
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:11, 2011

1303

Abstract—IMCS is Integrated Monitoring and Control System for

thermal power plant. This system consists of mainly two parts;

controllers and OIS (Operator Interface System). These two parts are

connected by Ethernet-based communication. The controller side of

communication is managed by CNet module and OIS side is managed

by data server of OIS. CNet module sends the data of controller to data

server and receives commend data from data server. To minimizes or

balance the load of data server, this module buffers data created by

controller at every cycle and send buffered data to data server on

request of data server. For multiple data server, this module manages

the connection line with each data server and response for each request

from multiple data server. CNet module is included in each controller

of redundant system. When controller fail-over happens on redundant

system, this module can provide data of controller to data sever

without loss. This paper presents three main features – separation of

get task, usage of ring buffer and monitoring communication status –

of CNet module to carry out these functions.

Keywords—Ethernet communication, DCS, power plant, ring

buffer, data integrity

I. INTRODUCTION

HIS paper describes Ethernet communication method for

IMCS(Integrated Monitoring and Control System for

thermal power plant). CNet module (Ethernet communication

module of IMCS) is designed to exchange data between

controller of IMCS and OIS. CNet module gathers and stores

data result of logic execution. When data server of OIS sends

data request message, CNet module sends stored data. Also,

CNet module receives control command from OIS for the

controller.

To exchange data, the most important thing is data integrity.

To guarantee data integrity on any situation, CNet module

separates Get-task that buffers and manages data from the other

tasks. Get-task synchronizes with logic performing period and

grabs every data. CNet module uses and manages ring buffers

to store every data without any loss. Also, CNet module

monitors every opened communication line and socket.

In this paper, design concepts of CNet module and details for

ensuring efficient data exchange are described.

II. ETHERNET COMMUNICATION CONCEPT OF IMCS

Ethernet communication method is used in data exchange

between controllers and OIS [1]. On the side of a controller,

CNet module is responsible for data communication. On the

other side – OIS – data server is responsible for data

communication with CNet module. A network between

Youkyung Park is with Doosan Heavy Industries and Construction,

Deajeon, Republic of KOREA (phone: +82-42-712-2211; fax:

+82-42-712--2230; e-mail: youkyung.park@ doosan.com).
SeungYup Kang, SungHo Kim and SimKyun Yook are with Doosan Heavy

Industries and Construction, Daejeon, Republic of KOREA
Manuscript received October 31, 2011.

controllers and data servers refers to CNet (Control Network)

and another network between data servers and HMI (Human

Man Interface) refers to OIS Net. All Ethernet networks are

duplicated in a way of cold sparing standby [3]. So if there is

any problem in a primary network, other normal network takes

primary-ship.

Each controller and data server is redundant by duplicated or

TMR (Triple Modular Redundancy) depending on situations

[2]. The method of redundant is a way of hot sparing standby. If

there is any problem on a master controller then a fail-safe

happens.

A data server stores acquired data from CNet module, sends

a control command from HMI to CNet module, shows real-time

trend on HMI screen and preserves data to historian data server

without redundancy. A communication module of data server

refers to Gateway. In other words, Ethernet communication of

CNet on IMCS is performed between CNet modules and

Gateway. The HMI real-time trend is represented by data from

data server. When user wants to check past data, data server

will access the historian data server.

Fig. 1 Ethernet communication concept of IMCS

III. CHARACTERISTICS OF CNET

CNet module is designed to meet these conditions; does not

miss any important data, makes minimum load of each module

and uses network efficiently.

A. Request & Reply

To exchange data within Ethernet communication, a method

of Request and Reply is accepted. The method is that a

controller stores every created data from result of logic

execution and sends the data when Gateway requests data.

Youkyung Park, SeungYup Kang, SungHo Kim and SimKyun Yook

CNet Module Design of IMCS

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:11, 2011

1304

Master

Server

Master

Controller

General

Data

Response

General

Data

Request

Slave

Controller

Is Not

Master

General

Data

Request

If the controller sends data to Gateway unilaterally, the load

of Gateway will be increase. However, request and reply

algorithm does not increase unnecessarily loads on the data

server, so the result has the advantage of facilitating data

communications.

Gateway of every data server sends data request messages to

every controller which is connected with the Gateway. When

the data request messages reach to CNet module, CNet module

once judge whether the controller is master or slave. If the

controller is master, CNet module sends all stored data to

Gateway. Or if the controller is slave, CNet module does not

send stored data but sends an ‘IsNotMaster’ message as

response. Gateway just ignores the IsNotMaster message,

without taking additional actions cause of a status of controllers

– a master or a slave. In this case, data exchange process is able

to be standardized that Gateway performs same task, regardless

of the controller switching.

