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Abstract—Neighborhood Rough Sets (NRS) has been proven to 

be an efficient tool for heterogeneous attribute reduction. However, 
most of researches are focused on dealing with complete and noiseless 
data. Factually, most of the information systems are noisy, namely, 
filled with incomplete data and inconsistent data. In this paper, we 
introduce a generalized neighborhood rough sets model, called 
VPTNRS, to deal with the problem of heterogeneous attribute 
reduction in noisy system. We generalize classical NRS model with 
tolerance neighborhood relation and the probabilistic theory. 
Furthermore, we use the neighborhood dependency to evaluate the 
significance of a subset of heterogeneous attributes and construct a 
forward greedy algorithm for attribute reduction based on it. 
Experimental results show that the model is efficient to deal with noisy 
data. 
 

Keywords—attribute reduction, incomplete data, inconsistent data, 
tolerance neighborhood relation, rough sets 

I. INTRODUCTION 
OUGH set theory, proposed by Pawlak [1], has been proven 
to be an efficient tool for feature selection, rule extraction 

and knowledge discovery from uncertain information. The 
basic idea of rough set theory is to classify objects of discourse, 
contained in a finite universeU , into equivalence classes with 
respect to some attributes. The objects in each class are 
indiscernible, and this indiscernible relation induces a partition 
of the universe into some blocks, called knowledge granules or 
elemental concepts. Any attribute of attribute set P can induce a 
partition PΠ of the universe. An arbitrary subset X of the 

universeU can be approximated by two sets ( ) ( ){ },P X P X , 

called the lower approximation and the upper approximation, 
respectively. If ( ) ( )P X P X= , we say that X can be precisely 

approximated by knowledge PΠ , and the set is called a 
definable set; otherwise, we say X is a rough set. The 
approximation ability of an information system depends on the 
knowledge PΠ , the finer PΠ is, the more accurately objects can 
be approximated. This way of processing is consistent with the 
cognition of human. 
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As the classical rough sets model can just be used to evaluate 
categorical attributes, Hu generalized the classical model with 
neighborhood relations and proposed a neighborhood rough 
sets model [8]. This model can deal with the problems of 
heterogeneous attribute reduction, namely, categorical attribute 
and numerical attribute. As this research is mainly focused on 
the problem of heterogeneous attribute, the noise-tolerant 
ability, which is important in real world, is not strong. 

In this paper, we propose a noise-tolerant neighborhood 
rough sets model by generalizing existing NRS model with a 
tolerance neighborhood relation and the probabilistic theory. 
The proposed model can induce a family of much more 
comprehensive information granules to characterize arbitrary 
concepts in complex universe. The properties of the model are 
discussed and some important theorems are also introduced and 
proven. Furthermore, we use the neighborhood dependency to 
evaluate the significance of a subset of heterogeneous attributes 
and construct a forward greedy algorithm for attribute 
reduction based on it. We compare the model with two popular 
noise-tolerant rough sets model, i.e. VQRS and fuzzy VPRS. 
Numerical experiments are presented and experimental results 
show that the proposed model is efficient to deal with noisy 
data.  

II. NEIGHBOR THEORY 
Neighbor theory proposed by T.Y. Lin in 1990 has been an 

important tool for many artificial intelligence tasks [4]. Yao 
and Wu extended the theory in 1998 and 2002 respectively [5], 
[6]. In this section, we review some knowledge of neighbor 
theory. 

