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Abstract—Throughput is an important measure of performance
of production system. Anayzing and modeling of production
throughput is complex in today’ s dynamic production systems due to
uncertainties of production system. The main reasons are that
uncertainties are materialized when the production line faces changes
in setup time, machinery break down, lead time of manufacturing,
and scraps. Besides, demand changes are fluctuating from time to
time for each product type. These uncertainties affect the production
performance. This paper proposes Bayesian inference for throughput
modeling under five production uncertainties. Bayesian model
utilized prior distributions related to previous information about the
uncertainties where likelihood distributions are associated to the
observed data. Gibbs sampling algorithm as the robust procedure of
Monte Carlo Markov chain was employed for sampling unknown
parameters and estimating the posterior mean of uncertainties. The
Bayesan model was vaidated with respect to convergence and
efficiency of its outputs. The results presented that the proposed
Bayesian models were capable to predict the production throughput
with accuracy of 98.3%.

Keywords— Bayesian inference, Uncertainty modeling, Monte
Carlo Markov chain, Gibbs sampling, Production throughput

|. INTRODUCTION

HROUGHPUT analysis is an important and efficient way

to control and match the production output with the
ordered demands. Mostly the throughput of production line
does not meet the required demand on the shop floor of
production especialy in presence of product mix and multi
stages of production line. Many variables can affect on the
throughput degradation of each stage for example break down
of machine, lead time of manufacturing, and scrap, which
caused maybe by error of machines, material, and workers.
Changes in demand in terms of type and volume also affect
the throughput because of changing of customer needs and
interests. On the other hand, the company requires having
innovation on design of new products in order to survive in
today’ s competitive manufacturing world.

[10] Emphasized to have the right demand quantity
estimating for surviving in a constantly fluctuating business
environment. Managing random variables of production by
making a robust estimating maximize the profitability.
Production line uncertainty is taken to attention recently
because of needs to handle the uncertainty using development
of new methodology and computational approaches.
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Study on production uncertainty is an opportunity for new
research and development [6]. Analyzing and estimating
throughput is being crucial because the efficiency of the
production system is usually measured using throughput [14].
Managing production in terms of supply and demand requires
forecasting of both time ddivery and quantity [10], [11].
Different strategies and approaches are proposed to overcome
the production uncertainties. However there is not a formal
strategy or standard approach [10]. It is still under
development and optimization. The empirical study on the real
production line and actua data from industry are required
overcoming to the production uncertainties.

Discrete event simulation and stochastic planning are
among the famous approaches. Simulation can be applied for
any production system to estimate the throughput, however it
is not robust and this becomes a computational chore when the
number of alternatives to be examined is large [14]. Stochastic
planning indeed is difficult to solve and impractica because it
uses assumed scenarios. The main problem with the stochastic
planning is how to make sure that the assumed scenarios will
be exactly observed in future. This paper offers a robust
procedure for modeling the throughput under popular
production uncertainties. This paper is organized in five
sections. Section |l presents literature review. Section Il
presents the methodology of Bayesian regression modeling.
Section IV shows the results and Bayesian model. Section VI
shows the conclusion of this paper.

I1.LITERATURE REVIEW

Throughput is considered for analysis and modeling as an
important measure of production line performance [15]-[17].
[19] Provided a review paper of models under uncertainty for
production planning. He highlighted that the models for
production planning, which consider the uncertainty can make
superior planning decisions compared to those models that do
not present for the uncertainty. On the other hand, [22] have
shown using simulation that ignoring uncertainty sources lead
to wrong decisions. [3] categorized uncertainties into two
groups. (1) environmenta uncertainty and (2) system
Uncertainty. Before 1990 focusing on uncertainty was more
on environmenta uncertainty [2]. Investigating about
uncertainties on a production line is launched by [1]. [21]
compiled al the uncertain factors through different sources,
which are system uncertainty, lead time uncertainty,
environmenta uncertainty, supply uncertainty, operation yield
uncertainty, interrelationship between levels, demand
uncertainty, probabilistic market demand and product sales
price, capacity, breakdown, changing product mix situation,
labour hiring and lay-offs, quantity uncertainty, cost
parameters, and quality. Many papers worked on throughput
analysis using conventiona approaches such as simulation and
analytical methods [15].
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Simulation method and approximation algorithm are  1ll. BAYESIAN INFERENCEREGRESSIONVIODELING

