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Free Convection in an Infinite porous Dusty
Medium induced by Pulsating Point Heat Source

K. Kannan and V. Venkataraman

Abstract—Free convection effects and heat transfer due to a
pulsating point heat source embedded in an infinite, fluid saturated,
porous dusty medium are studied analytically. Both velocity and
temperature fields are discussed in the form of series expansions in
the Rayleigh number, for both the fluid and particle phases based on
the mean heat generation rate from source and on the permeability of
the porous dusty medium. This study is carried out by assuming the
Rayleigh number small and the validity of Darcy’s law. Analytical
expressions for both phases are obtained for second order mean in
both velocity and temperature fields and evolution of different wave
patterns are observed in the fluctuating part. It has been observed
that, at the vicinity of the origin, the second order mean flow is
influenced only by relaxation time of dust particles and not by dust
concentration.

Keywords—pulsating point heat source, azimuthal velocity, porous
dusty medium, Darcy’s law.

I. INTRODUCTION

THERE have been numerous theoretical and experimental
studies of heat and mass transfer induced by natural

convection in fluids of porous and non-porous media. These
studies have many applications in physical systems (where
heat transport by buoyancy induced convective motion to take
place) such as chemical reactor, nuclear reactor, combustion
systems, pneumatic transport etc. Similarly, the study of free
convection in fluid-saturated porous media in the presence of
point heat sources has many important geothermal and engi-
neering applications. For example, the sub-sea bed disposal of
nuclear waste material is of prime concern for the nuclear
waste management since the energy released by the waste
material can cause an upward migration of interstitial pore
water into water columns which in turn is responsible for the
transport of radio nuclide. In some of these applications, the
fluid may contain inert, suspended Stokesian solid particles.

Investigations on heat transfer by natural convection of
two phase fluids in non-porous media have been made by
several authors [1]–[13]. However, not many studies on natural
convection problem of two phase fluids in porous media are
reported in available literature.

When the dimension of a convective system in a saturated
porous medium are sufficiently great, diffusion effects can be
neglected except in the regions where the gradients of the
fluid properties are very large. Wooding [14] dealt with the
steady state high Rayleigh number behavior of flow due to a
point heat source placed on the base of a semi-infinite porous
medium and found that the flow is similar to a round laminar
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jet. The buoyancy induced transient and steady state natural
convection with a concentrated heat source embedded in an
infinite porous medium had been analyzed by Bejan [15].
Yamamoto [16] had analyzed the natural convection about a
heated sphere in the porous medium. Hickox and Watts [17]
obtained numerical solution for axe-symmetric free convection
from concentrated heat sources and their analysis is valid for a
wide range of values of the Rayleigh number. Source solutions
for a variety of heat sources were presented by Hickox [18]
with special emphasis on their application in the analysis of
sub-sea bed disposal of nuclear waste material. Hiremath [19]
analyzed the natural convection flow and heat transfer induced
by a pulsating point heat source embedded in an unbounded
fluid saturated porous medium, assuming the flow is governed
by Darcy’s law and that the thermal Rayleigh number is small.

In this present study, Free convective heat transfer in an
infinite porous dusty medium due to a pulsating point heat
source has been considered. It is assumed that the source
strength, which induces the free convection, being a function
of time can be expressed in a Fourier series in which the
second and higher harmonics are negligible. Only the small
Rayleigh number behavior of the flow is considered with
the assumption of Darcy’s law. To express the buoyancy
force field, Boussinesq approximation is invoked. Perturbation
techniques are used to obtain the analytical expressions for
second order mean flow of both fluids and particles phases in
both velocity and temperature fields.

II. MATHEMATICAL FORMULATION AND FUNDAMENTAL
CONCEPTS

In this section, Mathematical models are developed for
the description of, axe symmetric free convection in a rigid,
infinite, homogeneous and isotropic porous dusty medium of
low permeability with a point heat source of strength

q(t) = Q(1 + ε cos at) (1)

where Q is the mean heat generation rate from the source, a,
the frequency oscillation in a source strength and ε, a small
positive parameter. In both velocity and temperature fields,
amplitudes of fluctuations are assumed to be small. Since
the density changes are accounted for only in the buoyancy
term, in the equation of motion, the fluid is assumed to be
Boussinesq incompressible with density temperature relation

ρ = ρ∞ [1 − β (T − T∞)] (2)

Here ρ is the fluid density, β, coefficient of thermal expansion,
and T , the temperature. The subscript ∞ denotes the reference
state. It is also assumed that fluid and matrix are in thermal
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equilibrium and fluid motion can be adequately described
by Darcy’s law. Viscosity, effective thermal diffusivity, and
coefficient of thermal expansion are assumed to be constant.
Dispersion effects are neglected.