Definition 2.1: U is a non-empty finite set of objects, Δ is a 
given function. We say ( ),NAS U= Δ is a neighbor 
approximation space where: 

1). ( ) ( )1 2 1 2, 0, , 0x x x xΔ ≥ Δ = , if and only 

if 1 2 1 2, ,x x x x U= ∀ ∈  

2). ( ) ( )1 2 2 1 1 2, , , ,x x x x x x UΔ = Δ ∀ ∈  

3). ( ) ( ) ( )1 3 1 2 2 3 1 2 3, , , , , ,x x x x x x x x x UΔ ≤ Δ + Δ ∀ ∈  
We say Δ is the distance function in this neighbor 

approximation space. 
A suitable distance function is the key to a successful 

application of neighbor theory. Here, two useful distance 
function, Euclidean distance function and Minkowski distance 
function are reviewed. 
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Definition 2.2: Given two points 
{ }1 2, , ,i i i nix x x x= L and { }1 2, , ,j j j njx x x x= L in N-dimensions 

Euclidean space, the distance of them can be computed as: 

( ) ( )
1
22

1

,
n

i j ki kj
k

x x x x
=

⎛ ⎞Δ = −⎜ ⎟
⎝ ⎠
∑  

Generally, Minkowski distance function is defined as: 

( ) ( )
1

1
,

n PP

P i j li lj
l

x x x x
=

⎛ ⎞
Δ = −⎜ ⎟

⎝ ⎠
∑  

To construct a neighborhood rough sets model for universe 
granulation on the numerical attribute, Hu proposed 
aδ neighbor [8]. 

Definition 2.3: Given a neighbor space ( ),U Δ , 

, 0x U δ∀ ∈ ≥ , we say ( )xδ is aδ neighbor of x whose centre 
is x and radius isδ , where: 
 ( ) ( ){ }, ,x y x y y Uδ δ= Δ ≤ ∈  (1) 

Given 1 2,A A A⊂ , represent numerical attribute set and 
nominal attribute set respectively. Theδ neighbor of x is 
defined as: 

1). ( ) ( ){ }1 1
, ,B Bx y x y y Uδ δ= Δ ≤ ∈  

2). ( ) ( ){ }2 2
, 0,B Bx y x y y Uδ = Δ = ∈  

3). ( ) ( ) ( ){ }1 2 1 2
, , 0,B B B Bx y x y x y y Uδ δ∪ = Δ ≤ ∧ Δ = ∈  

III. A TOLERANCE NEIGHBORHOOD RELATION AND A DISTANCE 
FUNCTION 

In this section, we introduce a tolerance relation to neighbor 
theory to construct a new approximation relation. The relation 
can handle the incomplete data. 

A. Incomplete information system and tolerance relation 
Information system is an important knowledge 

representation tool in rough sets. It can be defined as follows: 
Definition 2.4: An information system is a pair ( ),IS U A= , 

where 
1). U is a non-empty finite set of objects; 
2). A is a non-empty finite set of attributes; 
3). For every a A∈ , there is a mapping : aa U V→ , 

where aV is called the value set of a . 
If aV contains a null value for at least one attribute a A∈ , 

then IS is called an incomplete information system, otherwise it 
is complete. Furthermore, we will denote the null value by∗ . 

Let ( ),IS U A= is an information system, P A⊆ is an 
attribute set. Literature [5] defines a binary relation onU as 
follows: 

 

( ) ( ) ( ) ( ){ }, , = y     SIM P x y U U a P a x a or x or y= ∈ × ∀ ∈ =∗ = ∗

(2) 

The expression ( )SIM P is a tolerance relation onU . We can 

easily find that ( ) { }( )a ASIM P SIM a∈= I . Let ( )PS x denote 

the set ( ) ( ){ },y U x y SIM P∈ ∈ . It induces a covering 

of U and it’s easy to get ( )PS x ≠ ∅ for every x U∈ , 

and ( )x U PS x U∈ =U . This work can be found in [2]. 

B. A distance function 
To deal with categorical attribute, numerical attribute and 

set-valued attribute by neighbor theory at one time, we 
construct a new distance function TΔ with tolerance ability. 

 ( ) ( )2

1
, ,

l

N
T

a
l

x y d x y
=

Δ = ∑  (3) 

( )
( )

( )

_ ,       attribute l is nominal 

,                                   or set-valued
_ ,       attribute l is numerical

l

l

l

a

a

a

nom diff x y

d x y
num diff x y

⎧
⎪

= ⎨
⎪
⎩

(4) 

Meanwhile, ( )_ ,
lanom diff x y and ( )_ ,

lanum diff x y are 

defined as follows. 