applied for analyzing throughput under uncertaistich as  gayesian inference use distribution-based approetuére
unreliable machine and random processing timeseXample  the prior probabilities were utilized to quantifyjaertainty

studied by [23] & [24]. [18] provided an analyticaguation eqarding the occurrences of events. Bayesian enéer
for the general case where there are two worksistia a algorithm is illustrated in Fig. 1.

serial production line. In his model, the worksias have

unequal processing time, downtime, and buffer sizkile
[15] considered a serial production line includingo
workstations with same speed and buffer size. ER] [17]

demonstrated that the processing time and down diffest | Load dat2 |
the throughput or production volume. [22] examingzd |

effects of three uncertainties namely demand, neaturfing Taputs
delay, and capacity scalability delay. They fourhatt

manufacturing delay has highest impact. A recentesuhave

been performed on material shortage, labor shartagehine |

shortage, and scrap to show the association ofethes 4'| Selection of probability i-
uncertainties on the product tardy delivery throaglalysis of ; [ 1
variance, correlation analysis and cluster anal : — — — -

[4] proposed to usey buffer to mange[%]r}fcertainty in [ Priospeobablty for mpots J [mﬂ'h”dpmbabﬂ“} o mmﬂm]
production system. However they did not make a sbbu | |
decision by forecasting based on relationship afeuminties | o pﬂmgb‘_;mmmfmce |
and throughput. Later, [5] studied on supply-dedhan -
mismatches. They believe that the long deliveryetiof l
throughput to supplier caused because of lead timsertainty | Sampling by MCMC |
in production system, which leads to lost salesweél@r in
their proposed methodology to manage lead time naiogy, | Choose mumber of smmlafions |
they did not consider other production uncertamtitnd also T
the rate of demand is assumed to be constant in whuek. | Generation of posterior |
Approximate method also is used for forecastingughput, T
[14] presented an analytical algorithm to analyrnd predict | Check the model validation |
the production throughput under unbalanced workstsf I
where operation times of stations are random. Aritlyb
combination of autoregressive integrated moving raye
models and neural network for demand forecastinguioply
chain management is presented by [11], [12]. Thexetbped
a replenishment system for a Chilean supermarked. lihear
regression models for strategy, environmental uaggy and
performance measurement in New Zealand manufagturin
firms are formulated by [7].

Recently, a model using ANFIS has been developed fo
production throughput under uncertain conditior@].[A data
mining approach is utilized for cycle time predictiby [13].

A panel or longitudinal data sets for uncertain dath and

Fig. 1 Flow diagram of computations in Bayesiariafce

price have been considered to evaluate the alteeneapacity
strategies using simulation [25]. Recently [26] gwsed an
autoregressive moving average model for
bottleneck prediction of a serial production linendar
production blockage and starvation times. Other aempts

A.Load data

throughput The data observed for input uncertainties and titiput of

production was translated to the BUGS languagenbgrting
them into the R software. The translated data waddd by

have been carried out using ARIMA or other methodsnporting them to the model programmed in BUGS.ig |

combined with RAIMA to develop the forecasting nehin
manufacturing area [27], [28].
proposed for modelling production uncertaintiesairserial
production line [38], [39].

Stochastic variables of production

from the vector of output and each uncertain vdgiabas

ARIMA approach wadleveloped by using a command for reading the data.

B. Selection of probability

lines are siidie Problem formulation with predefined probability &g

separately for example on breakdown by [16] and ofxPlicitly considered the stochastic property ofe th

processing time by [14]. This study is considerimgpre

uncertainties. The selection of probability wasididd into the

variability into the consideration. Variability cdre measured Prior distributions of inputs and the likelihoodsttibution for

by the coefficient of variation [14]. Therefore teeonomic
uncertainty needs the mathematical Models [10].

observed data. These two probability distributiovere two
main input components of Bayesian inference.

