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Abstract—Flow movement in unsaturated soil can be expressed 

by a partial differential equation, named Richards equation. The 
objective of this study is the finding of an appropriate implicit 
numerical solution for head based Richards equation. Some of the 
well known finite difference schemes (fully implicit, Crank Nicolson 
and Runge-Kutta) have been utilized in this study. In addition, the 
effects of different approximations of moisture capacity function, 
convergence criteria and time stepping methods were evaluated. Two 
different infiltration problems were solved to investigate the 
performance of different schemes. These problems include of vertical 
water flow in a wet and very dry soils. The numerical solutions of 
two problems were compared using four evaluation criteria and the 
results of comparisons showed that fully implicit scheme is better 
than the other schemes. In addition, utilizing of standard chord slope 
method for approximation of moisture capacity function, automatic 
time stepping method and difference between two successive 
iterations as convergence criterion in the fully implicit scheme can 
lead to better and more reliable results for simulation of fluid 
movement in different unsaturated soils. 
 

Keywords—Finite Difference methods, Richards equation, fully 
implicit, Crank-Nicolson, Runge-Kutta.  

I. INTRODUCTION 
REDICTION of infiltration or fluid movement in the 
unsaturated soils is an important problem in different field 

of science and engineering. One of the most important 
environmental problems is the transfer of the different 
pollutant (e.g. pesticides) from ground surface to groundwater 
through the unsaturated zone. The vertical water flow in 
unsaturated soil is simulated by combination of Darcy’s law 
and mass conservation equation, yielding the Richards 
equation that can be expressed as different forms. Equation (1) 
shows the head based (h-based) form of Richards equation. 

h KC(h) .K(h) h 0
t z
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dh
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moisture capacity, θ [
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] is moisture content, K(h) [
T
L

] is 

unsaturated hydraulic conductivity, t[T] is the time and z[L] is 
the vertical dimension (assumed positive downward). 

Reference [1] compared six finite difference (FD) schemes 
to solve one-dimensional Richards equation. They compared 
the calculated and measured infiltration profiles in a sandy 
soil. Their results showed the close agreement between 
observed water content profiles and those computed with 
different numerical schemes, as well as the close agreement 
among these six schemes indicate that the numerical methods 
are reliable tools for prediction of infiltration of water into the 
soil. In addition, the excellent agreement between the implicit 
approximation and Philip's quasi-analytical solution showed 
that the numerical methods can yield accurate results. 

Reference [2] used fully implicit (Backward Euler) with 
Picard iteration method for solving the h-based form of 
Richards equation. The results showed poor mass balance of 
h-based form. Reference [3] demonstrated that efficient mass 
conservative solution of h-based form of Richards equation 
can be obtained using the appropriate methods for evaluation 
of the moisture capacity function. The h-based form 
employing standard chord slop (SCS) approximation of 
moisture capacity showed excellent mass balance results [3]. 

The objective of this study is to investigate the performance 
of various implicit FD schemes (fully implicit, Crank-
Nicolson and Runge-Kutta) for numerical approximation of h-
based Richards equation. In addition, the effects of various 
convergence criteria, time stepping methods and 
approximations of moisture capacity are evaluated and the 
best FD method for solution of h-based Richards equation is 
determined.  

II. FINITE DIFFERENCE APPROXIMATIONS 
The FD schemes that are discussed in this study are consist 

of fully implicit, Crank-Nicolson (C-N) and Runge-Kutta 
(One step-two stage method). The Pichard linearization 
method is applied for linearization of k and C coefficients.  

 The general discretized form of Richards equation after 
discretization, linearization and simplification can be 
expressed as (2). 
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Where, 1m,1n
ih ++  is the pressure head value in the node i at 

time level n+1 and iteration stage m+1. The coefficients A, B, 
D and E have different expressions in the numerical schemes. 
Tables I and II show the expression of these coefficients for 
different FD schemes. In these tables, the zΔ  is constant 
spacing, tΔ is the time step, m,1n

ik + , m,1n
iC + and m,1n

i
+θ are the 

hydraulic conductivity, moisture capacity and moisture 
content in node i at time level n+1 in iteration stage m. n

ih  is 

the pressure head in node i and at time level n. ∗
ik  and ∗

iC  

are )h(k i
∗  and )h(C i

∗ , respectively which ∗
ih  can be 

calculated by (3): 
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Where, n
ik , n

iC and n
ih are the hydraulic conductivity, 

moisture capacity and pressure head in the node i and at the 
time level n. 