 ( )
0         

_ ,
1     la

if x y or x or y
nom diff x y

if x y
= = ∗ = ∗⎧

= ⎨ ≠⎩
 (5) 

( )
( ) ( )

0                                    
_ ,

        
max min

l l la

l l

if x or y
x ynum diff x y

if x and y
a a

= ∗ = ∗⎧
⎪ −= ⎨ ≠ ∗ ≠ ∗⎪ −⎩

(6) 
Especially, ( ), 0T x xΔ = . 

C. Five Rules for Consolidation 
Based on the tolerance relation and distance function, we can 

improve the δ neighbor to a new neighbor with tolerance 
ability. 

Definition 2.5: A neighborhood information system is a 
triple ( ), ,NIS U A= Δ , where U is a non-empty finite set of 
objects; A is a non-empty finite set of attributes; Δ represents 
distance function in A ; A and Δ form a family of neighborhood 
relation onU . 

If there is null value for at least one object a in each 
attributes, NIS is called an incomplete neighborhood 
information system, otherwise it is complete. Similarly, we 
denote the null value by∗ . 

Definition 2.6: Given a neighborhood information 
system ( ), ,NIS U A= Δ , TΔ = Δ , threshold 0δ ≥ , we can 
define a binary relation onU , called tolerance neighborhood 
relation, as follows: 
 ( ) ( ) ( ){ }, , ,T

N aSIM P x y a P x yδ δ= ∀ ∈ Δ ≤  (7) 

We can easily find that ( )NSIM Pδ is reflexive and 
symmetrical, but it’s not transitive. It induces a covering onU . 
We define the information granules induced by ( )NSIM Pδ as 
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 ( ) ( ) ( ){ }, ,P NSN x y x y SIM P y Uδ δ= ∈ ∈  (8) 

Properties 2.1: Given a tolerance neighborhood 
relation ( )NSIM Pδ on neighborhood information 

system ( ), ,NIS U A= Δ , P A⊆ , it includes some properties as 
follows: 

1). ( ) { }( )N a P NSIM P SIM aδ δ
∈= I  

2). ( )PSN xδ ≠ ∅ , because ( )x xδ∈  

3). ( ), x U Px U SN x Uδ
∈∀ ∈ =U  

The proof procedures are omitted because it’s obvious. 
Furthermore, we can represent the neighborhood relation by 

a matrix as ( ) ( )ij n n
M N r

×
= , ijr  represents the neighborhood 

relation of ix and jx . If ( ) , 1, , 0j P ij ijx SN x r otherwise rδ∈ = =  
Theorem 2.1: Given a neighborhood information 

system ( ), ,NIS U A= Δ and threshold δ , 1 2,B B C⊆ , 

if 1 2B B⊆ , then ( ) ( )
2 1

, B Bx U SN x SN xδ δ∀ ∈ ⊆ . 

Proof. { }( ) { }( )
2 11 2 a B N a B NB B SIM a SIM aδ δ

∈ ∈⊆ ⇒ ⊆I I ; 

( ) ( ) { }( ){ }
( ) ( ) { }( ){ }

2 2

1 1

,

,

B a B N

B a B N

SN x y U x y SIM a

SN x y U x y SIM a

δ δ

δ δ

∈

∈

⇒ = ∈ ∈

⊂ = ∈ ∈

I

I
  

This completes the proof. 
Theorem 2.1 states that the granules, induced by tolerance 

neighborhood relation, would be fined when new attributes add 
to former attribute set. 

D. An illustrating example 
Table 1 shows an information system about students. 

( )1 2 3 4 5 6 7 8 9, , , , , , , ,S S S S S S S S S S= is a set of students, attribute 
A1, A2 and A3 represent the score, the evaluation and the 
familiar language of each students, respectively. Table 2 shows 
the results of distance computation from table 1 by formula (3).

