
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:2, 2010

251

Abstract—The Spiral development model has been used

successfully in many commercial systems and in a good number of
defense systems. This is due to the fact that cost-effective
incremental commitment of funds, via an analogy of the spiral model
to stud poker and also can be used to develop hardware or integrate
software, hardware, and systems. To support adaptive, semantic
collaboration between domain experts and knowledge engineers, a
new knowledge engineering process, called Spiral_OWL is proposed.
This model is based on the idea of iterative refinement, annotation
and structuring of knowledge base. The Spiral_OWL model is
generated base on spiral model and knowledge engineering
methodology. A central paradigm for Spiral_OWL model is the
concentration on risk-driven determination of knowledge engineering
process. The collaboration aspect comes into play during knowledge
acquisition and knowledge validation phase. Design rationales for the
Spiral_OWL model are to be easy-to-implement, well-organized, and
iterative development cycle as an expanding spiral.

Keywords—Domain Expert, Knowledge Base, Ontology,
Software Process.

I. INTRODUCTION
software process model is defined as a set of activities,
methods, practices, and transformations that people used

to develop and maintain software and its associated product
[1]. It is viewed as a vehicle to improve software quality as
well as productivity. The primary functions of a software
process model are to determine the order of stages involved in
software development and evolution and to establish the
transition criteria from one stage to the next stage. These
include completion criteria for the current stage plus choice
criteria and entrance for the nest stage. Consequently, a
process model differs from a software method (often called a
methodology) in that a method’s primary focus is on how to
navigate through each phase (determining data, control, or
“uses”, hierarchies; partitioning functions; allocating
requirements) and how to represent phase products (structure
charts; stimulus-response threads; state transition diagrams).

This paper describes the Spiral_OWL model which is
inspired by the Spiral development model for development of
knowledge-base systems. The paper focuses on the designing
Spiral_OWL which is and adoption of Spiral development
process with knowledge engineering methodology. Its use
ontology as knowledge base and shows the development of
ontology based on Spiral_OWL.

Authors are with Faculty of Computer Science and Information

Technology, University Malaya, 50603 Kuala Lumpur, Malaysia (e-mails:
tringliserida@yahoo.com, noraniza@um.edu.my).

The reminder of this paper is organized as follows. Section
II will firstly clarify the existing approach of knowledge
engineering process and Spiral model. Section III gives a brief
overview of a proposed Spiral_OWL. Section IV presents
Spiral_OWL activities. Finally, Section V concludes the paper
with additional comments and future work.

II. EXISTING APPROACHES
Related approaches can be roughly classified into two

groups. Accompanied by the formation of knowledge
engineering as an independent field of research, several
knowledge engineering methodologies were developed. Most
of them are much inspired by Software Engineering
methodologies. In the Software Engineering domain, in the
1988, the Spiral development model is emerged. This software
development is family of software development processes
characterized by repeatedly iterating a set of elemental
development processes and managing risk so that it is actively
being reduced.

A. Knowledge Engineering
Knowledge engineering is the process of designing and

producing knowledge-base system (KBS), and is so called to
distinguish it from software engineering or the production of
information systems. There are two approaches of Knowledge
Engineering namely, transfer approach and modeling
approach [2].

i. Knowledge Engineering as a Transfer Process
In early 1980s the development of KBS was seen as a

transfer process of human knowledge into an implemented
knowledge base. This transfer was based on the assumption
that the knowledge which is required by the KBS already
exists and just to be collected and implemented. Most often,
the required knowledge was obtained by interviewing experts
on how they solve specific tasks [3]. Typically, this
knowledge was implemented in some kind of production rules
which were executed by an associated rule interpreter. The
transfer approach was only feasible for the development of
small prototypical systems, but it failed to produce large,
reliable and maintainable knowledge bases.

ii. Knowledge Engineering as a Modeling Process
Nowadays there exists an overall consensus that the process

of building a KBS may be seen as a modeling activity.
Building a KBS means building a computer model with the

The Spiral_OWL Model – Towards Spiral
Knowledge Engineering

Hafizullah A. Hashim, and Aniza. A

A

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:2, 2010

252

aim of realizing problem-solving capabilities comparable to a
domain expert. It is not intended to create a cognitive
adequate model, but to create a model which offers similar
results in problem-solving for problems in the area of concern.
While the expert may consciously articulate some parts of his
or her knowledge, he or she will not be aware of a significant
part of this knowledge since it is hidden in his or her skills.
This knowledge is not directly accessible, but has to be built
up and structures during the knowledge acquisition phase.
Therefore, this knowledge acquisition process is no longer
seen as a transfer of knowledge into an appropriate computer
representation, but as a model construction process [4], [5].
There are three well-known modeling frameworks which have
been developed in recent years namely, CommonKADS [6],
MIKE [7] and Protégé-II [8].