 
TABLE I 

A AND B COEFFICIENTS FOR DIFFERENT SCHEMES  
Scheme A B 

Fully 

implicit 2

m,1n
1i

m,1n
i

z2

kk

Δ

+
−

+
−

+

 +
+

t
C m,1n

i

Δ 2

m,1n
1i

m,1n
i

m,1n
1i

z2
kk2k

Δ

++ +
−

++
+  

Crank-

Nicolson 2

m,1n
1i

m,1n
i

z4
kk

Δ

+
−

+ +
−  +

Δ

+

t
C m,1n

i
2

m,1n
1i

m,1n
i

m,1n
1i

z4
kk2k

Δ

++ +
−

++
+  

Runge-

Kutta 

n 1,m n 1,m
i i 1

2
k k

6 z

+ +
−− +

Δ
 

n 1,m
i

n 1,m n 1,m n 1,m
i 1 i i 1

2

C
t

k 2 k k

6 z

+

+ + +
+ −

+
Δ

+ +

Δ

 

 

A. Approximations of Specific Moisture Capacity  
The approximation of C (specific moisture capacity) can be 

performed by two different methods. The first method is the 
estimation of C by analytical derivation of (h)θ , which is 
named tangent approximation. The second method is standard 
chord slope (SCS) approximation [3]. The SCS method is 
expressed by (5). 
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In this study, the tangent and SCS approximations are 

utilized for approximation of C with various FD schemes and 
the results of tangent and SCS methods are compared. 

 
TABLE II 

D AND E COEFFICIENTS FOR DIFFERENT SCHEMES  
Scheme D E 
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B. Convergence Criterion 
In the iterative methods (e.g. Picard method ), the iterative 

process continues until the difference between the calculated 
pressure heads between two successive iteration levels in each 
node becomes less than a predefined tolerance ( aδ ) as shown 
in (6). 

 
n 1,m 1 n 1,mh h a+ + +− ≤ δ        (6) 
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Although it is true that more accurate solution can be 
obtained with smaller values of tolerance, but the 
computational time increases. aδ is widely varying, for 
instance a 0.01δ = cm adopted for simulation three 
dimensional flow in unsaturated soil using finite element 
scheme [4] but aδ =1cm used for drainage simulation [4]. In 
this study, a 0.1δ =  cm has been adopted.  

The second convergence criterion suggests to use of the 

entire storage term ( n 1,m n 1,m 1 n 1,m
i iC h h+ + + +− ) instead of the 

absolute error ( n 1,m 1 n 1,m
i ih h+ + +− ); therefore the second 

convergence criterion can be expressed as (7). 
 

n 1,m n 1,m 1 n 1,m n 1,m 1 n 1,m
i iC h h+ + + + + + +

θ− = θ − θ ≤ δ    (7) 

 

θδ  has no a distinct value. Reference [5] used of 

0.0001θδ =  and in this study, θδ  is considered equal to 
0.0001. 

The third suggested convergence criterion is the use of an 
empirical convergence criterion, which involves both absolute 
error ( aδ ) and relative error ( rδ ) as presented in (8). 

 
n 1,m 1 n 1,m n 1,m 1h h r h a+ + + + +− ≤ δ + δ       (8) 

 
The adopted values for the relative tolerance ( rδ ) have 

ranged from 0.001 to 0.01, depending upon the desired 
accuracy. In this study, r 0.001δ =  has been adopted. 

The performance of various convergence criteria is 
evaluated for fully implicit and C-N methods but the standard 
tolerance method ( aδ ) has been used for Runge-Kutta 
method.  

C. Time Step 
In the numerical methods, the time step cab be predefined 

which is named constant time stepping. Another approach is 
the automatic time stepping. Equation (9) presents the 
automatic time stepping method. 

 

     If N 3≤  then new old
1t tΔ = μ Δ  

If 3 N 7< <  then new oldt tΔ = Δ     (9) 

If max7 N N≤ ≤  then new old
2t tΔ = μ Δ  

If maxN N<  then 
old

new tt
3

Δ
Δ =  

 
Which N is the iteration number in each stage, maxN is the 

maximum number of iterations that its range is from 10 to 50. 
oldtΔ and newtΔ  are the old and new time step values, 

respectively. 1μ and 2μ  are the constant coefficients and their 
typical ranges are from 1.1 to 1.5 and 0.3 to 0.9, respectively. 

Equation (9) shows that if the number of iterations is small, 
the time step can be increased. In addition, if the number of 
iterations is more than maximum number of iterations, it 
shows that smaller time step is required. 