TABLE  I 
 STUDENTS INFORMATION 

 S1 S2 S3 S4 S5 S6 S7 S8 S9 
A1 78 88 98 61 90 100 0 55 68 
A2 Good Good Good Bad Good Good Bad Bad * 
A3 {E,J} * {E} {E} * {E,J} {J} * * 

 
TABLE  II 

 DISTANCE 
 S1 S2 S3 S4 S5 S6 S7 S8 S9 

S1 0 0.1 1.02 1.42 0.12 0.22 1.62 1.02 0.1 
S2 0.1 0 0.1 1.04 0.02 0.12 1.4 1.05 0.2 
S3 1.02 0.1 0 1.07 0.08 1 1.72 1.09 0.3 
S4 1.42 1.04 1.07 0 1.04 1.47 1.17 0.06 0.07 
S5 0.12 0.02 0.08 1.04 0 0.1 1.35 1.06 0.22 
S6 0.22 0.12 1 1.47 0.1 0 1.73 1.1 0.32 
S7 1.62 1.4 1.72 1.17 1.35 1.73 0 0.55 0.68 
S8 1.02 1.05 1.09 0.06 1.06 1.1 0.55 0 0.13 
S9 0.1 0.2 0.3 0.07 0.22 0.32 0.68 0.13 0 

 
If 0.1δ = , we can get a family of information granules like 

follows: 
( ) { }0.1

1 1 2 9, ,ASN S S S S= , ( ) { }0.1
2 1 2 3 5, , ,ASN S S S S S= ,

( ) { }0.1
3 2 3 5, ,ASN S S S S= , ( ) { }0.1

4 4, 8 9,ASN S S S S= ，

( ) { }0.1
5 2 3 5 6, , ,ASN S S S S S= , ( ) { }0.1

6 5 6,ASN S S S= ,

( ) { }0.1
7 7ASN S S= , ( ) { }0.1

8 4 8,ASN S S S= ,

( ) { }0.1
9 1 4 9, ,ASN S S S S=  

If 0.2δ = , we can get another family of information granules 
like follows: 

( ) { }0.2
1 1 2 9, ,ASN S S S S= , ( ) { }0.2

2 1 2 3 5 6 9, , , , ,ASN S S S S S S S= ,

( ) { }0.2
3 2 3 5, ,ASN S S S S= , ( ) { }0.2

4 4, 8 9,ASN S S S S= ,

( ) { }0.2
5 1 2 3 5 6, , , ,ASN S S S S S S= , ( ) { }0.2

6 2 5 6, ,ASN S S S S= , 

( ) { }0.2
7 7ASN S S= , ( ) { }0.2

8 4 8 9, ,ASN S S S S= ,

( ) { }0.2
9 1 2 4 8 9, , , ,ASN S S S S S S=  

Here, 1 2 3A A A A= U U  

IV. VARIABLE PRECISION TOLERANCE NEIGHBORHOOD ROUGH 
SETS MODEL 

In this section, we propose the VPTNRS. 
Definition 2.7: Given a neighborhood approximation 

space ( ),NAS U= Δ and X U⊆ , TΔ = Δ and threshold 0δ ≥ , 
the lower approximation and upper approximation about X can 
be defined as: 

 
( ) ( ){ }
( ) ( ){ }

,

,

UN X x SN x X x U

UN X x SN x X x U

δ

δ

⎧ = ⊆ ∀ ∈⎪
⎨

= ≠ ∅ ∀ ∈⎪⎩ I
 (9) 

And ( ) ( ),X U UN X X UN X∀ ⊆ ⊆ ⊆ . 
The boundary domain, positive domain and negative domain 

can be defined as: 
 ( ) ( ) ( )BN X UN X UN X= −  (10) 
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 ( ) ( )POS X UN X=  (11) 

 ( ) ( )NEG X U UN X= −  (12) 

( )POS X represents the granules contained by X ; 

( )NEG X  represents the granules not contained by X ; 

( )BN X  represents the granules partially contained 

by X .If ( ) ( )UN X UN X= , we say X in this neighborhood 
approximation space is definable; otherwise, it’s indefinable, 
it’s rough. 