The main goal of Knowledge Engineering is to structure the
development and use of knowledge bases. For that purpose,
the most widely known Knowledge Engineering approaches
(e.g., CommonKADS [9]) are based on the ontology paradigm
[10]. The development of both ontologies and adequate
reasoning algorithms is supported by various methodologies,
the phases and models of which resemble traditional Software
Engineering approaches. The definition of Knowledge
Engineering methodology is an agreement of how multiple
people will work together. It defines a process in which
domain experts and knowledge engineers will build a
knowledge base. This knowledge base is represented in a
knowledge representation language with suitable tools.
Processes, languages and tools are based on knowledge
representation paradigms. These Knowledge Engineering
methodologies now also reveal similar problems to traditional
Software Engineering approaches.

Significant initial efforts are needed to make the purpose of
final ontology explicit and to deduce an appropriate model. It
is often hard to estimate the required level of detail for the
knowledge structuring a priori. Changes to the knowledge
structuring are difficult and costly. For these reasons, methods
from Knowledge Engineering are often too expensive to apply
rarely used in practice [11]. However, for ontology
construction the need of new approach that integrate
Knowledge Engineering methodology and spiral model called
Spiral_OWL.

B. Spiral Model
The spiral model of software development and evolution

represents a risk-driven approach to software process analysis
and structuring. This approach developed by Barry Boehm
[12], incorporates elements of specification-driven, prototype-
driven process methods, together with the classic software life
cycle.

The model reflects the underlying concept that each cycle
involves a progression that addresses the same sequence of
steps, for each portion of the product and for each of its levels
of elaboration, from overall concept of operation document
down to the coding of each individual program. Each cycle
involves traversing through the four quadrants. The first
quadrant is to determine objectives, alternatives, and
constraints for the cycle. The second quadrant is a risk
analysis and evaluation of alternatives for the cycle. The third

quadrant is to develop and verify the next level product. The
fourth quadrant involves planning for the next phases. Each
cycle of the spiral model iterates through these four quadrants.
The number of cycles is project-specific, so the description of
the activities in each quadrant is intended to be general
enough so that they can be included in any cycle. The radial
dimension in Fig. 1 represents the cumulative cost incurred in
accomplishing the steps to date, and the angular dimension
represents the progress made in completing each cycle of
Spiral.

The goal of the spiral model is that the software process be
risk driven, so that the risks within a given cycle are
determined during the Analyze Risks quadrant. In order to
manage these risks, certain additional project-specific
activities may be planned to address the risks, such as
Requirement Prototyping, if the risk analysis indicates that the
software requirements are not clearly understood. These
project-specific risks are termed process drivers.

Fig. 1 The original spiral development diagram

For any process driver, one or more project-specific activities
must be performed to manage the risk. Fig. 1 shows the
original Spiral development diagram.

III. THE SPIRAL_OWL MODEL
The Spiral_OWL model is presented in this document is an

adoption of Spiral model. Fig. 2 summarizes the important
ingredients of Spiral_OWL which is generated based on
knowledge engineering methodology and spiral model. The
radial dimension in Fig. 2 represents the cumulative cost
incurred in accomplishing the steps to date, and the angular
dimension of Spiral_OWL represents a Knowledge
Engineering methodology.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:2, 2010

253

Fig. 2 The spiral_OWL diagram

A. A Typical Cycle of Spiral_OWL
Each cycle of the spiral begins with the identification of

specification of the ontology being developed (domain,
functionality, target user, etc.), the alternative means of
implementing this ontology (design T-Box, design A-Box,
Special Type Property, Complex Class, ontology reuse, etc.),
and the constraints imposed on the application of the
alternatives (cost, schedule, resources, etc.)

The next step is to evaluate the alternatives relative to the
specification and constraints. Frequently, this process will
identify domain expert for knowledge acquisition, formalize
knowledge being captured, and populate the knowledge into
ontology form that are significant sources of project risk. If
so, the next step should involve the formulation of a cost-
effective strategy for resolving the sources of risk. This may
involve administering domain experts’ questionnaires,
interviews subject matter experts, prototyping, and
benchmarking.