The steady state equations of continuity for fluid and particle
phase are

div �q = 0 (3)
div �qp = 0 (4)

Equations of momentum for fluid and particle phase are

μ

K
�q = −grad (p+ ρgh) +

KN0

ρ
(�qp − �q) (5)

�qp = −KN0

ρ
(�qp − �q) (6)

and Energy equation for fluid and particle phase are

�q · grad T = αdiv [grad T ] + ρpCs

[
Tp − T

τT

]
(7)

�qp · grad Tp =
[
Tp − T

τT

]
(8)

where �q, qp, K, μ, α, p, g, k, N0, τT and Tp are respectively,
the velocity vector of fluid, particle phase, medium perme-
ability, dynamic viscosity, effective thermal diffusivity, pres-
sure, acceleration due to gravity, Stokes resistance coefficient,
number density of particle phase, thermal relaxation time of
particles and temperature of particle phase. The elevation h is
measured vertically upward and g is oppositely directed.

Here thermal energy is released continuously at a finite rate
from a point source. Hence in the absence of any bounding
surfaces which can inhibit motion, any deviation from an
isothermal state will result in fluid motion.

Here the volume fraction and viscosity of the pseudo-fluid
of solid particles have been neglected. The subscript p in the
equations denotes corresponding entities of particle phase. Cs

is the specific heat of particles. If Reynolds number based on
the relative velocity of the particle is less than unity, then the
force accelerating the particle to the fluid speed is given by
Stokes law which is 6πμrp (�qp − �q) where rp is the radius
of the particle. If N0 is assumed to be the number density
of particles, the total fluid- particle interaction force per unit
volume is given by

Fp = 6πN0rpμ (qp − q) =
ρp(qp − q)

τm

τm =
m

6πμrp
;

is called the relaxation time during which the velocity of the
particle phase relative to the fluid is reduced to

(
1
e

)
times its

initial value and m is the mass of each particle.
Similarly the total thermal interaction between the fluid and

particle phase per unit volume is given by Qp = pCs(Tp−T )
τT

and τT = mCs

4πK1rp
is thermal relaxation time of particle phase.

i.e., τT , the temperature of the particle phase relative to the
fluid is

(
1
e

)
times the initial value, where K1 is the thermal

conductivity of the fluid.

In most of the studies of dusty fluid flows, certain simpli-
fying assumptions are usually made for dilute suspensions. In
this study the following assumptions have been made:

1) The inert dust particles are assumed to be spherical
in shape all having the same radius and mass and
undeformable.

2) The number density N0 of particles is constant.
3) The solid particles are sparsely distributed and they are

non- interacting, so that the pressure locally have same
velocity vector and temperature. Due to this assumption
of lack of randomness in local particle motion, the
pressure associated with the particle cloud is negligible.
Then the fluid pressure p will be the same as the total
pressure of the mixture.

Here we wish to consider the axe-symmetric flow induced by
a point source of strength Q (energy generated per unit time)
situated at the origin and the axis φ = 0 is taken vertically
upwards. It is convenient for our analysis to write equations
(3)–(8) in spherical polar coordinates (r, φ) with associated
radial and transverse velocity components of the fluid phase
as (u, v) and for particle phase (up, vp).

The relationship between the coordinates system is illus-
trated in Fig. 1.

Fig. 1. A spherical polar coordinate system with the point heat source located
at the centre.

Following Darcy flow model [19] the equations of motion
describing the conservation of mass, momentum for both the
phases get reduced to:

∂

∂r

[
r2u sinφ

]
+

∂

∂φ
[rv sinφ] = 0 (9)

∂

∂r

[
r2up sinφ

]
+

∂

∂φ
[rvp sinφ] = 0 (10)

u =
−K
μ

[
∂P

∂r
+ ρg cosφ+K2N0 (up − u)

]
(11)

v =
−K
μ

[
1
r

∂P

∂φ
− ρg sinφ+K2N0 (vp − v)

]
(12)

where K2 = K
ρ

up = − 1
τp

(up − u) (13)

vp = − 1
τp

(vp − v) (14)
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and

σ
∂T

∂t
+ u

∂T

∂r
+
v

r

∂T

∂φ
= α

[
1
r2

∂

∂r

(
r2
∂T

∂r

)

+
1

r2 sinφ
∂

∂φ

(
sinφ

∂T

∂φ

)]

+
ρpCs

τT
[Tp − T ] (15)

σ
∂Tp

∂t
+ up

∂Tp

∂r
+
vp

r

∂Tp

∂φ
=

[Tp − T ]
τT

(16)

is the heat capacity ratio given by

σ =
[
λ(Q Cp)fm + (1 − λ(QCp)sm)

(Q Cp)fm

]
(17)

where fm, sm and λ refer to fluid and particle matrix and
porosity respectively.