1947



International Journal of Mechanical, Industrial and Aerospace Sciences
ISSN: 2517-9950
Vol:6, No:9, 2012

C. Prior distribution

Prior distribution refers to the historical behavior of the
inputs. Its selection for inputs is done before observing the
data. This behavior can be €elicited from the experts [29]. The
distribution of prior usualy is defined in question by the
normal distribution with mean of zero and low variance.
Unfortunately, as the propagation of uncertainty may change
with time, the prior information on the inputs cannot assume
true. Therefore, the determination of prior probability
distribution is done by thetrial and error method.

BUGS can modify the approximate prior by considering the
sum of Gaussians cantered on each sample generated. The
selection of prior probability distribution to express the
uncertainty propagation of inputs can be examined with
different distribution to see which one is more accurate based
on lower error generated.

One way to compare the models with different probability
distributions is to use a criterion based on trade-off between
the fit of data to the model and the corresponding complexity
of the mode. A Bayesian model [30] was proposed to
compare criterion based on deviance information criterion
(DIC). For each uncertain variable, three popular probability
distributions were examined: uniform, exponential and
normal. The posterior probability distribution function of the
model parameters was computed from the defined prior
probability distribution function. The best prior probability
distribution was based on lower DIC comparison.

D.Likelihood

The purpose of selecting likelihood probability distribution
is to identify the best probability function which can fit the
observed data The likelihood function for production
throughput was computed using the conditiona distributions
given the data observed in a tile industry. The probability
distributions of normal, exponential, Weibull, and logistic
function were tested. The procedure was to maximize the
likelihood to fit the data better. Dependencies values between
variables were aso identified through the conditional
probabilities. The predicted values were gained through the
equations (1) and (2).

p@IY) =/p @l p (xly) dx (1)
1 _ 1l o2
= for normal distribution= p (§ly) = fc\/ﬁ e( 202 () X
1 ez ? )
A dx
where

§ = future observation,
y = observed at given x.

E. Compilation

The compilation process utilizes both prior and likelihood.
It synchronizes the information about the uncertainty before
observation and the behavior of data after observation. The
compiling is to multiply the prior distribution and likelihood
probability.

F.Sampling

Various samplings were computed from the joint posterior
distribution. Markov chain method is used to obtain sample
from full conditiona distributions. A vector of unknown
parameter was considered to consist of n subcomponents.
Then the sampling started choosing the value of unknown
parameters from the conditional distribution to find the best
value of the beta for the posterior distribution, where the
posterior distribution was maximized. Gibbs sampling
algorithm was utilized because it is the robust procedure of
MCMC. The Gibbs sampling algorithm approximated the
posterior distribution function by making random draws from
the probability distributions of the input uncertainties and
evaluating the model at the resulting val ues.

G.Quantity of smulations

Four simulation runs of 1000, 5000, 8000, and 10000 for
drawing samples were examined to test the model based on
DIC. Simulation started from 1000 and was increased until it
reached convergence. The amount optima simulation run was
determined by the higher level of convergence and the lower
value of DIC.

H.Generation of posterior

The posterior is the product of observation probability
(likelihood) and previous information (prior). Different
samplings were performed to generate posterior of unknown
parameters. Each kernel of the generated sample had weight in
term of closeness to the posterior. Kernel is a function of the
sample variance. Closer kernels dominated the posterior. Final
posterior was obtained by weight-normalizing of sum of
kernel products, which had the best posterior mean and
variance.

Fig. 2 shows a construction of Bayesian black box diagram.
A processor of Bayesian inference engine including rules of
probabilities and Bayesian theory to derive the posterior mean
and variance of the model is at the centre of the diagram.