Fig. 2 Structure of Request and Reply

B. Support for Hot Standby of Gateway

On a data communication between CNet module and

Gateway, the initially design sets for only a master Gateway to

send data request messages to the CNet module. In this case, the

Gateway which is switching to a new master has no previous

data. As a result, a real-time trend showing is impossible as well

as there is a possibility of losing data when switching of

Gateway. To fix this problem, change standby sparing way of

Gateway from cold standby sparing (one of Gateway is active

and the other is idle) to hot standby sparing (every Gateway are

active and one of them send data to HMI)[3].

Duplicated Gateway send data request messages to CNet

modules which are connected to the Gateway, regardless of the

state which is a master or a slave. CNet module receives the

data request message from all Gateways and transmits data in

the predefined form, depending on the state of a controller –

master or slave. Each server that receives data stores the data in

the internal DB and master servers communicate with the upper

OIS. As such, regardless of the status of Gateway and

controllers, Gateway performs the same role and is

standardized.

C. Master/ Slave Change of controllers

In general, general data is generated from controller by the

unit of kB (kByte) and saved changed at every 100msec (milli

– second). Therefore, to prevent the loss of these general data,

data buffer set of the GB (giga byte) unit in size. Modern

technology, there is no problem to support these buffer

capacity. Just a data server communicates with multiple

controllers and handles many data in a short time. So when the

data server receives large data in a short time, the processing to

store DB (data base) can experience an increase in load. In

addition, when fail-over of controller happens, Gateway

receives from new-master controller same data that had

previously received from past-master controller and eventually

it leads to unnecessary increased load on the network.

In order to efficient utilization of servers and network, it is

designed to change a buffer size depending on the state of

controller – master or slave. When a controller is master mode,

CNet module sets data buffer size normally, and when the

controller is slave mode, CNet module sets data buffer size

smaller than buffer size of the master-mode. As like this, even if

the fail-over of controller happens, it does not happen for

Gateway to receive suddenly huge and ruinous data. The buffer

size of the slave-mode controller is set as well as it can hold

created data during fail-over of controllers, so a possibility of

any data loss is avoided.

D. Kinds of CNet Data

There are 3 kinds of data in CNet module: general data, SOE

(Sequence Of Event) data and diagnostic data. General data is

associated with a logic execution of controller, saved in general

data ring buffer of CNet module and sent to Gateway when

Gateway requests the general data. SOE data is pre-set to 1ms

resolution to save on EWS. A number of SOE is smaller than a

number of general data. The SOE data is gathered from each IO

board and saved in a ring buffer and sent to Gateway when

Gateway requests SOE data. The diagnostic data is a collection

of status and diagnostic information for each board of

controller. For the diagnostic data, CNet module sends the data

when Gateway requests diagnostic data without buffering.

CNet module classified data into three categories depending on

characteristics of data so increases an efficiency data

communication.

TABLE I

KIND OF DATA FOR CNET MODULE

Name of data
PERIOD OF

BUFFERING
Description

General data multiple of logic

period
(decision on

configuration)

Input and output data related to

control logic
Digital data and analog data

Input data and output data

Classified according to the size of
the data

SOE data Basic logic time

Specified and classified by EWS

Diagnostic data N/A Specified and classified data by

EWS to diagnostic data

General data and SOE data is gathered and stored in

Get-task. General data is handled in a digital and an analog

type. General data is obtained according to the data acquisition

cycle in the EWS configuration and SOE data is obtained

depending on the period of basic logic cycle.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:11, 2011

1305

In general data, the data sent from OIS typically referred to

as control commands. When CNet module receives a control

command, CNet module applies the control command

immediately in OIS memory to recognize for logic. After

applying the control command, CNet module sends an ACK

message to Gateway in order to verify whether the applying

process of a control command is well or not. Because CNet

module sends all data of buffer to Gateway, user can check

changed data by applying the control command. Therefore

other check message according to apply the control command

are designed not to generate.

IV. SEPARATE GET-TASK

In CNet module, on the initial design, data gathering and

communication with Gateway are treated in one task. However

in the result of this design approach, if there is any problem in

the task then the task can’t handle communication too.

Therefore, there is a possibility of data loss – during that

fail-over time, the data may be missing. To avoid this situation,

Get-task is separated from the task of CNet module and

performed the end of logic execution.

Tasks of CNet module are separated in 4 kinds in order to

manage effective CNet module. As a result, any other problem

in one task does not affect other task. Fig. 3 shows to overview

of CNet module action and describes Get-task and Comm-task.

