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Abstract—The steady-state operation of maintaining voltage 
stability is done by switching various controllers scattered all over 
the power network. When a contingency occurs, whether forced or 
unforced, the dispatcher is to alleviate the problem in a minimum 
time, cost, and effort. Persistent problem may lead to blackout. The 
dispatcher is to have the appropriate switching of controllers in terms 
of type, location, and size to remove the contingency and maintain 
voltage stability. Wrong switching may worsen the problem and that 
may lead to blackout. This work proposed and used a Fuzzy C-
Means Clustering (FCMC) to assist the dispatcher in the decision 
making. The FCMC is used in the static voltage stability to map 
instantaneously a contingency to a set of controllers where the types, 
locations, and amount of switching are induced. 

Keywords—Fuzzy logic, Power system control, Reactive power 
control, Voltage control

I. INTRODUCTION

CHEDULED maintenance, natural forces, severe load 
variations, and/or outages are classified as disturbances 

that often cause electromechanical oscillations [1] and can 
drive a power system to an abnormal steady state operation. 
Following a disturbance, a power system’s stable steady state 
operating condition is disrupted. Stability here is in reference 
to the bus voltage profile being within the prescribed 1 ± 5% 
pu operational limits.  

Reactive power compensation devices are placed in key 
locations so that they can be used to control the bus voltage 
profile. An operation engineer (or a dispatcher) coordinates 
the compensation devices when a disturbance causes the 
system’s operating state to shift to an unstable but controllable 
state. Therefore, one of the most important problems facing 
power utilities is to coordinate the reactive power 
compensation devices to maintain an acceptable bus voltage 
profile while keeping operational cost minimum and assuring 
system’s stability to disturbances. In practice, the dispatcher 
makes a decision on the location and the number of 
compensators to be rescheduled and also the amount of 
compensation needed. The sequence, the timing, and the 
amount of switching are critical to avoiding damaging devices 
that ultimately leads to voltage collapse. Therefore, an 
Artificial Intelligent (AI) is in justifiable need to aid in the 
decision-making process.  
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Numerical optimization techniques have been used in 
power systems planning, contingency analysis, and control 
[2]-[4]. However, classical techniques are limited only to 
problems that they are quantitative in nature. On the other 
hand, AIs are systems who are capable of handling 
quantitative and qualitative problems [5]. The transformation 
of knowledge coupled with data processing is the 
quintessence of what is so called a Knowledge-Based System 
(KBS). Accordingly, a KBS is chosen as a Computer-Aided 
Software Tool (CAST) to aid the operator in reaching a 
remedial action to the voltage problem.  KBS, as one form of 
AI, are used in power systems for load management and 
voltage stability [6],[7]. Another form of AI is Artificial 
Neural Network (ANN) who has gained popularity and is used 
in various domains. Security assessment [8], voltage 
prediction problem [9], and load forecasting [10] are few 
examples of ANN applications to power systems. Recently 
ANN is used online for the static voltage stability problem 
[11].  

There have been many applications of fuzzy systems to 
reactive power control and voltage stability problems. A 
Fuzzy system is used to ensure voltage security of power 
system by predicting the nearness of voltage failure for a 
giving load condition. It aids in determining the maximum 
loadability without causing voltage instability and is used to 
detect the critical lines for a specific load to monitor prior to 
experiencing line outage [12]. Narendranath Udupa et al [13] 
presented an approach where voltage stability index and 
controlling variables are translated into fuzzy set notations to 
formulate the relation between voltage stability level and 
controlling ability of controlling devices. 

Another approach is used by [14] to find a solution which 
takes both voltage security improvement and loss reduction 
into account for an electric power system. This approach uses 
linearized model to translate violation level of buses voltage 
and controlling ability of controlling devices into fuzzy set 
notations. nA knowledge-based system for supervision and 
control of regional voltage profile and security using fuzzy 
logic is presented by [15]. In this approach, control strategies 
are defined by the system operators based on their experience 
and on off-line studies, which are translated into rules of a 
hierarchical fuzzy inference system.  