Prior

Likelihood of
observed data

distribution of
break-time

Prior
distribution of
demand Estimations
of the
posterior
parameters

Bayesian inference
Prior engine
distribution of
lead-time

Prior
distribution of
setup-time

Prior
distribution of
scrap

Fig. 2 The construction of Bayes an inference model

Two different sets of prior uncertainty were assigned for
each uncertain variable. Two competing models were
generated into two chains denoted by M1 and M2 as shown in
equation (3). Bayesian inference engine used the Bayes factor
(BF) to anayze the model proposed as shown in equations (4)
and (5). The data observed for each uncertainty was denoted
by X.
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B(x) = M 11)p(M1) ®3)
(M2 [xYp(M2)

My f1 (x| B;) and My 5 (X | B;) 4

where

x(M, 1%) _ pM/p(q, | IBIR B
7T.(M2|X) p(Mz)/p(x) IfZ(Xlﬁu)pz(B|)dB,

(5)

When the M, is as the null model, the possibilities of BF
results are as follows.

If BF(x) =1 =>M;supported,

If 1>BF(x) >10"?=>minimal evidence faced for M,

If 102> BF(x) = 10™ => substantial evidence faced for M,
If 10" > BF(x) =102 => strong evidence faced for M,

If 102 > BF(x) => decisive evidence faced for M.

The error of Monte Carlo (MC) for sampling procedures
was calculated for each uncertain parameter by equation (6).
SD

MC error = 2«/Number of iterations (6)

|. Check the model validation

The model validation was verified through two ways of
checking. First checking was by visua inspection of
trace/history plots to see if the model is convergence. The
model convergence was achieved when the chains were
overlapping. The second way of checking was to check the
autocorrelation. The convergence graphicaly presents the
distribution of uncertainty. Gelman Rubin datistic (GRS)
showed the convergence ratio [31]. The autocorrelation is
defined between zero and one. A slow convergence shows the
high autocorrelation, indicating validity of model.

IV. RESULTS

A.Model programmed in BUGS

Table | presents the BUGS model expressions. The sign ~
indicates a stochastic relationship, where Tau =1l/variance
showed precision level. The c function combines objectsinto a
vector, where the variable x was collected by different values
that were measured in different period of time.

TABLE|
DESCRIPTION OF THE BUGS MODEL EXPRESSIONS

Expression Type Usage
dnorm Normal distribution x ~ dnorm (mu, tau)
c Vector of dataset X = ¢ (X, X2, Xn)

B. Probability distribution test

Four popular probability distributions including normal,
Weibull, logistic, and exponential were tested. Fig. 3 shows
the normal distribution is the best fit for production throughput
and Fig. 4 presents the summary of the norma distribution
function.

Probability Plot for Production

Exponential - 95% CI

Normal - 95% CI Goodness of Fit Test

Normal
AD = 0.506
P-Value = 0.198

10 Exponential
AD = 28.189

P-Value < 0.003

.

Percent
B.5 8 3885
Percent

ey
- 93

Weibull

AD = 0.745

5000 10000 15000 20000 10 100 1000 10000 100000 | P-Value = 0.050
Production Production

Logistic
Logistic - 95% CI AD = 0.600
9%. P-Value = 0.080

Weibull - 95% CI

Percent
~ 5 838
D
D
Percent
o s w9 9
L . 5888

0.1 .
2000 5000 10000 20000 [ 10000 20000
Production Production

Fig. 3 Testing four popular probability distributions

Summary for Production

Anderson-Darling Normality Test
A-Squared 0.51
PValue 0.198

Mean 11602
StDev 2735
Variance 7482517
Skewness 0.330185
Kurtosis -0.372662
N 104

Minimum 5962
1st Quartile 9610
Median 11308
3rd Quartile 13298

-

6000 800 10000 12000 14000 16000 18000 Maximum 19000
95% Confidence Interval for Mean

— T = 11070 12134
95% Confidence Interval for Median

10578 12515
95% Confidence Intervals 95% Confidence Interval for StDev

2407 3168

Mean- }—0—{
Median-
10500 11000 11500 12000 12500

Fig. 4 Anderson-Darling normality test

C. Checking the programmed model

After programming, the model was checked for any
completeness and consistency with the data. The initia values
were generated by sampling from the prior. The model
programmed was proven syntactically correct and compiled.

D.Convergence diagnostics test

Computational results of the lowest MAPE were selected in
this section for the Bayesian model. The convergence
diagnostics were checked through two chains results. The
convergence was achieved because both chains overlapped
each other, according to [32]. The dynamic race plots of the
stochastic parameters with 10,000 iterations were done to
check the convergence on 95% credible interval. Fig. 5
graphically shows the results.