The boundary conditions necessary for the completion of
mathematical formulation are

u, v, vp, T, Tp → 0 as r → ∞
v =

∂u

∂φ
=
∂T

∂φ
= 0 at φ = 0, π

vp =
∂up

∂φ
=
∂Tp

∂φ
= 0 at φ = 0, π

(18)

Further, the origin being the location of point heat source, is
a singular point for both the velocity and temperature fields
and hence u, v and T vary as 1

r in the limit r → 0. However,
for the temperature field, this behavior is described by a heat
balance over a spherical surface of radius approaching zero
containing the origin:

lim
r→0

[
−K1

(
4πr2

∂T

∂r

)]
= Q(1 + ε cos at) (19)

Taking advantage of the continuity equations (9) and (10) for
both the phases we define stream functions ψ and ψp such
that

u =
1

r2 sinφ
∂ψ

∂φ
and v = − 1

r sinφ
∂ψ

∂r
(20)

up =
1

r2 sinφ
∂ψp

∂φ
and vp = − 1

r sinφ
∂ψp

∂r
(21)

using (13), (20) in (9) and (14), (21) in (10), we get

1
r2 sinφ

∂ψ

∂φ
= −K

μ

[
∂P

∂r
+ ρg cosφ− τpK2N0up

]
(22)

− 1
r sinφ

∂ψ

∂r
= −K

μ

[
1
r

∂P

∂φ
+ ρg sinφ− τpK2N0vp

]
(23)

Eliminating the pressure terms in equations (22) and (23)
by cross differentiation and introducing the non dimensional
variables R, τ , ψ, ψp, H , Hp defined by

R =
r√
k
, τ =

αt

Kσ
, Ψ =

ψ

α
√
K
, Ψp =

ψp

α
√
K

H =
(T − T∞)K1

√
K

Q
, Hp =

(Tp − T∞)K1

√
K

Q

where K1 is the thermal conductivity of the fluid/porous ma-
trix, we obtain the equations of the conservation of momentum
and energy for fluid and particle phase as follows:

1
R2

∂

∂φ

[
1

sinφ

(
∂Ψ
∂φ

+ λ1
∂Ψp

∂φ

)]

+
1

sinφ

(
∂2Ψ
∂R2

+ λ1
∂2Ψp

∂R2

)

= Ra
[
cosφ

∂H

∂φ
+R sinφ

∂H

∂R

]
(24)

∂Ψp

∂φ
=

1
(1 + τp)

∂Ψ
∂φ

(25)

∂H

∂τ
+

1
R2 sinφ

[
∂(Ψ,H)
∂(φ,R)

]

=
1
R2

∂

∂R

[
R2 ∂H

∂R

]
+

1
R2 sinφ

∂

∂φ

[
sinφ

∂H

∂φ

]

+
2f
3Λ

(Hp −H) (26)

∂Hp

∂τ
+

1
R2 sinφ

[
∂(Ψp,Hp)
∂(φ,R)

]
= −2

3
1
γΛ

(Hp −H) (27)

where Λ = μτp

K , f = ρp

ατp
γ = cs

cp
, λ1 = KK1τpN0

μ , Ra =
βρ∞gkQ
αμK1

is the Rayleigh number based on the mean source
strength and medium permeability.

The non- dimensional form of velocity components are
given by

(U, V ) =
√
K

α
(u, v) (28)

(Up, Vp) =
√
K

α
(up, vp) (29)

Accordingly, the boundary conditions (18) and (19) become
U , V , Up, Vp, H , Hp → 0 as R→ ∞.

V =
∂U

∂φ
=
∂H

∂φ
= 0 and Vp =

∂Up

∂φ
=
∂Hp

∂φ
= 0

at φ = 0, π (30)

lim
R→0

[
−4πR2 ∂H

∂R

]
= 1 + ε cosωτ (31)

Also lim
R→0

[
−4πR2 ∂Hp

∂R

]
= 1 + ε cosωτ (32)

where ω = σaK
α is the non-dimensional frequency parameter.

III. PERTURBATION ANALYSIS

In view of the boundary conditions and the assumptions of
small magnitudes of oscillations (ε < 1), We seek solutions
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for Ψ, H , Ψp and Hp of the form

Ψ = Ψ0(R,φ) +
∞∑

n=1

εnΨ(R,φ, τ) (33)

H = H0(R,φ) +
∞∑

n=1

εnHn(R,φ, τ) (34)

Ψp = Ψp0(R,φ) +
∞∑

n=1

εnΨpn
(R,φ, τ) (35)

Hp = Hp0(R,φ) +
∞∑

n=1

εnHpn
(R,φ, τ). (36)

with similar expressions for U,Up, V and Vp to satisfy the
boundary conditions (30). In the expansions of (33) and (34),
Ψ0, H0, Ψp0 and Hp0 refer to basic steady state whereas the
rest of the coefficients refer to the transient state in which
the effect of fluctuations can be seen. We substitute equations
(33), (34), (35), (36) in (24)–(27) respectively and compare
the terms with like powers of ε. The terms of the zero th
power in ε yield the equations for the solution of Ψ0, H0,
Ψp0 and Hp0 . Terms of first power of ε yield the equations
for the determination of Ψ1, H1, Ψp1 and Hp1 and so on. The
appropriate boundary conditions are also obtained from (30)
with the help of (33)–(36).