Once the risks are evaluated, the next step is determined by
the relative remaining risks. If risk of knowledge for certain
domain strongly dominate program development and design
of ontology risks, the next step may be an evolutionary
development one: a minimal effort to specify the overall
nature of the product, a plan for the next level of prototyping,
and the development of a more detailed prototype to continue
to resolve the major risk issues. If this prototype is
operationally useful and robust enough to serve as low-risk
base for future product evolution, the subsequent risk-driven
steps would be the evolving series of evolutionary prototypes
going toward the right in Fig. 2. In this case, the option of
writing specifications would be addressed but not exercised.
Thus, risk considerations can lead to a project implementing
only a subset of all the potential steps in the model.

On the other hand, if previous prototyping efforts have
already resolve all of the designing T-Box (classes, properties,
relations) and A-Box (instances) for particular stage, the next
step follows the basic waterfall approach (refinement and
testing ontology for every stages) modified as appropriate to

incorporate incremental development. Each stage of ontology
testing in the figure is then followed by a validation step and
preparation of plans for the succeeding cycle. In this case, the
options to interview domain expert, prototyping,
questionnaires, etc. are addressed but not exercised, leading to
the use of different subset of steps.

This risk-driven subsetting of the Spiral_OWL model steps
allows the model to accommodate any appropriate mixture of
a specification-oriented/domain-oriented, prototype-oriented,
questionnaires-oriented, and interviews-oriented to approach
to ontology development. In such cases, the appropriate mixed
strategy is chosen by considering the relative magnitude of the
program risks and the relative effectiveness of the various
techniques in resolving the risks. In a similar way, risk
management considerations can determine the amount of time
and effort that should be devoted to such other ontology
activities as planning, designing, quality assurance, formal
verification, and testing. In particular, risk-driven
specifications can have varying degree of completeness,
formality, and granularity, depending on the relative risks of
doing too little or too much ontology specification.

An important feature of the Spiral_OWL model, as with
most other knowledge engineering models, is that each cycle
is completed by a review involving the Knowledge Engineer
and Subject Matter Expert concerned with the ontology. This
review covers all ontologies developed during each cycle,
including the plans for the next cycle and the resources
required to carry them out. The review’s major objective is to
ensure that all the knowledge is populated properly according
to result of interviews. At the same time to ensure that all
concerned parties are mutually committed to the approach for
the next phase.

B. Initiating and Terminating the Spiral_OWL
Four fundamental questions arise in considering this

presentation of the Spiral_OWL model:
1. How does the Spiral_OWL ever get started?
2. How do you get off the Spiral_OWL when it is

appropriate to terminate project early?
3. Why does the Spiral_OWL end so abruptly?
4. What happen to ontology enhancement (or

maintenance)?
The answer to these questions involves and observation that

the Spiral_OWL model applies equally well to design and
development of ontology or maintenance efforts. In either
case, the Spiral_OWL gets started by a hypothesis that
operational mission (e.g., an ontology development process is
an iterative means) could be improved by a software effort.

The Spiral_OWL process then involves a test of this
hypothesis: at any time, if the hypothesis fails the test (for
example, if broken knowledge cause incorrect output to miss
its market window, or if ontology is being developed becomes
available), the Spiral_OWL is terminated. Usually, experience
with the operational mission leads to further hypothesis about
ontology improvements, and a new maintenance Spiral_OWL
is initiated to test the hypothesis. Initiation, termination, and
iteration of the tasks and ontologies of previous cycles are

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:2, 2010

254

thus implicitly defined in the Spiral_OWL model (although
they are not included in Fig. 2 to simplify its presentation)

IV. SPIRAL_OWL ACTIVITIES
The remainder of this paper expands the activities of

Spiral_OWL by describing five essential aspects that every
proper Spiral_OWL process must exhibit. The essentials are
sketched in Fig. 2.

A. Spiral_OWL Essential 1 (Ontology Specification,
Alternatives, Constraints)

The first step of knowledge engineering process is ontology
specification. The ontology specification is needed to specify
what is expected of the ontology. This specification
determines the purpose and the domain of the ontology. The
purpose of ontology can be set by listing typical query that the
ontology has to answer or by describing a usage scenario.
Several questions need to be answer before developing
ontology so as to ensure the right ontology develops to the
right application that will deliver to the right user. Such
questions are i) why is the ontology being built? ii) what is its
intended used iii) who are its users? Besides answering all the
questions, we have to identify who is going to be a domain
expert in the project.