In fact, some data are noisy, namely, are incomplete and 
inconsistent. The above method can just handle incomplete 
data. Ziarko proposed a probabilistic method to improve the 
classical rough sets with a tolerance threshold, called variable 
precision rough sets (VPRS) [7], [11]. Here, we study this 
technique and introduce it to our model. 

Definition 2.8: VPTNRS is defined as follows: 

( )
( )( )

( )( )

( )
( )( )

( )( )

,

1 ,

k

k

card SN x X
UN X x k x U

card SN x

card SN x X
UN X x k x U

card SN x

δ

δ

δ

δ

⎧ ⎧ ⎫⎛ ⎞⎪ ⎪⎪ ⎜ ⎟= ≥ ∀ ∈⎨ ⎬⎪ ⎜ ⎟⎪ ⎪⎝ ⎠⎪ ⎩ ⎭
⎨

⎧ ⎫⎛ ⎞⎪ ⎪ ⎪⎜ ⎟⎪ = < − ∀ ∈⎨ ⎬⎜ ⎟⎪ ⎪ ⎪⎝ ⎠⎩ ⎭⎩

I

I
 (13) 

Where1 0.5k≥ ≥ . 

V. VPTNRS IN DECISION TABLE 
Decision table is an important tool for knowledge 

representation. The difference between information system and 
decision table is the former does not contain decision attribute. 
In this section, we will introduce the VPTNRS to decision 
table. 

Definition 2.9: Given a neighborhood information 
system ( ), ,NIS U A= Δ , we say it’s a neighborhood decision 

table ( ), ,NDT U C D= ΔU  if A C D= U , C represents the 
condition attribute set, D represents the decision attribute, 
and C forms a family of neighborhood relation onU . 

Definition 2.10: Given a neighborhood decision 
table ( ), ,NDT U C D= ΔU , P C∀ ⊆ , TΔ = Δ and 
threshold 0δ ≥ , the decision attribute D divide the 
universe U into some equivalence classes, 1 2, , , nX X XL ,the 
lower approximation and upper approximation about D relative 
to P can be defined as: 

 
( ) ( )

( ) ( )

1

1

n
k k
P P i

i
nk k

P P i
i

UN D UN X

UN D UN X

=

=

⎧
=⎪⎪

⎨
⎪ =⎪⎩

U

U
 (14) 

The boundary domain, positive domain and negative domain 
can be defined the same as formula (10), (11) and (12). 

Next, a useful digital feature of VPTNRS called dependency 
is discussed. 

Definition 2.11: Given a neighborhood decision 
table ( ), ,NDT U C D= ΔU , P C∀ ⊆ , we can define the 
dependency relation between P and D as: 

 ( )
( )( )

( )
P

P

card POS D
D

card U
γ =  (15) 

It can be denoted as P Dγ⇒ for short. 

Obviously, ( )0 1P Dγ≤ ≤  

The dependency ( )P Dγ reflects the dependence degree 
of D relative to P . This definition is in accordance with the 
classical rough set theory. It can be used to evaluate the 
importance of a subset of attributes. 

 
Theorem 2.2: Given a neighborhood decision 

table ( ), ,NDT U C D= ΔU , TΔ = Δ , 

threshold 0δ ≥ and 1 2,B B C⊆ ,if 1 2B B⊆ , 

then ( ) ( )
1 2B Bx POS D x POS D∈ ⇒ ∈ . 

Proof. Without loss of generality, let ( )
1Bx POS D∀ ∈ , 

jD represents the equivalence class of j divided by decision D . 

According to theorem 2.1, if 1 2B B⊆ , 

then ( ) ( )
2 1B BSN x SN xδ δ⊆ . So, ( )

2Bx POS D∈  

This completes the proof. 
Theorem 2.3: ( )P Dγ is monotonous, that’s to say, 

if 1 2B B C⊆ ⊆ ⊆L , then ( ) ( ) ( )
1 2B B CD D Dγ γ γ≤ ≤ ≤L . 