Data which are created and managed from controller are saved

to an OIS memory. Get-task is called after logic executing,

gathers data from OIS memory and saves data to data ring

buffer of CNet module. Comm-task charges of communication

with Gateway. Comm-task is designed to receive messages

from every Gateway and analyze the messages in turn. If the

analyzed message is data request message then Comm-task

accesses to the data ring buffer and sends every data to Gateway

which requests the data.

Fig. 3 Outline of managing data of CNet

Because Comm-task and Get-task can access to the data ring

buffer at the same time, a binary semaphore is set for the ring

buffer. As a result of using the semaphore, during one task

access to the ring buffer, the other task wait that the semaphore

free as a result of ending access by the task. It is blocked that

different task access the same ring buffer at the same time, so

the possibility of errors for data is blocked.

V. RING BUFFER

The basic communication concept of CNet module is the

request and reply way. The communication way has a problem

that it is possible to miss data when data buffer is not enough

large or Gateway doesn’t request message during some time by

any reason. And also, insertions and extractions of data are

repeated frequently. If the data buffer is overflow unavoidably,

the most recent occurred data have a higher priority than

existing data. In order to use limited resource and grab every

created data without loss, a concept of ring buffer is accepted.

A. Concept of ring buffer

A ring buffer uses a continuous memory capacity physically

but works in a donut-shaped circle conceptually. On the data

characteristics of CNet module, in order to avoid infringing the

original algorithm that copies the memory by data header, a

‘null pointer’ is devised to point a memory area which does not

use in especial case.

Fig.4 is shows a concept of ring buffer managing. There is a

ring buffer manager that saves pointers which point specific

locations of the ring buffer. As like the Fig.4, for an example,

there is a memory buffer that can save 20 data. And at one time,

7 data are created, gathered and saved. At the first, number 1

shows that 7 data is saved in the memory buffer. When

Gateway sends data request message, CNet module sends to

Gateway all data in the ring buffer. And then, 7 data is created

again. At that time, the ring buffer manager saved a last address

which is sent to Gateway last time, and saves data from the next

address which is saved. As a result, a status of the ring buffer is

as like as number 3 of Fig.4. And then the ring buffer manager

sends data to Gateway and gets data again, the ring buffer is

structured as like number 5 of Fig.4.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:11, 2011

1306

Fig. 4 Example of ring buffer

As like this, the ring buffer uses a continuous buffer memory,

while conceptually it is consists of a circular buffer

configuration as like data rotate. By using the ring buffer, there

are following advantages. It can make efficient use of limited

memory capacity. It also can overwrite when a ring buffer is

full and support hot standby sparing structure of Gateway.

The ring buffer has a shortcoming. The ring buffer manager

cannot determine whether the ring buffer is empty or full by

using current pointers.

To compensate for this disadvantage, a ring buffer operation

of CNet avoids a full state of the ring buffer its own. In other

words, before inserting the data into the ring buffer, CNet

module calculates a buffer size required in advance that newly

be created and stored in the ring buffer by controllers.

For instance, a ring buffer of Fig.5 is conceptually drawn an

operation of Fig.4. Number 2 of Fig.5 is showing that 14 data is

in the ring buffer whose capacity is 20 data. Now, when 7 data

is gathered, the ring buffer manager is aware that the ring buffer

will be overflow so makes room of the ring buffer to be entered

8 data which is added one to 7 data to be stored as be shown in

number 3 of Fig.5. After that, as like as number 4 of Fig.5, 7

data is inserted in the ring buffer.

Fig. 5 concept of ring buffer

For efficient and smooth operation of the ring buffer, a ring

buffer manager has five kinds of pointers. First pointer refers to

the first memory address of the actual memory buffer. Second

pointer refers to the last memory address of the buffer. Third

pointer refers to the start address of data which is saved in the

ring buffer and Fourth pointer refers to the end address of data

which is saved in the buffer. And the last pointer refers to an

unused portion address on managing the ring buffer. When data

are sent to Gateway, the ring buffer manager determines a

structure of the ring buffer and copies data to a send buffer.

By the management of the ring buffer, the newly generated

data is added to the ring buffer and the data is removed from the

ring buffer as many as transmitted data. It can use limited

memory of controllers effectively and prevent data loss.

B. Ring buffer in CNet

The initial design of a ring buffer is implemented to

accommodate only one Gateway. In order to support hot

standby sparing of the data servers, a ring buffer manager has

been fixed to act as buffers more than 2, conceptually, as shown

in Fig.6.