A. Basic steady state

The functions Ψ0 and H0 are found from the solutions of
equations:

1
R2

∂

∂φ

[
1

sinφ

{
∂Ψ0

∂φ
+ λ

∂Ψp0

∂φ

}]

+
1

sinφ

{
∂2Ψ0

∂R2
+ λ

∂2Ψp0

∂R2

}

= Ra
[
cosφ

∂H0

∂φ
+R sinφ

∂H0

∂R

]
(37)

∂Ψp0

∂φ
=

1
1 + τp

∂Ψ0

∂φ
(38)

1
R2 sinφ

[
∂Ψ0

∂φ

∂H0

∂R
− ∂H0

∂φ

∂Ψ0

∂R

]

=
1
R2

∂

∂R

[
R2 ∂H0

∂R

]
+

1
R2 sinφ

∂

∂φ

[
sinφ

∂H0

∂φ

]

+
2f
3Λ

(Hp0 −H0) (39)

1
R2 sinφ

[
∂Ψp0

∂φ

∂Hp0

∂R
− ∂Hp0

∂φ

∂Ψp0

∂R

]

= − 2
3γΛ

(Hp0 −H0) (40)

subject to the boundary conditions

U0, V0, H0, Up0 , Vp0 , Hp0 → 0 as R→ ∞;

V0 =
∂U0

∂φ
=
∂H0

∂φ
= 0 at φ = 0, π;

Vp0 =
∂Up0

∂φ
=
∂Hp0

∂φ
= 0 at φ = 0, π. (41)

lim
R→0

[
−4πR2 ∂H0

∂R

]
= 1 and

lim
R→0

[
−4πR2 ∂Hp0

∂R

]
= 1 (42)

We perform a perturbation analysis about small Rayleigh
number in terms of powers of Ra .

Ψ0 = Ψ00 + RaΨ01 + (Ra)2 Ψ02 + · · · ;

Ψp0 = Ψp00 + RaΨp01
+ (Ra)2 Ψp02 + · · · . (43)

H0 = H00 + RaH01 + (Ra)2H02 + · · · ;

Hp0 = Hp00 + RaHp01 + (Ra)2Hp02 + · · · , (44)

with similar expressions for U0, Up0 , V0, and Vp0 satisfying
the boundary conditions (41).

As Ψ00, Ψp00 ,H00 and Hp00 correspond to the state of pure
diffusion, we take

Ψ00 = 0,Ψp00 = 0 from (38) and from (41) and (42) we
obtain

H00 = Hp00 =
1

4πR
(45)

I order in Ra: Equations (37) and (38) yield

1
R2

∂

∂φ

[
1

sinφ

{
∂Ψ01

∂φ
+ λ

∂Ψp01

∂φ

}]

+
1

sinφ

{
∂2Ψ01

∂R2
+ λ

∂2Ψp01

∂R2

}

= Ra
[
cosφ

∂H00

∂φ
+R sinφ

∂H00

∂R

]
(46)

∂Ψp01

∂φ
=

1
1 + τp

∂Ψ01

∂φ
(47)

Separation of variables is achieved by setting

Ψ01 = f(R) sin2 φ;

Ψp01 = g(R) sin2 φ
(48)

The function f(R) satisfies the ordinary differential equation:

R2f
′′
(R) − 2f(R) = − R

4πA
(49)

and (47) yield

g(R) =
f(R)
1 + τp

(50)

where A = 1 + λ
(1+τp) .

The solution of (49) gives

f(R) = c1R
2 +

c2
R

+
R

8πA
Applying boundary condition (41) as R→ ∞ we find c2 = 0.
Since in the limit R → 0 the velocities u and v increase as(

1
R

)
, we find upon examining (20) that in the limit, Ψ must

be proportional to R, hence c1 = 0. We conclude that
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f(R) = R
8πA and in view of (50)

g(R) = R
8πA(1+τp) and hence

Ψ01 =
R sin2 φ

8πA
and Ψp01 =

R sin2 φ

8πA(1 + τp)
(51)

In a similar way, substituting (43) and (44) in (39) and
(40), comparing the first order in Ra , and achieving the
separation of variables by setting H01 = f1(R) cosφ and
Hp01 = g1(R) cosφ, we get an ordinary differential equa-
tion inf1(R). Solving this differential equation and applying
boundary conditions, We find that

H01 =
(1 + fγ) cosφ

32π2RA
and

Hp01 =
[
(1 + fγ)
32π2RA

+
3γΛ

32π2R3A

]
cosφ (52)

The other non-vanishing coefficients are also found by ap-
plying the same procedure as above. For the sake of brevity, we
present only the solutions of the second order non vanishing
coefficients

Ψ02 =
(1 + fγ)R sin2 φ cosφ

96π2A2
and

Ψp02 =
(1 + fγ)R sin2 φ cosφ

96π2A2(1 + τp)
(53)