B. Spiral_OWL Essential 2 (Acquisition, Formalization,
Population)

Most of the ontology development methods conduct the
ontology acquisition in a subjective manner. They generate
concepts either by brainstorming (i.e., randomly enumerating
a list of terms and then figuring out how they are related to
each other), or by interviewing with experts. The first
approach may be effective in creating ontologies for simple
domains with shallow knowledge. However, it is not feasible
in developing broader as well as complex knowledge. The
second approach may be appropriate if the ontology is built
based upon the knowledge in a small domain, such as
company. However, the content of the ontology may be
skewed and limited.

Here, there are three different stage of acquisition process:
i) determining the scope of the ontology; ii) selecting a
method to capture the ontology and iii) defining the concepts
in the ontology. Determining the concept involves identifying
all the key concepts and relationships. This can be achieved
by sketching a list of questions named competency questions
that a knowledge base based on the ontology should be able to
answer. The competency questions will differ depending on
which type of ontology being built. For domain ontologies,
the competency questions are formulated so that they can be
used to check at each stage of ontology construction whether
the correct relationships have been created between the
concepts, and whether the relationships created sufficiently
describe the domain. To define competency questions, some
pre-conceptions about which concepts are core to describing
the domain are required.

When most of the knowledge has been acquired, it is
unstructured and needs to be organized and structure by using
representations that both computers and humans can

understand. Such representations are named “knowledge
worksheet” [13]. They are formatted templates and
independent of the ontology engineering tools or
implementation languages used. Basically, there are two types
of worksheets: taxonomy worksheets and relationship
worksheets. Each of taxonomy corresponds to a taxonomy
worksheet while each concept, in general has a relationship
worksheet. The taxonomy worksheet is used in organizing the
unstructured results from the concept acquisition into a
hierarchical structure. In our experience, this is the most
challenging step of the overall development process. For
example, different knowledge may classify the same
taxonomy or concept from different perspectives and therefore
have to be merged carefully. For instance, in agriculture field,
we have to determine the growing stage of crops. Here, there
are several stages need to classify either those stages is a
concept or instance. In order to classify it, we have to describe
it as a big picture not at the particular level. However,
performance is one of the main issues that need to consider so
as classifying the knowledge or resources.

While formalize the ontology, knowledge engineer is
encourage to record the linguistic definition of term (e.g.
noun, verb) as an intermediate step to identifying which terms
are concepts in the ontology and which are relationships
terms. The nouns are more likely to be concepts and verbs are
most likely to be relationships terms. Note that naming
conventions are applied in order to the ontology more
readable and make each concepts, relationships, and instances
unambiguous. The naming conventions require that each
concept or class name use capitals for beginning class names
and there can be a CamelCase brand name like “CropStage”,
while properties or relationship start with lower case letters
like “hasCropStage”. In fact, UpperCamelCase be used for a
classes and instances, and lowerCamelCase be used for
properties. Table I and II show more details of taxonomy
worksheet and relationship worksheet respectively.

TABLE I
TAXONOMY WORKSHEET

Taxono

mies

Number
of

Concepts

Example of
Concepts

Acquisition
Resources

Examples of
Acquisition
Resources

Disorder 1 PhysicalDis
order

Interview
with

domain
expert

Questionnaires

Environ
emt

Factor

3 SoilFactor,
WaterFacto

r,
WeatherFac

tor

Agriculture
Handbook

[21][31]

Manage
ment

Control

2 DiseaseCon
trol,

HormoneC
ontrol

Same as
Disorder
taxonomy

Same as
Disorder
taxonomy

Crop
Stage

2 SeedStage,
Vegetative

Stage

Online
resources

www.crop.com.
my

Population is a process to construct a concept network from

knowledge captured in acquisition process that describes the
domain in question. A concept visualizes an ontology as nodes

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:2, 2010

255

(concepts) and links (relationships between concepts). This is
much more than Gomez-Perez’s “Concept Classification
Trees” [14] which organize domain concepts in taxonomies.