II. PROBLEM FORMULATION

A. Power System Network Model 
The admittance matrix of the interconnected power 

system, busY , can be constructed by 

prm chg prm = busY Y Y Y (1)
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where, for an n n  square matrix A, then B A  is an 
1n  vector whose elements are the sum of the corresponding 

rows of A. Furthermore, C B is an n n  diagonal matrix 
whose diagonal elements are the elements of 1n  vector B.
Furthermore, prmY  and chgY are the primary and the half 
charging matrices, respectively. 

Using the vectorized approach, the mismatch power 
equation  

* *
bus bus bus busS V Y V (2)

where 1njbus bus busS P Q  is the total injected 

complex power and 1nj bus
bus busV V e  is the 

voltage profile. Equation (2) represents a vectorized set of 
highly coupled nonlinear equations. Thus, the power flow 
problem is to solve (2) for the PQ-bus voltage profile, the 
required reactive power for the PV buses, and the complex 
power for the slack bus. Thus far, analytical solution to (2) has 
not found yet! Normally, numerical methods are used to find a 
solution - if it exists. Newton-Raphson method, a fast and an 
efficient numerical approach that is commonly used to solve 
(2), is based upon the Taylor series expansion with respect to 
the voltage magnitudes and the voltage phase angles about a 
nominal steady-state operating point,  

. . .d d d h o tS SS V
V (3)

Note that the subscripts bus are neglected for simplicity. 
Separating real and imaginary parts and collecting terms, (3) 
expressed in a matrix-vector form results in, 

. . .h o t
P P V

Q Q V
dW d XJ

J J ddP
d VdQ J J (4)

Where, n nxJ
yxy . Clearly, 2 2n nJ  is the Jaccobian 

matrix whose entries are the partial derivative of the active 
and reactive powers with respect to the phasor voltage 
magnitudes and the phasor voltage angles. The sensitivity 
matrices of the total injected complex power with respect to 
magnitude and phase angle of the voltage profile are shown in 
(5) and (6), respectively. 

* * *j jS e Y V V Y e
V (5)

and

* * * * .jS V V Y Y V (6)

After neglecting the higher order terms, (4) can be written as,  

1dX J dW  (7) 

The solution of (7) is obtained iteratively 

1
sch( 1) ( ) kk

k kX X J W W (8)

where k is the iteration index and 2 1
sch

nW is a known 
vector whose entries are the scheduled complex powers and 

2 1n
kW  is a vector whose entries are the calculated real 

and reactive powers, using (2), at the kth  iteration. 

B. The Load-Bus Voltage Profile 
The PQ or Load-Bus voltage magnitude profile computed 

in (8) is clearly affected by the PV or Generation-Bus voltage 
magnitude profile, the reactive bank compensation, and the 
settings of the under-load tap changing transformers. 
Consequently,  

, ,l g bV f V Y t (9)

where, 1l
lV  and 1g

gV  represent the Load-Bus 

and the Generation-Bus voltage magnitude profiles, 
respectively. 1b

bY  and 1tt  represent the 
susceptance of the static reactive power (VAR) compensators 
and the tap settings of the under-load tap changing 
transformers, respectively. , ,  and g bV Y t are viewed as the 

compensators or the controllers. The function in (9) is highly 
nonlinear and coupled set of equations and it is very difficult – 
if not impossible – to find analytically. 

When a contingency occurs (i.e., stable but abnormal state), 
some of the Load-Bus voltage magnitudes fall outside an 
allowable operational limit of 1 ± 5% pu. The static control 
problem of voltage stability can be stated as follows: Select 
and switch a compensator or a group of compensators so that 
the contingency is lifted. 

Fuzzy logic is trained to map a profile of controllers’ 
settings to alleviate a contingency and to put back 
instantaneously the power system into operation, Fig. 1. 

Fig. 1 Simultaneous voltage control of a power system
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III. FUZZY LOGIC
Fuzzy sets are the basic concept of fuzzy logic. A fuzzy set 

is an extension of a crisp set which allows only full 
membership or non-membership whereas fuzzy sets allow 
partial membership. In a crisp set, the boundaries are precise. 
For example consider a classical set A:

{ / 0,  }
     0   1

 0   0
A

A

A x x x
if x x A x

if x x A x
(10)

Fuzzy sets represent commonsense linguistic labels like 
slow, fast, small, large, heavy, low, medium, etc. Thus, in 
fuzzy set, the boundaries are not precise   0 1A x .
Where A x is defined as membership function. In general, 
a membership function is a curve that defines how each point 
in the input space is related to a membership value or degree 
of membership between 0 and 1.  