Let’s be assumed that a ring buffer is set at some point. It

behaved as if it were two ring buffers, but is actually part of the

same area of memory. The outside of the ring buffer

corresponds to a Gateway-1 and the inside of the ring buffer

corresponds to a Gateway-2. A ring buffer which refers to

F
F

FFFF
F
F

FF

F
F

F
F
FF

2
3

FF

F
F

FF

F
F

F
F
FF

2
38

9

FF

F
F

1
2
13

2
38

9
FF

F
F

1
2
13

2
38

9

18

1
9

1
2
13

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:11, 2011

1307

Gateway-1 has data from 3 to 17 and a ring buffer which refers

to Gateway-2 has data from 7 to 17. When data request message

receives from Gateway-1, the ring buffer manager sends all

data which corresponds to Gateway-1. Therefore after it sends

data, the ring buffer for Gateway-1 is empty. Now, 7 data is

created and get, so the ring buffer consists like number 3 of

Fig.6. And at that time, if Gatewya-2 sends data request

message to CNet module then the ring buffer manager sends all

data from the ring buffer which refers to Gateway-2 as like as

the case of Gateway-1.

As such, by operation of a ring buffer manager, a ring buffer

manager can respond to multiple data servers on the same

memory and it is guaranteed that data transmitted to each data

server is identical.

Fig. 6 ring buffer on hot standby sparing for data server

C. SOE data

SOE data is used to judge reasons of a failure or review a

series of operations of controllers. Therefore, it should be

secured that the integrity of SOE data has higher priority than

general data. It is designed that SOE data is saved in temporary

buffer for each data server before CNet module sends SOE data

to Gateway, and the temporary buffer is cleaned after receiving

response message that sent SOE data are received well by

Gateway. If after sending SOE data, acknowledge message

does not arrive and SOE data request message from same

Gateway is received, CNet module sends SOE data previously

sent to the Gateway. It can prevent from occurring loss of SOE

data in advance.

A number of data to be transferred at one time is calculated

by considering a number of occurred data. Because if huge SOE

data are generated in a short time then it can give excessive load

on the network, the number of data that can be transmitted at

one time is limited by limiting the temporary buffer size.

In general data, recent data has a higher priority and

overwrites buffer when buffer is full, by contrast, in case of

SOE data, previous-generation data has a high priority than

recent data, as a result, recent data is deleted inevitably when

the SOE ring buffer is full. However, if the controller is slave

then SOE data is also overwritten because the SOE ring buffer

of the slave mode controller has a role not sending but saving.

The buffer location of storing General data or SOE data is

different but a way of management for the ring buffer and

sending to Gateway is basically same. While a master-mode

controller responds to a request message from Gateway, a

slave-mode controller does not respond to the request message

but just get and store data.

Fig. 7 Ring buffer for SOE data

VI. MONITORING THE STATUS OF COMMUNICATION

CNet module monitors whether ring buffers overflow,

whether Gateway normally sends request messages in given

period and status of duplicated communication network. And

during this diagnostic information, CNet module generates an

error message or a fail message in order of previously set

importance.

In addition, an ability to monitor a status of current

communication is required to perform normal data

communication without any loss of data. For this, CNet raises

Heart-beat signals and performs surveillance on every

established socket.

If CNet module determines that an error occurs in a

controller and the controller can’t do normal function, CNet

module sets the fail-over signal to the controller is switching.

A. Diagnostic data

Unlike general data, in case of diagnostic data, all controllers

send diagnostic data regardless of the state – master or slave –

because each controller has different kinds of diagnostic data

which is collected from those belonging boards to the controller

and there are necessary diagnostic data even if the controller is

slave.

Because main objective of diagnostic data is monitoring a

current health at this point, CNet module does not buffer as like

general data or SOE data but just collect data from OIS memory

and send the data when diagnostic data request message is

received.

B. Heart-beat signal

In the basic design of CNet module, Heart-beat-task is

operated by independent task in order not to be affected by

3

3

47
8

14 18

47

8

14
18

3

3

47
8

14 18

47

8

14
18

26

26

277
8

14 21

277

8

14
21

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:11, 2011

1308

other tasks. Heart-beat-task creates sockets as much as a

number of possible networks and broadcasts heart-beat signals

through the sockets for each network

Gateway creates sockets for broadcasting and receives the

heart-beat signals from controllers which are connected with

Gateway. Gateway analyzes the heat-beat signal, extracts

CtrlID (ID of the controller) from the signal and attempts to

connect to the controller. If Gateway does not receive any

heart-beat signals over the network, then Gateway determines

that the network has a failure and switches the communication

network. And if duplicated communication networks are not

normal then data server is switched.