TABLE II
RELATIONSHIP WORKSHEET

Relationship (Concept*
,

Filler
Concept)

Definition of
relationship

Examples

crops:controlB
y

crops:Pest,
crops:Dise

ase

crops:Dise
aseControl

,
crops:Pest

Control

Describe on
how to

overcome
disease and

pest for
tomato

crops:con
trolBy

(crops:Ru
ssetMites,
crops:Sulf
urOrCalci
umPolysul

phide)
crops:hasBotan
icalInformation

crops:Cro
pName

DP Describe the
type of crop
like cultivar,

variety,
species, and

general
information

crops:has
Botanical
Informati

on
(crops:To

mato,
crops:Red

Rock)
crops:hasDisea

se
crops:Cro

pName
crops:Dise

ase
Describe the

potential
disease that

may attack the
tomato crop.

crops:has
Disease

(crops:To
mato,

crops:Bac
terialCanc

er)
crops:hasDisor

der
crops:Cro

pName
crops:Diso

rder
Describe the
disorder that

affect the
functioning of

the plant
system

crops:has
Disorder
(crops:To

mato,
crops:Lea
fTipScorc

hing)
crops:hasExpe

ctedResult
crops:Syst
emSelecti

on

crops:Syst
emExpecte

dResult

Describe the
expected

result of the
selected
system

crops:has
Expected

Result
(crops:Soi
lessCultur

e-
Fertigatio

n,
crops:Hig
hYield)

C. Spiral_OWL Essential 3 (Refinement, Testing, and
Evaluation)

Refinement process consists of two phase’s namely intra-
coding refinement, and extra-coding refinement. Intra-coding
refinement involves the refinement done during the coding
phase. As the code is being developed, if either some errors
are discovered or new requirements come up, the code is
refined to correct the errors or fulfill the new requirements.
Extra-coding refinement refers to the changes done to
overcome the errors that are uncovered during testing, and
enhancements carried out during maintenance. Forms can be
customized to form a refinement knowledge-acquisition tool;
further design problems in the original ontology may surface.

In testing process, it uncovers defects in functional logic
and implementation, and is carried out at all stages of
development. Once the knowledge base has been created, end-
user tests should be carried out to uncover defects in the
ontology. Depending upon the problems encountered,

appropriate changes need to be carried out to the ontology. In
addition, full application will be test with end-users. This step
can lead to further revisions to the ontology and knowledge
acquisition form (questionnaires).

In evaluation process, knowledge engineer should firstly
check whether all information captured during interview with
domain expert has been captured as triples or restrictions or
constraints in the concept network, or has been recorded as
information loss. Secondly, they should check that the
information captured in during interview session has been
captured in black and white (paper). If there is information
missing from the paper, further checks should be made against
with domain expert in term of scope and purpose. Knowledge
engineer can now evaluate their conceptual ontology against
the following criteria:

• Logical consistency: Checks are made for repetition
and missing triples. The competency questions can be
used to identify core concepts, relationships, and
triples that have not been captured.

• Conceptual accuracy: The domain expert should
agree with the information that has been captured as
triples, in that it represents his/her interpretation of
the domain, task or application.

• Minimal ontological commitment: Only those
relationships suited to the purpose and within scope
have been created, i.e. the core concepts are well
defined by their explicit relationships to other
concepts and relations to their characteristics.
Secondary concepts have only been used in the
ontology to describe the core concepts.

• Clear differentiation between ontologies: The
concepts and relationships captured should be suited
to the ontology type created (i.e. domain ontology
does not contain concepts more suitable to ontology
task).

Vagueness has been handled well: Knowledge engineer has
attempted to capture probability, possibility, uncertainty and
fuzziness within the conceptual ontology.

D. Spiral_OWL Essential 4 (Maintenance and Plan for the
Next Phase)

Maintenance process consists of three types namely,
corrective, adaptive, and perfective [15]. Corrective
maintenance involves considering the problem faced by the
users while querying the ontology and correcting the ontology
to overcome these problems. Adaptive maintenance involves
modifying the ontology to fulfill new requirements in the
future. Perfective maintenance involves improving the
ontology, to further refine it.

Based on information given by domain expert and user, we
plan for the next phase. The future ontology might be
improved with more thus the system will be more intelligent.
This would happen if knowledge engineer keep enrich the
knowledge and keep finding new knowledge from several
people who work in the same domain.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:2, 2010

256

E. Spiral_OWL Essential 5 (Document Validation and
Ontology Validation)

There are two types of validation will be conduct during
design and development ontology. Document validation is
vital so as to validate the knowledge that has been captured
during interview sessions. This document contains all
structured knowledge in form of table format. Domain expert
has to validate the document base on questionnaires and its
respective answers. Normally, the document is validated after
knowledge engineer reorganizes the knowledge and before
they start populates the knowledge into ontology form.