These solutions were also obtained by Bejan [15] for clean
fluid and for steady state. In terms of velocity components
(for both the phases) we have

U01 =
cosφ
4πAR

,

Up01 =
cosφ

4πAR(1 + τp)
,

V01 = − sinφ
8πAR

,

Vp01 = − sinφ
8πAR(1 + τp)

,

U02 =
(1 + fγ)

192π2A2R
[1 + 3 cos 2φ] ,

Up02 =
(1 + fγ)

192π2A2R(1 + τp)
[1 + 3 cos 2φ] ,

V02 = − (1 + fγ) sinφ cosφ
96π2A2R

,

Vp02 = − (1 + fγ) sinφ cosφ
96π2A2R(1 + τp)

. (54)

B. Fluctuating part

Substituting (33)–(36) in (24)–(27) we obtain for the first
order in ε.

1
R2

∂

∂φ

[
1

sinφ

{
∂Ψ1

∂φ
+ λ

∂Ψp1

∂φ

}]

+
1

sinφ

{
∂2Ψ1

∂R2
+ λ

∂2Ψp1

∂R2

}

= Ra
[
cosφ

∂H1

∂φ
+R sinφ

∂H1

∂R

]
(55)

∂H1

∂τ
+

1
R2 sinφ

[
∂(Ψ0,H1)
∂(φ,R)

+
∂(Ψ1,H0)
∂(φ,R)

]

=
1
R2

∂

∂R

[
R2 ∂H1

∂R

]

+
1

R2 sinφ
∂

∂φ

[
sinφ

∂H1

∂φ

]
+

2f
3Λ

(Hp1 −H1) (56)

∂Ψp1

∂φ
=

1
(1 + τp)

∂Ψ1

∂φ
(57)

∂Hp1

∂τ
+

1
R2 sinφ

[
∂(Ψp0 ,Hp1)
∂(φ,R)

+
∂(Ψp1 ,Hp0)
∂(φ,R)

]

= −2
3

1
γΛ

(Hp1 −H1) (58)

The associated boundary conditions are

U1, V1, H1, Up1 , Vp1 , Hp1 → 0 as R→ ∞
V1 =

∂U1

∂φ
=
∂H1

∂φ
= 0 at φ = 0, π;

Vp1 =
∂Up1

∂φ
=
∂Hp1

∂φ
= 0 at φ = 0, π;

lim
R→0

[
−4πR2 ∂H1

∂R

]
= cosωτ (59)

Let Ψ1 = Ψ10 + RaΨ11 + (Ra)2 Ψ12 + · · · ;

Ψp1 = Ψp10 + RaΨp11 + (Ra)2 Ψp12 + · · · ;

H1 = H10 + RaH11 + (Ra)2H12 + · · · ;

Hp1 = Hp10 + RaHp11 + (Ra)2Hp12 + · · · (60)

As Ψ10,Ψp10 ,H10 and Hp10 correspond to the state of pure
diffusion, we have

Ψ10 = 0,Ψp10 = 0.

From (18),

H10 =
e−pR

4πR
[cos (ωτ − pR)]

Hp10 =
1

(1 + τp)
H10

⎫⎪⎪⎬
⎪⎪⎭ (61)

where p =
√

ω
2 .

This shows that the heat transport due to conduction over
the mean thermal distribution is in the form of a traveling
thermal wave in the radial direction attenuating at a distance
of order

√
2
ω .

Substituting (60) in (55) and collecting terms of first order
in Ra , We get equation for Ψ11 in which the variables can be
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separated by setting

Ψ11 =
sin2 φeiωτf(η)

4π
; η = (1 + i)pR (62)

This yields an ordinary differential equation

η2f
′′
(η) − 2f(η) = −η(η + 1)e−η(1 − i)

2p
.

1
1 + λ

1+τp

(63)

whose general solution is

f(η) = c1η
2 +

c2
η

− (η + 1)e−η(1 − i)
2pη

.
1

1 + λ
1+τp

(64)

The requirements that U and V approach zero as R→ ∞,
imply c1 = 0 and that U andV vary as 1

R in the limit R→ 0
imply c2 = 1−i

2p · 1
1+ λ

1+τp

. Substituting the values of c1 and c2
in (64), and (62) and simplifying we get,

Ψ11 =
sin2 φ

8πp2R

[
sinωτ − e−pR

1 + λ
1+τp

{(1 + pR) sin(ωτ − pR) + pR cos(ωτ − pR)}
]

(65)

yielding,

U11 =
cosφ

4πp2R3

[
sinωτ − e−pR

1 + λ
1+τp

{(1 + pR) sin(ωτ − pR) + pR cos(ωτ − pR)}
]

(66)

V11 = − sinφ
4πpR2

[
e−pR

1 + λ
1+τp

cos(ωτ − pR)

]
(67)

(62) yields

Ψp11 =
sin2 φ

8πp2R(1 + τp)

×
[

sinωτ − e−pR

1 + λ
1+τp

× {(1 + pR) sin(ωτ − pR) + pR cos(ωτ − pR)}
]