In this study, the performance of the constant and automatic 
time stepping methods are evaluated for solving the h-based 
form of Richards equation. Also, the values of maxN , 1μ  and 

2μ  are considered to be 30, 1.5 and 0.7, respectively. 

D. Evaluation Criteria 
Four criteria are considered for evaluation of the 

performance of numerical methods. These criteria are Root 
Mean Square Error (RMSE), mass balance conservation, 
number of iterations and execution time. 

References [6] and [7] used RMSE for evaluation of 
numerical methods. Another evaluation method is the ability 
to conserve global mass over the domain of interest (mass 
balance conservation). Adequate conservation of global mass 
is necessary but not sufficient for acceptability of a numerical 
simulator [2]. Mass balance (MB) measurement for 
determination the ability of a scheme for mass conservation 
can be defined as (10) [2]: 

 

domaintheointfluxnettotal
domaintheinmassadditionaltotal)t(MB =      (10) 

 
Where the additional mass is measured with respect to the 

initial mass in the system. For FD approximation with the first 
type boundary conditions, this is calculated as (11) [2]. 

 

∑

∑

=

−
−

−

=

Δ
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+

Δ
−

+⎥
⎦

⎤
⎢
⎣

⎡
+

Δ
−

−

Δ−
=

n

0j

j
2

j
1j

23

j
N

j
1Nj

1N

1N

2i

0
i

n
i

n

t1
z
hhk1

z
hhk

z)(
)t(MB

θθ   (11) 

 

Where 
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= , N is the 

number of nodes, n is the number of time steps, j
Nh  is the 

pressure head in the j-th time step and N-th node, 0
iθ and n

iθ  
are the initial and final values of moisture content in node i, 
respectively.  

III. ILLUSTRATIVE EXAMPLES 
Two different one-dimensional infiltration examples are 

investigated in this study. 
In the first example, a constant pressure head into a vertical 

40 cm column of soil is simulated [1]. A constant pressure 
head of -20.7 cm at the top of the column and a constant 
pressure head of -61.5 cm at the bottom are imposed as 
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boundary conditions and a uniform pressure head of -61.5 cm 
is considered as the initial condition. The saturated and 
residual water content ( sθ  and rθ ) are 0.287 and 0.075, 
respectively. The saturated hydraulic conductivity of the soil 
(ks) is 0.00944 cm/s. The soil hydraulic property functions are 
[1]:  

  

s r
r

( )
(h)

h β

α θ − θ
θ = + θ

α +
       (12) 

 s
AK(h) k

A h γ
=

+
            (13) 

Where γβα andA,, are fitting parameters with the values 

of 74.4and10175.1,96.3,10611.1 66 ×× , respectively.  
Another constant head infiltration in a vertical column of 

very dry soil is considered as the second example. This 
problem was simulated by [2],[7]. The column has a length of 
1 m. The initial condition was set as a constant pressure head 
of -10 m, while the upper and lower boundary values were set 
at -75 cm and -10 m, respectively. The saturated hydraulic 
conductivity is 0.00922 cm/s, and the saturated and residual 
water contents are 0.368 and 0.102, respectively. The Van 
Genuchten equations [8] are used for hydraulic properties of 
unsaturated soil. 

 
s r

rmn
(h)

1 ( h )

θ − θ
θ = + θ

⎡ ⎤+ α⎣ ⎦

        (13) 

{ }2mn 1 n

s m / 2n

1 ( h ) 1 ( h )
K(h) k

1 ( h )

−− ⎡ ⎤− α + α⎣ ⎦
=

⎡ ⎤+ α⎣ ⎦

    (14)  

 
Which α , n and m are fitting parameters, with the values 

of 0.0335, 2.0 and 0.5, respectively. 
The examples 1 and 2 are infiltration into the initially 

relatively wet and very dry soils, respectively. 

IV. RESULTS AND DISCUSSIONS 
In this study, all of the numerical codes have been written 

by MATLAB 6.0 software and executed on a Pentium-III, 
1000 MHz system. 

The example 1 was solved by different numerical schemes 
as 40 cm column with vertical grid spacing of 1z =Δ  cm and 
elapsed time of 360 s.  

The example 2 was solved by different numerical schemes 
as 1 m column of soil with vertical grid spacing of 5.2z =Δ  
cm and elapsed time of 86400 s. Numerical solutions of two 
examples with very dense grid spacing were considered as the 
exact solutions for determination of RMSE of numerical 
schemes. 