Three popular membership functions Triangular, 
Trapezoidal, and Gaussian are shown in (11), (12), and (13), 
respectively.
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x x a a x b

b a
(11)

0,

1,

,

,

,

1
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x a
x a a x b
b a

x b x c
d x c x d
d c

x d

(12)

21exp .
2A

x xx (13)

Fuzzy Inference Systems (FISs) consist of if-then rules that 
specify a relationship between the input and output fuzzy sets. 
Fuzzy relations present a degree of presence or absence of 
association or interaction between the elements of two or more 
sets.

If x is A, then y is B; This rule has a membership 
function 0 1R x . For most applications, the fuzzy 
membership function R x for a given relation is obtained 
with minimum or product implication represented as, 

min ,

.
A BA B

A B

x x x

x x
(14)

An FIS consists on mapping the input data vector into a 
scalar output using fuzzy rules, Fig. 2.  

The mapping process involves input/output membership 
functions, fuzzy logic operators, if-then rules, aggregation of 
output sets, and defuzzification. 

Fig. 2 Block diagram of fuzzy inference system

The Fuzzifier: maps input numbers into corresponding 
fuzzy memberships. This is required in order to activate rules 
that are in terms of linguistic variables. The Fuzzifier takes 
input values and determines the degree to which they belong 
to each of fuzzy sets via membership functions. 

Inference Engine: defines mapping from input fuzzy sets 
into output fuzzy sets. 

Aggregation:  It is possible that one or more rules may fire 
at the same time. Outputs for all rules are then aggregated. 
During aggregation, the output set of each rule are combined 
into a single a single fuzzy set. 

The Defuzzifier: maps output fuzzy sets into numbers. 
Given a fuzzy set that encompasses a range of output values, 
the defuzzifier returns one number, thereby moving from a 
fuzzy set to a crisp number. There are several methods for 
defuzzification; center of gravity, weighted average and center 
of areas. 

Fuzzy rules play a key role in representing expert 
control/Modeling knowledge and experience linking the input 
variables of fuzzy controllers to output variable(s). There are 
two major types of fuzzy rules; Mamdani and Takagi-Sugeno. 

A. Fuzzy c-Mean Clustering (FCMC) 
Fuzzy c-means is a method of clustering which allows one 

piece of data to belong to two or more clusters [16]. A cluster 
is a set where its members are similar (in some sense). Every 
cluster has a center, v, and the membership function value of 
each data, x, depends on its distance from the center. For 
example,  

1 2

1 2,   ,  

 .A A

If d x v d x v

than x x
(15)

In general, if there are n data 1 2 nx x xx and c
clusters with centers 1 2 cv v vv . FCMC is to 
minimize the objective function, 

2

1 1
,

n c
m

m ik k k i
k i

J x x vU v (16)

where 1 m is a weighting exponent, k
c n

iU is

the fuzzy matrix representation of the partition kx . ik is
the membership of the data kx  in the cluster i and is computed 
as follows, 
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The thk center is found as, 

1

1

,1 .
n m

ik k kk
i n m

ikk

x x
v i c (18)

The FCMC algorithm can be summarized in Fig. 3. 

IV. SIMULATION

A. Test Power System 
To illustrate the effectiveness of the proposed FCMC 

technique for voltage control, the IEEE 14-bus power system, 
shown in Fig.   4., is considered. The control devices are five 
generators at buses 1,   2, 3, 6, and 8; one capacitive bank at 
bus 9; three Under Load Tap Changing (ULTC) transformers 
between buses 5 and 6 (line 8), 4 and 7 (line 9), and 4 and 11 
(line 11). Thus, the total number of compensators which 
constitutes the number of the FCMC output is 9. The total 
number of inputs to the FCMC is 9 which constitute the load 
buses.

1k kU U

1k kU U

Fig. 3 FCMC algorithm

Fig. 4 The IEEE 14-Bus Power System

B. Data Set Selection 
Should a contingency occurs, either an experienced 

dispatcher or an AI expert system would recommend the type 
and location of the controllers; and the amount of switching of 
the selected controllers. For a given set of combination of 
controllers and their settings, the voltage profile is found by 
running the power flow algorithm. Thus, to generate inputs 
and outputs data (simply a data set), it is required to go 
through several contingencies (cases) and tries to find their 
remedial solutions (targets). However, this way is time 
consuming, especially for large power systems, and it is not 
comprehensive.  