Proof. According to theorem 2.2, if 1 2B B C⊆ ⊆ ⊆L , 

then ( ) ( ) ( )
1 2B B CPOS D POS D POS D≤ ≤ ≤L . According to 

formula 4.15, we can get ( ) ( ) ( )
1 2B B CD D Dγ γ γ≤ ≤ ≤L .  

This completes the proof. 
Definition 2.12: Given a neighborhood decision 

table ( ), ,NDT U C D= ΔU , P C⊆ , TΔ = Δ and 
threshold 0δ ≥ . The significance of attribute a C P∈ − relative 
to P can be defined as: 
 ( ) ( ) ( ), , P a Psig a P D D Dγ γ= −U  (16) 

Based on the significance function, the relative reduction and 
the relative core can be defined in the classical way.  

VI. ALGORITHM FOR ATTRIBUTE REDUCTION 

As mentioned above, the dependency ( )P Dγ reflects the 
approximating power of a condition attribute set. It can be used 
to measure the significance of a subset of attributes. The aim of 
attribute selection is to search a subset of attributes such that the 
classification problem has the maximal consistency in the 
selected feature spaces. 

There are four key steps in a feature selection algorithm: 
subset generation, subset evaluation, stopping criterion and 
result validation. In algorithm, we begin with an empty set red 
of attribute, and we add one feature which makes the increment 
of dependency maximal into the set red in each round. This is 
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the strategy of subset generation. We embed the subset 
evaluation in this strategy by maximizing the increment of 
dependency. The algorithm does not stop until the dependency 
increase equals to zero by adding any new feature into the 
attribute subset red or all of the attributes have been added to 
the reduction. The algorithm is given as below: 

 
There are two key steps in algorithm above. One is to 

compute the neighborhood of samples, the other is to analyze 
whether the neighborhood of a sample is consistent. With 
sorting technique, we can find the neighborhoods of samples in 
time complexity ( )( )logO n n , while time complexity of the 

second step is ( )O n . So the worst case of computational 

complexity of reduction is ( )( )2 logO N n n , 

here N and n are the numbers of features and samples. 

VII. EXPERIMENTS AND DISCUSSION 
 In this section, we will perform experiments to evaluate the 

proposed method. First, we compare three methods with results 
of attribute reduction, i.e. VPTNRS, VQRS [3] and fuzzy 
VPRS [9]. Second, we use two frequently-used classification 
techniques, i.e. kNN and CART, to evaluate the accuracy of 
classification in terms of the selected features of each method. 

In our experiments, 8 choice UCI standard data sets from the 
machine learning data repository, University of California at 
Irvine [10], are used. These data sets are described in table 3. 
All of the selected data sets are including numerical features 
and categorical features. The numbers of samples are between 
108 and 1000. Moreover, all data sets are incomplete. 

For VQRS can not be directly applied in numerical attribute, 
MDL [12] technique was used to discretize the data. In 
experiments, for each data set, we randomly divide the samples 
into 10 subsets, and use nine of them as training set and the rest 
one as the test set. After 10 rounds, we compute the average 
value and variation as the final performance. 

The results of feature selection are presented in table 4. 
VPTNRS obtains 5.8 attributes on average, compared to 6.75 

of VQRS and 6.75 of fuzzy VPRS. It explains that the proposed 
method selects much less features than other two methods. This 
can help reduce the time of classification. Besides, accuracy of 
classification computed based on these selected subsets of 
features is also important and must be discussed. 

CART and kNN are introduced to test the quality of the 
reduction. The classifying accuracy of raw data and the reduced 
feature subsets based on 10-fold cross validation are shown in 
tables 5 and 6. It’s easy to see that (1) the accuracies computed 
based on selected features of VPTNRS are better than the other 
two methods, both in kNN and CART; (2) the average accuracy 
of two different algorithms computed based on selected 
features of VPTNRS decreases only by 2.0% and 1.0% 
respectively, compared with that computed based on the raw 
data; (3) moreover, it’s easy to see that, in data set Aus, Hep 
and Horse, the selected features by VPTNRS is less than other 
two methods, meanwhile induce much better classification 
results. In the results of other data sets, the number of feature 
selected by three methods are very close, but VPTNRS still 
shows a little better than other two methods. 