CNet module creates a broadcasting message receiving

socket and analyzes received heart-beat signals to judge

whether communication lines are healthy or not. CNet module

ignores the heart-beat signals generated itself. When CNet

module receives no heart-beat signal from other controllers,

then determines that the network has some error.

Through these operations, Heart-beat-task judges a

soundness of each communication network and provide a

starting point for Gateway to communicate with the controller

through a sound network. Also, it offers a clue for

Diagnostic-task to detect error of the controller and be switched

to a healthy controller.

.

Fig. 8 Follow chart of Heart-beat-task

C. Checking the opened sockets

In CNet communication, the subject of connecting to

controllers, maintaining the connections and reconnecting

when a connection is expired is Gateway. In past, even if the

network is fine, cause of other, for example error on Gateway, it

is possible that communication is not done normally. To solve

this problem, one task is needed to monitor created and

connected sockets – Socket-check-task.

In Comm-task, last step of Comm-task is sending ‘socket

check message’ to every established socket. Gateway which

manages these sockets responds immediately after receives this

message. Socket-check-task receives this response message

and analyzes. If any response messages are not arrived during

the amount of time, Socket-check-task determines that the

socket is abnormal and closes the socket. If a controller closes a

socket then Gateway which is connected the controller through

the socket recognizes the socket has been closed. And if

network and Gateway is normal, Gateway attempts a

reconnection to the controller.

Thus, Socket-check-task determines the health of each

established socket and controls it. It provides for Gateway to

determine and for Diag-task to recognize and set a fail-over

signal when socket has an error.

Fig. 9 follow chart of socket check task

VII. CONCLUSION

CNet module of IMCS operates separated 4 kinds of task by

multi-tasking and manages buffers which contains 2 ring

buffers, efficiently and effectively. There is no data loss

because Get-task synchronizes with period of logic execution.

Of course, even if the controller fail-over happens or network is

abnormal, CNet module grabs every data from the controller

and sends to Gateway. In addition, CNet module minimizes the

load of data server and communication lines.

It is designed for the user to control a plant reliably and

efficiently, and if it is necessary, analyze the data stably and

systematically.

ACKNOWLEDGMENT

This work has supported by the Power Generation &

Electricity Delivery of the Korea Institute of Energy

Technology Evaluation and Planning (KETEP) grant funded by

the Korea government Ministry of Knowledge Economy.

(No.R-2007-1-004-02)

REFERENCES

[1] Standard of IEEE802.3
[2] Youkyung Park, “CNet protocol”, Doosan heavy industries and

constructions co., Ltd, March 2008.

[3] Bary W. Johnson, “Design and Analysis of Fault-Tolerant Digital
System”, Addison-Wesley Publishing Company, 1989.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:11, 2011

1309

Youkyung Park was born in Republic of KOREA at
1981. Ms. Park was graduated of KOREA University

(Seoul, Republic of KOREA) at 2005 and took the

master degree of electric engineering from KOREA
University (Seoul, Republic of KOREA) at 2007. Ms.

Park published a paper – “A proposal of Voltage

Stability Analysis Using Database System” at 2006 and
got the best paper award in CICS 2010 by a paper –

“Ethernet communication module design”. Ms. Park

has been with “Doosan Heavy Industries and Constructions Company” on
Daejeon, Republic of KOREA, since 2007. Now Ms. Park is ASSISTANT

MANAGER of “I&C Research Team” and researches communication design

of DCS.

SeungYup Kang was graduated of HONGIK

University and took the master degree of computer
science from HONGIK University (Seoul, Republic of

KOREA). Mr.Kang has been with “Doosan Heavy

Industries and Constructions Company” on Daejeon ,
Republic of KOREA since 2004. Mr.Kang is STAFF
R&PD ENGINEER of “I&C Research Team”.

SungHo Kim was graduated of KYUNGPOOK
National University (Daegu, Republic of KOREA).

Mr.Kim has been with “Doosan Heavy Industries and
Constructions Company” on Daejeon , Republic of

KOREA since 1994. Mr.Kim is STAFF R&PD

ENGINEER of “I&C Research Team”.

SimKyun Yook received Ph.D. in mechanical
engineering from KYUNGPOOK National University

(Daegu, Republic of KOREA). Mr.Yook has been with

“Doosan Heavy Industries and Constructions
Company” on Daejeon , Republic of KOREA since

1993. Mr.Yook is TEAM-LEADER of “I&C Research

Team”.