Ontology validation on other hand is validating the
structure of ontology by senior knowledge engineer. This kind
of validation called code inspection. During the validation, all
the T-Box and A-Box is verified. T-Box design must be in
line with the core knowledge acquired from domain expert
whereas A-Box must be inserted to the respective class.
Ontology validation is significant in order to reduce
inconsistency data thus will ensure the knowledge is accurate
and meet the user need.

V. CONCLUSION
The knowledge engineering process is susceptible to risks,

and knowledge engineers wish to mitigate those risks by
selecting the most appropriate process model for a project.
The Spiral_OWL model has been proposed for ontology
construction. The model is an adoption of Spiral model so that
suitable for knowledge engineering environment.

The Spiral_OWL is a risk-driven process model, which
depending on specific risks associated with a given project,
may be tailored to create a project specific process model.

This paper presented an iterative-cyclic knowledge
engineering process for building ontology which integrates
solution proposals developed to date for overcoming the
specification, communication and optimization barriers based
on the notion of an optimization cycle. The optimization cycle
can be subdivided into four regions: the region where the
specification is determined (Quadrant I), the region of
acquisition, formalization and population (Quadrant II), the
region of refinement, testing and evaluation (Quadrant III) and
the region of maintenance and plan for the next phase
(Quadrant IV).

Spiral_OWL is essential for development of ontology as it’s
an iteration process. Furthermore, the knowledge is strictly
relying on domain expert or in other word, Subject Matter
Expert (SME). So, by all means, we need the iteration process
model as knowledge comes into phase by phase. Further
worthwhile research has been carrying out with focus on how
to fully utilize this process model so as to produce a
comprehensive ontology.

REFERENCES
[1] A. Gomez-Perez, M. Fernandez-Lopez, and M. De Vicente, Towards a

Method to Conceptualize Domain Ontologies. In working notes of the
workshop on Ontological Engineering, ECAI’96, pp. 41-52, ECCAI
1996.

[2] A. R. Puerta, J.W. Egar, S. W. Tu, M. A. Musen, A Multiple-Method
Knowledge Acquisition Shell for the Automatic Generation of

Knowledge Acquisition Tools, Knowledge Acquisition 4 (1992), pp.
171-196

[3] A. T. Schreiber, B. J. Wielinga, R. de Hoog, H. Akkermans, W. Van de
Velde, CommonKads: A Comprehensive Methodology for KBS
Development, IEEE Expert (December 1994), pp. 28-37

[4] B. Boehm, A Spiral Model of Software Development and Enhancement,
Computer, May 1988, pp. 61-72

[5] G. Schreiber, H. Akkermans, A. Anjewierden, R. de Hoog, N. Shadbolt,
W. V. de Velde, and B. J. Wielinga, Knowledge Engineering and
Management: The CommonKADS Methodology, MITpress, 2000

[6] H. Knublauch, An Agile Development Methodology for Knowledge-
Based Systems, PhD thesis, University of Ulm, 2002

[7] J. Angele, D. Fensel, R. Studer, Developing Knowledge-Based Systems
with MIKE, Journal of Automated Software Engineering, in press

[8] J. M. David, J. P. Krivine, R. Simmons (eds.), Second Generation Expert
Systems (Springer-Verlag, Berlin, 1993)

[9] K. Morik, Underlying Assumptions of Knowledge Acquisition as a
Process of Model Refinement, Knowledge Acquisition 2(1), March 1990,
pp. 21-49.

[10] M. A. Musen, An Overview of Knowledge Acquisition, in J.M. David et
al. (eds.), Second Generation Expert Systems (Springer-Verlag, 1993)

[11] Paulk M. C., Curtis, B., Chrissis, M. B., Weber, C. V.(eds.): CMM
Capability Maturity ModelSM for Software. Version 1.1, Technical
Report, CMU/SEI (1993)

[12] R.S. Pressman, Software Engineering: A Practitioner’s Approach, 3rd
Ed., McGraw-Hill, New York, NY, 1992

[13] T. R. Gruber, A Translation Approach to Portable Ontologies,
Knowledge Acquisition 5(2), pp. 199-220, June 1993

[14] W. J. Clancey, The Knowledge Level Reinterpreted: Modeling How
System Interact, Machine Learning 4 (1989), pp. 285-291

[15] Zhanjun Li, Victor Raskin, and Karthik Ramani. (2007), A Methodology
of Engineering Ontology Development for Information Retrieval,
International Conference on Engineering Design, ICED’07. Paris,
France. 28-31 August 2007.