TABLE III 
DATA SETS DESCRIPTION 

 Data Set 

Sam
ple 

Attribute 

N
um

erica
l 

C
ategoric

al 

C
lass 

1 Annealing(Anne) 798 38 9 29 6 
2 Australian(Aus) 690 14 6 8 2 
3 Auto 205 26 16 9 6 
4 Breast-Cancer(BC) 286 9 1 8 2 
5 Bridges1(Bridg1) 108 13 9 3 6 

6 Credit 
Screening(Credit) 690 15 6 9 2 

7 Hepatitis(Hep) 155 19 6 13 2 
8 Horse-Colic(Horse) 368 27 7 20 2 

 
TABLE IV 

 THE RESULTS OF FEATURE SELECTION  

Data Set Attribute VPTNRS VQRS+MDL       Fuzzy 
VPRS 

Anne 38 3 3 3 
Aus 14 6 7 7 
Auto 26 11 13 12 
BC 9 4 5 4 

Bridg1 13 3 3 2 
Credit 15 7 6 8 
Hep 19 8 10 11 

Horse 27 4 7 7 
Average 19.1 5.8 6.75 6.75 

 
TABLE V 

 CLASSIFICATION ACCURACY OF DIFFERENT FEATURE SUBSETS WITH CART (%) 
Data Set Raw Data VPTNRS VQRS+MDL     Fuzzy VPRS 

Anne 92.7 89.2 89.2 86.1 
Aus 91.2 89.3 88.1 88.7 
Auto 84.6 82.8 84.8 80.4 
BC 89.2 88.5 83.3 88.5 

Bridg1 79.2 76.2 76.2 74.8 
Credit 88.4 87.4 85.2 87.1 
Hep 85.2 83.1 82.7 81.0 

Horse 87.1 85.1 83.9 84.8 
Average 87.2  85.2  84.2  83.9  

Algorithm: 
Input: ( ), ,NDT U C D= ΔU and threshold δ  

Output: a reduction red  
1: red∅ →  

2: for each ia C red∈ −  

3:    compute ( ), ,isig a red D  

4: end 
5: select ka if ( )( ), ,k i ia MAX SIG a red D=  

6: if ( ), ,iSIG a red D ε≥ //ε is a small positive number to 
control the convergence 
7:     kred a red→U  

8:    if C red− = ∅ ,go to step 9 
9:    else return red  
10: end 
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TABLE VI 

CLASSIFICATION ACCURACY OF DIFFERENT FEATURE SUBSETS WITH KNN (%) 
Data Set Raw Data VPTNRS VQRS+MDL     Fuzzy VPRS 

Anne 99.8 100 100 96.1 
Aus 93.3 92.3 87.3 91.9 
Auto 86.8 85.3 85.7 84.5 
BC 95.3 92.4 89.5 92.4 

Bridg1 84.2 80.2 80.2 76.3 
Credit 82.7 85.5 83.0 84.1 
Hep 94.2 91.5 88.3 87.5 

Horse 95.9 96.5 88.5 89.3 
Average 91.5  90.5  87.8  87.8  

VIII. CONCLUSION 
Reducing redundant or irrelevant features can improve 

classification performance in most of cases and decrease cost of 
classification. The NRS is an efficient tool to do this work for it 
can deal with heterogeneous attributes. But the traditional NRS 
can not handle both incomplete data and inconsistent data. The 
proposed VPTNRS solve this problem very well by 
generalizing NRS with a tolerance neighborhood relation and 
the probabilistic theory. The experimental results, compared to 
VQRS and fuzzy VPRS, prove that the model has strong power 
in handling noisy data. 
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