DIC is the summation of goodness of fit and complexity.
Devianceis the average of the log likelihoods calculated at the
end of iteration in Gibbs Sampler. The definition of deviance
is- 2 x log (likelihood). Likelihood is defined as p (yltheta),
where y comprises all stochastic parameters given values and
theta comprises the stochastic parents of y - 'stochastic parents
are the stochastic parameters upon which the distribution of y
depends, when collapsing over al logical relationships.

1949



International Journal of Mechanical, Industrial and Aerospace Sciences
ISSN: 2517-9950
Vol:6, No:9, 2012

beta0 chains 2:1 betal chains 2:1
20.0f ear
10.0 19
00 00
-40.0 |- 2ot
200 4ol
19850 19900 19950 19850 19900 19950
iteration iteration
betaZ chains 2:1 beta3 chains 2.1
4.0f 20.0[-
2 A oo R b e il s
i e L L i ipd il i
-z,u'v Y b 100f L L Y
4.0 2001
19850 19900 19950 19850 19900 19950
iteration iteration
betad chains 2:1 betab chains 2.1
39
204 00
0.0 20
2.0 40k
40l 60|
19850 19900 19950 19850 19900 19950
iteration iteration
deviance chains 2:1
1960.0 |-
1950.0 |-
1940.0 4]
1930.0 |-

19850 19900 19950
iteration

Fig. 5 Dynamic trace plots of uncertain parameters

E.Kernel density

Fig. 6 shows the value of Kernel density for edtcitlsastic
parameter was performed on 10000 samples. The adiegr
indicated smoothed kernel density estimate. Thendge
indicated the posterior distribution of each statita
parameter is normal like prior distribution, thusying the
estimations were robust and logical.

betal chains 1:2 sample: 20000 beta1 chains 1:2 sample: 20000
015 06
01} 04|
0.05F 0.2 44;//f“\\\\47
0.0 0.0k
200 -100 00 100 50 25 00 25
beta2 chains 1:2 sample: 20000 beta3 chains 1:2 sample: 20000
08| 015
06| 0.1l
04|
05} 0.05]-
0ol 0ol
4.0 20 00 20 -200 10.0 0o 100
betad chains 1.2 sample: 20000 betab chains 1.2 sample. 20000
06| 06|
04| 04|
0.2 0.2 ___,///\\\K__
0ol ool
4.0 20 00 20 5.0 25 0o 25
deviance chains 1.2 sample: 20000
03|
0.2
o1l /ﬂ\\\__gggi
0.0

19‘3[],0 154:10,0 19‘5[],[]
Fig. 6 Kernel density of the uncertain parameters
F. Running quartiles
Running quantiles plot out the running was donenfi@an
with running 95% confidence intervals where 100@@ations
were used. Results are presented in Fig. 7.

betal chains 2:1 betal chains 2:1

Shoma
coooo
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cocsoo

T T T T T T T T
10401 12500 15000 17500 10401 12500 15000 17500
iteration iteration

beta2 chains 2:1 beta3 chains 2:1

Shoma
cocooo

Bhoap
cooeoo

T T T T T T T T
10401 12500 15000 17500 10401 12500 15000 17500

iteration iteration
betad chains 2:1 beta5 chains 2:1

Nhoam
cocooo
Nhoam
cocooo

10401 12500 15000 17500 10401 12500 15000 17500
iteration iteration

deviance chains 2:1
19500 |-
1945 Q- === =77 77T mmemmmemnes
19400 |-
1935,0-7"'1’ """ " """ I .

10401 12500 15000 17500
iteration

Fig. 7 Running mean of the uncertain parameters

G.Autocorrelation function

The autocorrelation function for the chain of epalnameter
indicated the dimensions of the posterior distidmutwere
mixing slowly before 20 lags in each case. Slow ingxis
often associated with high posterior correlatiorstween
parameters.