(68)

Up11 =
cosφ

4πp2R3(1 + τp)

×
[

sinωτ − e−pR

1 + λ
1+τp

× {(1 + pR) sin(ωτ − pR) + pR cos(ωτ − pR)}
]

(69)

Vp11 = − sinφ
4πpR2

[
e−pR

λ+ 1 + τp
{cos(ωτ − pR)}

]
(70)

As in the case of clean fluid, in two phase fluid also, the
solution for Ψ11 and Ψp11 show that the fluctuations over the
mean velocity due to the first convective correction consist

of a traveling wave form in the radial direction coupled with
an oblique wave form, both attenuating at a distance of order√

2
ω , fluctuations of the dusty fluid is slightly less than that

of the clean fluid.
They are super imposed over an azimuthal wave form which

persists even beyond the distance of order
√

2
ω . In addition,

the solution exhibits the influence of pure oscillations which is
essentially due to the source. In both the expressions Ψ11 and
Ψp11 , the azimuthal wave form is due to the combined effect
of the source and the basic state; the traveling wave in the
radial direction arises on account of the interaction with the
diffusion state. The oblique wave form is due to the source,
basic steady state and pure diffusion H10 and Hp0 and there
is a phase difference of π

2 between the waves, in both the
expressions H10 and Hp0 .

Collecting the coefficients of Ra after substituting for
H1,Ψ1,Hp1and Ψp1 in equations (56) and (58) and using
the expressions for Ψ0,Ψp0 ,H0 and Hp0 which occur in the
basic steady state, We have the first convective correction to
the temperature field as obtained from solution of equation:

∂H11

∂τ
+

1
R2 sinφ

[
∂(Ψ01,H10)
∂(φ,R)

+
∂(Ψ11,H00)
∂(φ,R)

]

=
1
R2

∂

∂R

[
R2 ∂H11

∂R

]
+

1
R2 sinφ

∂

∂φ

[
sinφ

∂H11

∂φ

]

+
2f
3Λ

(Hp11 −H11) (71)

∂Hp11

∂τ
+

1
R2 sinφ

[
∂(Ψp01 ,Hp11)

∂(φ,R)
+
∂(Ψp11 ,Hp01)

∂(φ,R)

]

= −2
3

1
γΛ

(Hp11 −H11) (72)

in which the separation of variables can be achieved by setting

H11 =
(1 + i)p cosφeiωτg1(η)

16π2
and

Hp11 =
(1 + i)p cosφeiωτg2(η)

16π2
(73)

Substituting (73) and using (51), (68) and (52) in (72) we have

g2(η) =
1

1 + τp
g1(η) (74)

Using (73) and (74) in (71), we have an ordinary differential
equation for g1:

η2g
′′

1 + 2ηg
′

1 − (2 + η2)g1 = − 1
η3

[
e−η(η + 1)(η2 − 2) + 2

]
(75)

whose complete integral is derived to be

g1(η) =
c1e

η(η − 1)
η2

+
c2e

−η(η + 1)
η2

+ F (η) (76)
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where

F (η) =
eη(η − 1)

2η2

⎡
⎣ 2η∫
−∞

e−u

u
du− Γ +

1
4

[ η∫
−∞

e−u

u
du− Γ

]⎤
⎦

+
e−η(η + 1)

2η2

⎡
⎣1

4

⎧⎨
⎩

η∫
−∞

e−u

u
du

⎫⎬
⎭− Γ

4
+ log η +

1
η

⎤
⎦

− 1
2η3

(77)

Making use of boundary conditions, We obtain the expressions
for H11 and Hp11 as:

H11 =
p cosφ
64π2

×
[
{cos(ωτ + pR)F1(η) + sin(ωτ + pR)F2(η)} epR

+ {cos(ωτ − pR)F3(η) + sin(ωτ − pR)F4(η)} e−pR

+ sinωτF5(η)
]

(78)

Hp11 =
[

1
(1 + τp)

]
H11 (79)

where

F1(η) =
1

p2R2

[
(2pR− 1) {c(2η) − log 2 − Γ} − S(2η)

+
1
4
(2pR− 1) {c(η) − Γ} − 1

4
S(η)

]
F2(η) = − 1

p2R2

[
{c(2η) − log 2 − Γ} + (2pR− 1)S(2η)

+
1
4
{c(η) − Γ} − 1

4
(2pR− 1)S(η)

]
F3(η) =

1
p2R2

[π
4

+
{

log(
√

2pR)
}

+ 1 +
1
4
(2pR+ 1) {c(η) − Γ} − 1

4
S(η)

]
F4(η) =

1
p2R2

[
− π

4
+
{

log(
√

2pR)
}

+ (1 + pR)

+
1
4
{c(η) − Γ} +

1
4
(1 + 2pR)S(η)

]
F5(η) = − 1

p3R3

c(t) = R.P. E1(t), S(t) = I.P. E1(t). R.P. stands for ‘Real
part of’, I.P. for ‘Imaginary part of Γ = Euler’s constant,
0.57721.

