 < ε 100 2.07

san400-0.7.2 30 30 < ε 100 3.09

san400-0.7.3 22 22 < ε 100 5.10

san400-0.9.1 99. 17 97 0.09 100 2.67

san1000 10 10 < ε 100 16.55

sanr200-0.7 18 18 < ε 100 0.15

sanr200-0.9 42 42 < ε 100 0.23

sanr400-0.5 13 13 < ε 100 4.12

sanr400-0.7 21 21 < ε 100 3.01

annealing and trust region technique algorithm in terms of its
obtainable solutions for all the graphs. Also, it was competitive
with the best suitable heuristic based on stochastic reactive
dynamic local search for many graphs.

The excellent performance of ELS, reported that the un-
derlying edge based local search has substantial potential for
solving the maximum clique problem and the relevant hard
problems.
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