H.Gelman Rubin statistics

Gelman Rubin statistic (GRS) was performed for all
stochastic parameters, which were modified by [32]
equation (7). The idea was to generate the multiplains
starting at over dispersed initial values, and ss=® the
convergence by comparing within-chain and betwdweirc
variability over the second half of those chains.

GRS=A/W @)

Where

A= width of the empirical credible interval basedgamples
pooled together (2 chains x 10000 iterations).

W= width average of the intervals across the twairth

The GRS is to average the interval widths (showmeit
color). It should be 1 if the starting values auitably over
dispersed and the convergence is approached. [Tikeahd
green interval lines should be approximately siadil to
constant value (not necessarily 1). It is proved shown for
all five stochastic parameters in Fig. 8.
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Fig. 8 Gelman Rubin statistic for the uncertairgpaeters

10051

Where

Green = width of 80% intervals of pooled chainsowdtl be
stable

Blue = average width of 80% intervals for chainsodd be
stable

Red = ratio of pooled/within: should be near 1

I. Box plot of posterior

Box plot of posterior efficiency distributions apeesented
was

in Fig.9. The calculated baseline value

11595.7809089724.

Fig. 9 Box plot of posterior efficiency distributie

J. Mode fit

Fig. 10 Fitted value compare with actual values greduction
throughput observed with 95 % interval

Where

Red = posterior mean gf,
Blue = 95% interval,
Black dot = observed data

Fig. 11 Fitted value compare with actual values dreakdown time
observed with 95 % interval

K.Posterior estimates

The final set of posterior estimates using Gibbeang in
95% credible interval was summarized in Table 2eTh
percentiles of 2.5% and 97.5% of posterior estimam®duce

Fitted values were compared with actual values fdn interval, which the parameter lies with prokigbof 0.95.

production output, breakdown, demand, lead timeypseéme,
and scrap in 95% interval. The results showed prtoiu

throughput and demand had similar upward trend ewhil

breakdown time, lead time, set up time, and scexpdimilar

downward trend. Fig.10 shows comparison betweetedfit

values to actual value for production throughpuhjlevFig.11
presents the similar comparison for breakdown time.

TABLE Il
SUMMARIES OF THE POSTERIOR DISTRIBUTION
Coefficien mear Std. Dev MC errol mediar
BO 0.01343 3.179 0.0242 0.02376
B, -0.0849 2.896 0.01872 -0.1016
B, 0.9585 0.1596 0.001056 0.958
B3 0.1268 0.6618 0.004444 0.1246
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B, -0.0458 3.156 0.02213 -0.0614 [7]
B, -0.1481 0.7179 0.005325 -0.1474
Deviance 1939.0 2.383 0.01624 1939.0

[8]
The value of MC error shows an estimate ®f §N). The
batch means method outlined by [31] was used tmatdoc. (9]
[10]
Finally, the Bayesian model is formulated as presgiin
equation (8).
P(t)~ 0.01343 — 0.0849 B(t) + 0.9585 D(t) + [
0.1268 L(t) — 0.04589 Se(t) — 0.1481 S (t) 8)
[12]
V.CONCLUSION
This paper modeled the uncertain variables of @lstiie  [13]
production line consist of demand, break-time, gcrand
lead-time. The contribution of this paper was tasider more |14
uncertainties and propose Bayesian inference rsigreso
model the five uncertain variables with the product
throughput. The proposed model can be used to qiréu (15]
production throughput efficiently, and presents the

mathematical relationship between the main prodaocti [16]
uncertainties and throughput. It provides quick avi”
comparisons. Other types of production systemsiraaukstries
are recommended for future studies. The best stionkg
iterations of MCMC were 10000 and the best prior
distributions for stochastic variables were noruiatributions  [18]
for the Bayesian model. The second model proposad w
based on Bayesian inference. This approach utilizedprior |1,
knowledge on uncertainties and existing informatiased on
data analysis of throughput and uncertainties. Tdleust
Gibbs sampling is applied for MCMC to produces atable
knowledge on prior events when analytical solutiavere
unavailable. The Bayesian model results generateel
posterior information on propagation of uncertastiand
relationship between them and the throughput wiB%9
credible interval and accuracy of 98.3%.

[17]

[20]

[21]
t
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