These solutions were also obtained by Hiremath [19]. Here,
we find that H11 also exhibits (like Ψ11 and Ψp11 ) the
emergence of different wave forms, a few of which attenuating
at a radial distance of order

√
2
ω and the remaining persist even

beyond. However, unlike Ψ11 and Ψp11 , both H11 and Hp11

do not exhibit influence of pure oscillation.
In order to avoid algebraic complexity, higher order correc-

tions to the velocity and temperature fields of both the phases
are not obtained.

C. Second order mean flow
The coefficients of ε2 in (33), (35), (34) and (36) can be

split into two parts, one dealing with the second order mean
flow and other the unsteady second harmonic solution.

Or if,

Ψ2 = Ψm(R,φ) + Ψf (R,φ, τ);
H2 = Hm(R,φ) +Hf (R,φ, τ);

Ψp2 = Ψpm
(R,φ) + Ψpf (R,φ, τ);

Hp2 = Hpm
(R,φ) +Hpf (R,φ, τ).

(80)

with similar expressions for U2, V2, Up2 and Vp2 then, Ψm,
Hm, Ψpm

and Hpm
are found to satisfy the equations

1
R2

∂

∂φ

[
1

sinφ

{
∂Ψm

∂φ
+ λ

∂Ψpm

∂φ

}]

+
1

sinφ

[
∂2Ψm

∂R2
+ λ

∂2Ψpm

∂R2

]

= Ra
[
cosφ

∂Hm

∂φ
+R sinφ

∂Hm

∂R

]
(81)

∂Ψpm

∂φ
=

1
1 + τp

∂Ψm

∂φ
(82)

1
sinφ

[
∂(Ψ0, Hm)
∂(φ, R)

+
∂(Ψm, H0)
∂(φ, R)

+
1
4

[
∂(Ψ1, H1)
∂(φ, R)

+
∂(Ψ1,H1)
∂(φ, R)

] ]

=
∂

∂R

[
R2 ∂Hm

∂R

]
+

1
sinφ

∂

∂φ

[
sinφ

∂Hm

∂φ

]

+
2fR2

3Λ
[Hpm

−Hm] (83)

1
R2 sinφ

[
∂(Ψp0 ,Hpm

)
∂(φ,R)

+
∂(Ψpm

,Hp0)
∂(φ,R)

+
1
4

[
∂(Ψp1 ,Hp1)
∂(φ,R)

+
∂(Ψp1 ,Hp1)
∂(φ,R)

] ]

= − 2
3γΛ

[Hpm
−Hp1 ] (84)

where over bars denote complex conjugate of the functions
below them.

Equations (81), (82), (83), and (84) are to be solved subject
to the boundary conditions

Um, Vm, Hm, Upm
, Vpm

and Hpm
→ 0 as R→ ∞

∂Um

∂φ
= Vm =

∂Hm

∂φ
= 0 at θ = 0, π

∂Um

∂φ
= Vm =

∂Hm

∂φ
= 0 at θ = 0, π

∂Upm

∂φ
= Vpm

=
∂Hpm

∂φ
= 0 at θ = 0, π

lim
R→0

[
−4πR2 ∂Hm

∂R

]
= 0 (85)

It is interesting to note both in the case of fluid and particle
phases that the higher order solutions contribute to the mean
through the first harmonic.
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As seen earlier assuming

Ψm = Ψm0 + RaΨm1 + (Ra)2 Ψm2 + · · · ;

Ψpm
= Ψpm0 + RaΨpm1 + (Ra)2 Ψpm2 + · · · ;

Hm = Hm0 + RaHm1 + (Ra)2Hm2 + · · · ;

Hpm
= Hpm0 + RaHpm1 + (Ra)2Hpm2 + · · · .

(86)

With similar expressions for Um, Vm, Upm
and Vpm

the first
non-vanishing convective contributions to the second order
mean in both the velocity and temperature fields are found
from the solutions of

1
R2

∂

∂φ

[ 1
sinφ

{
∂Ψm2

∂φ
+ λ

∂Ψpm2

∂φ

}]

+
1

sinφ

[
∂2Ψm2

∂R2
+ λ

∂2Ψpm2

∂R2

]

=
[
cosφ

∂Hm1

∂φ
+R sinφ

∂Hm1

∂R

]
(87)

∂Ψpm2

∂φ
=

1
1 + τp

∂Ψm2

∂φ
(88)

From (83) we have

1
R2

[
∂

∂R

(
R2 ∂Hm1

∂R

)]
+

1
R2 sinφ

∂

∂φ

[
sinφ

∂Hm1

∂φ

]

+
2f
3Λ

[Hpm1 −Hm1 ]

=
cosφe−pR

32π2p2R5

[
pR cos pR− (1 + pR) sin pR

1 + λ
1+τp

]
(89)

and

2
3γΛ

[Hm1 −Hpm1 ]