Instead, we propose to work “backward;” the controllers 
will be switched randomly from their minimum to their 
maximum values with changeable incremental values. And, 
for each set of controllers, the voltage profile is calculated. 
The data set, which includes 100,028 runs or cases and 
targets, will be used to train and validate the FCMC.

Now to validate the FCMC, 100 new contingencies were 
designed and applied to the trained FCMC. Out of the 100 
contingencies, the FCMC gave 87 correct solutions, i.e., the 
voltage profile being within the allowable limits of 1 ± 5 %. 

To test the effectiveness of the FCMC technique, a new 
contingency was fabricated; a 100 MW, 50 MVAR load was 
added to bus 7. Initially, the IEEE 14-bus power system was 
operating normally at steady-state where the voltage profile is 
within the allowable limits of 1 ± 5 %, the dashed-dotted line 
shown in Fig. 5. This contingency causes the voltages at buses 
4, 7, 9, 10, and 14 to be outside the allowable limits, the 
dotted line shown in Fig. 5. When the new contingency is 
presented to the trained FCMC, an instant solution is deduced, 
the solid line shown in Fig. 5. 
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Fig. 5 The Normal (dashed-dotted line), the faulted (dotted line), and 
the FCMC corrected (solid line) voltage profiles

The recommended settings of the controllers (i.e., locations 
and amounts of switching of controllers) for this remedial 
action are shown in Table I. 

Normally, the generating units are spared until the last 
resort. Thus, the FCMC is retrained with four controllers 
namely the capacitor bank and the three ULTC transformers. 
To validate the newly trained FCMC, the 100 contingencies 
were applied to the trained FCMC. Out of the 100 
contingencies, the FCMC gave 44 correct solutions. 

TABLE I 
THE TRAINED FCMC RECOMMENDED SETTINGS OF THE CONTROLLERS – THE

CASE OF FIG. 5
Type Location Action Amount 

Generator Bus 1 No Change 

Generator Bus 2 Increase 1.18 % 

Generator Bus 3 Decrease 0.10 % 

Generator Bus 6 Decrease 0.59 % 

Generator Bus 8 Decrease 0.80 % 

Capacitor Bus 9 Increase 44.00 % 

ULTC Line 8 Increase 7.83 % 

ULTC Line 9 Decrease 2.61 % 

ULTC Line 11 Increase 3.10 % 

To test the effectiveness of the newly trained FCMC 
without the generators, a new contingency was fabricated. 
This contingency causes the voltages at buses 4 and 5 to be 
below the limit and 7, and 9 to be above the limit, the dotted 
line shown in Fig.  6. When the new contingency is presented 
to the newly trained FCMC, an instant solution is deduced, the 
solid line of Fig. 6.
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Fig. 6 The Normal (dashed-dotted line), the faulted (dotted line), and 
the FCMC corrected (solid line) voltage profiles

The recommended settings of the controllers for this 
remedial action are shown in Table II. 

TABLE II 
THE TRAINED FCMC RECOMMENDED SETTINGS OF THE CONTROLLERS – THE 

CASE OF FIG. 6. 
Type Location Action Amount 

Capacitor Bus 9 Increase 0.37 % 

ULTC Line 8 Increase 0.89 % 

ULTC Line 9 Increase 0.89 % 

ULTC Line 11 Increase 0.88 % 

V. CONCLUSION

The paper presented a Fuzzy C-Mean Clustering (FCMC) 
algorithm to be used in the steady-state voltage stability of a 
power system. The FCMC is trained so that it instantly maps a 
solution (i.e., locations and amounts of switching of 
controllers) to a contingent IEEE 14-bus power system. The 
results were acceptable when all the controllers are used. 
Approximately 87 % correct solutions, i.e., the voltage profile 
being within the allowable limits of 1 ± 5 %, are achieved. 
However, when the generators are spared, the results 
deteriorated to 44 %. Trained Neural Networks were shown to 
be more effective in finding solutions to the static voltage 
control problem [11].
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