Tables III and IV show the results of numerical solution of 

examples 1 and 2 by fully implicit scheme, respectively. The 
results show poor mass balance when the tangent method is 
used for approximation of moisture capacity. Reference [2] 
reported similar findings. The comparison between the tangent 
and SCS approximations of moisture capacity shows that SCS 
approximation can improve the mass balance and RMSE 
values, however its execution time is more than tangent 
method. Similar findings have been reported by [3]. Table IV 
shows that SCS approximation has better convergence than 
tangent approximation. Fig. 1 shows the numerical solutions 
of two examples using SCS approximation. The results of 
numerical solution using different time stepping and 
convergence criteria show that automatic time stepping with 

θδ  as convergence criterion can generally lead to better 
numerical results. 

According to the numerical results, it is easy to judge that 
fully implicit scheme with SCS approximation, automatic time 
stepping and θδ  as convergence criterion can achieve to 
reliable results. 

Numerical solutions of h-based Richards equation by C-N 
scheme with constant time stepping often did not converge for 
the tandz ΔΔ  values, presented in Tables III and IV. For 

instance, in the examples 1 ( Δ z=1.0) and 2 ( Δ z=2.5), the C-
N scheme with tangent approximation and aδ as convergence 
criterion can converges when the Δ t is less than 1.6 and 5 s, 
respectively. However, C-N scheme with automatic time 
stepping method showed better convergence than constant 
time stepping method.  

The results of numerical solution by Runge-Kutta scheme 
showed worse results than C-N scheme.  

These results demonstrate that the fully implicit scheme is 
better and more reliable than C-N and Runge-Kutta schemes.  

V. CONCLUSION 
Among the different numerical schemes (Fully implicit, 

Crank-Nicolson and Runge-Kutta schemes), the fully implicit 
scheme is better than other schemes for numerical solution of 
h-based Richards equation. In addition, Utilizing of SCS 
approximation of moisture capacity, automatic time stepping 
and θδ  as convergence criterion in the fully implicit scheme 
can improve the performance of the scheme. 

C-N scheme is better than Runge-Kutta for solution of h-
based Richards equation. 
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TABLE III 

RESULTS OF NUMERICAL SOLUTION OF EXAMPLE 1 USING FULLY IMPLICIT SCHEME (ELAPSED TIME=360 S AND Δ Z=1 CM), C AND A ARE CONSTANT AND 
AUTOMATIC TIME STEPPING METHODS 

 MB RMSE Iteration Number Time of CPU (s) 

tΔ  tΔ  tΔ  tΔ  
 

Time 

Stepping 

Method 

Convergence 

criterion 10 30 120 10 30 120 10 30 120 10 30 120 

C aδ  0.92 0.87 0.81 0.06 0.27 0.53 173 104 54 0.99 0.61 0.27 

θδ
 

0.94 0.91 0.87 0.07 0.10 0.51 330 205 122 1.7 1.04 0.66 Tangent 
A 

aδ  & rδ  0.89 0.87 0.85 0.17 0.28 0.21 63 55 42 0.33 0.28 0.22 

SCS C aδ  1 1 1 0.09 0.15 0.37 175 105 58 1.1 0.7 0.4 

 
TABLE IV 

RESULTS OF NUMERICAL SOLUTION OF EXAMPLE 2 USING FULLY IMPLICIT SCHEME (ELAPSED TIME=86400 S AND Δ Z=1 CM) 
 MB RMSE Iteration Number Time of CPU (s) 

tΔ  tΔ  tΔ  tΔ  
 

Time 

Stepping 

Method 

Convergence 

criterion 20 144 720 3600 20 144 720 3600 20 144 720 3600 20 144 720 3600 

C aδ  0.98 - 0.83 0.6 15.8 - 7.7 56.0 9135 - 856 579 41.9 - 3.9 2.7 

θδ
 

0.95 0.95 0.95 0.95 3.9 4.0 3.5 3.9 819 824 837 822 3.84 3.79 3.9 3.8 Tangent 
A 

aδ  & rδ  0.87 0.88 0.8 0.68 29.9 23.3 28.5 33.9 322 327 273 244 1.48 1.54 1.27 1.15 

SCS C aδ  1 1 1 1 16.9 16.7 16.7 21.2 9709 1977 757 491 54.8 11.5 4.3 2.8 

 
                 (a)                 (b) 

Fig. 1 Results of numerical solutions by fully implicit scheme with SCS approximation, a: example 1 (Elapsed time=360 s and Δ Z=1 cm), b: 
example 2 (Elapsed time=86400 s and Δ Z=2.5 cm) 