=
cosφe−pR

32π2p2R3(1 + τp)

[
pR cos pR− (1 + pR) sin pR

1 + λ
1+τp

]

(90)

Using (89) in (90), we have[
∂

∂R

(
R2 ∂Hm1

∂R

)]
+

1
sinφ

∂

∂φ

[
sinφ

∂Hm1

∂φ

]

=
cosφe−pR

32π2p2R3

[
pR cos pR− (1 + pR) sin pR

1 + λ
1+τp

]

×
[
1 +R2 γf

1 + τp

]
(91)

Setting Hm1 = p cos φG(r)
32π2 and Ψm2 = sin φ sin 2φH(r)

64π2p where
r = pR, we obtain after separation of variables and applying
boundary conditions

r2G
′′
(r) + 2rG′(r) − 2G(r)

=
e−r

r3

[
r(cos r − sin r) − sin r

1 + λ
1+τp

]
(92)

r2H
′′
(r) − 6H(r) =

1
1 + λ

1+τp

[
r3G

′
(r) − r2G(r)

]
(93)

We solve equations (92) and (93) by assuming power series
expansion for both H and G in terms of r in the vicinity of
the origin as it is important region of thermal activity near
the point heat source and we obtain the expressions for Hm1 ,
Hpm1 , Ψm2 and Ψpm2 as follows:

Hm1 =
p cosφ
32π2

· 1
1 + λ

1+τp

×
[

1
2pR

− 1
3
− p2R2

30
+
p3R3

180
− p4R4

1890
+ o(p6R6)

]
(94)

Hpm1 =
p cosφ
32π2

· 1
λ+ 1 + τp

×
[

1
2pR

− 1
3
− p2R2

30
+
p3R3

180
− p4R4

1890
+ o(p6R6)

]
(95)

Ψm2 =
pR sinφ sin 2φ

384π2p
· 1
1 + λ

1+τp

×
[
1 − pR

2
− p3R3

30
+
p4R4

210
− p5R5

2520
+ o(p7R7)

]
(96)

Ψpm2 =
1

1 + τp
Ψm2 (97)

Equations (91) and (92) yield

Um2 =
1

1 + λ
1+τp

· p(1 + 3 cos 2φ)
384π2pR

×
[
1 − pR

2
− p3R3

30
+
p4R4

210
− p5R5

2520
+ o(p7R7)

]
(98)

Upm2 =
1

λ+ 1 + τp
· p(1 + 3 cos 2φ)

384π2pR

×
[
1 − pR

2
− p3R3

30
+
p4R4

210
− p5R5

2520
+ o(p7R7)

]
(99)

Vm2 =
1

1 + λ
1+τp

· (−p) sin 2φ
384π2pR

×
[
1 − pR− 2p3R3

15
+
p4R4

42
− p5R5

420
+ o(p7R7)

]
(100)

Vpm2 =
1

λ+ 1 + τp
· (−p) sin 2φ

384π2pR

×
[
1 − pR− 2p3R3

15
+
p4R4

42
− p5R5

420
+ o(p7R7)

]
(101)

The second order corrections to the mean velocity com-
ponents for both fluid and particle phases are depicted in
Fig. 2. From Figs. 2 and 3 we find that as radial velocity
increases, azimuthal velocity decreases and this is true for both
the phases and near the vicinity of the origin, dust velocity is
slightly greater than the fluid velocity. This may be due to
the presence of heat source at origin. From Figs. 4 and 5
we find that an increase in τp causes an increase in radial
velocity and decrease in azimuthal velocity. It is interesting to
note that near the vicinity of the plate, the dust concentration
has no effect on the mean velocity, where as the increase
in relaxation parameter of dust particles slightly reduces the
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Fig. 2. Second order mean velocity components U02, Um2 , Up02 and Upm2 .

Fig. 3. Second order mean velocity components Vm2 , Vpm2 , V02 and Vp02 .

Fig. 4. Second order mean velocity components for different values of τp-
particle phase (Upm2 , Vpm2 ).

Fig. 5. Second order mean velocity components for different values of τp-
particle phase (Up02 , Vp02 ).

azimuthal velocity and increases the radial velocity of the fluid
and dust.

IV. CONCLUSIONS

The heat transfer and free convection effects in porous dusty
medium due to the presence of point heat source is studied.
Series expansions in the Rayleigh number have been derived
to study the velocity and temperature fields. Expressions for
second order mean flow in temperature and velocity fields for
both phases have been derived assuming Darcy’s law. (1)

1) Evolution of different wave patterns are observed in both
the fluid and particle phases in fluctuating part.

2) In both fluid and particle phases as the radial velocity
increases, azimuthal velocity decreases.

3) An increase in relaxation parameter causes increase in
radial velocity and decrease in azimuthal velocity for
both the phases.

4) At the vicinity of the origin, where the heat source is
present, the second order mean flow is influenced only
by relaxation time of dust particles and not by dust
concentration.
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