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Abstract—This paper presents a linear-elastic finite element 

method based flattening algorithm for three dimensional triangular 
surfaces. First, an intrinsic characteristic preserving method is used to 
obtain the initial developing graph, which preserves the angles and 
length ratios between two adjacent edges. Then, an iterative equation 
is established based on linear-elastic finite element method and the 
flattening result with an equilibrium state of internal force is obtained 
by solving this iterative equation. The results show that complex 
surfaces can be dealt with this proposed method, which is an efficient 
tool for the applications in computer aided design, such as mould 
design. 
 

Keywords—Triangular mesh; Surface flattening; Finite element 
method; Linear-elastic deformation 

I. INTRODUCTION 
D surface flattening is currently widely used in the field of 
CAD and computational geometry. Flat patterns generated 

from original 3D surfaces can be used for reverse engineering 
to approximate the 3D objects, and are also critical for creating 
a texture mapping. In practice, 3D surfaces can be classified 
developable surface and non-developable surface according to 
their malleability, and 3D surfaces are usually 
non-developable. The development of a non-developable 
surface is a complicated process and distortion is inevitable 
during surface flattening.Up to now, many researchers 
developed a lot of methods to solve the flattening problem. The 
most common methods used in surface flattening are energy 
based method, energy functions are created by physical model, 
and flattening results can be obtained by solving a minimum 
energy or equilibrium state. McCartney et al. [1] presented a 
flattening algorithm by deforming edges of the triangular mesh 
with an energy model in terms of the strain energy. In addition, 
the process of flattening was capable of handling the insertion 
of darts and gussets. Based on the same methodology, Wang et 
al. [2] presented a method for three-dimensional surface 
flattening, a mass spring model based energy function was 
created and penalty function is applied to recover the 
overlapped area. Recently, Wang et al. [3] proposed another 
method based on fitting a woven-like mesh model on a 3D 
freeform surface. It consists of two steps, the first step is to 
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insert the seeds in the discrete geodesic curve generation 
algorithm for 3D surface fitting, and then to establish the planar 
coordinate mapping between the 3D surface and its counterpart 
in the plane by geodesic interpolation of the mappings. Strain 
energy minimization was emphasized in both seed insertion 
and the mapping procedure. Zhong et al. [4] also presented a 
mass spring model based method to divide the 3D surface into 
nearly developable charts, and then flatten these charts.Besides 
these energy based methods, Parida et al [5] proposed an 
algorithm to develop complex surfaces. Their algorithm first 
obtains an approximate planar graph, and then reorients cracks 
and overlapping parts in the developed plane to satisfy 
orientation constraints. Their algorithm might generate many 
accumulative errors and cracks. Floater [6] presented a 
parameterization method based on graph theory. In this 
method, the position of each vertex in the flattened pattern was 
determined by solving a linear system based on convex 
combinations. A major disadvantage of this method is that it 
requires the boundary of the two-dimensional mesh to be 
predefined and convex. Sheffer et al. [7] presented an angle 
based method to compute planar triangulations for surface 
parameterization. This method focus on directly optimizing the 
geometric distortion metric of angles, obtains the flattening 
result by solving a nonlinear system. It is usually require 
extensive computation due to highly non-linear. L´evy et al. [8] 
presented a quasi-conformal parameterization method based on 
a least-square approximation. This method used an objective 
function to minimize angle deformation, and a complex surface 
was decomposed into charts with natural shapes. However, the 
chart was smaller when the boundary of the surface self 
intersected in the texture space. Liu et al. [9] proposed a 
local/global algorithm, which combines a local mapping of 
each triangle to the plane, with a global "stitch" operation of all 
triangles, involving a sparse linear system. Our algorithm can 
be viewed as a variant of recent energy based surface flattening 
methods. All these methods generally consist of two steps. The 
first step is to calculate an initial developing pattern, and the 
second step is to reduce the difference between initial 
developing pattern and the 3D surface by an iterative method. 
Therefore, the main issues we concerned about are the 
appropriate initial developing pattern and the energy based 
iterative method. 
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II.  PROBLEM STATEMENT 
The input of our algorithm is 3D surfaces described by 

triangular meshes. Triangular meshes M = (V, E, T) can be 
represented as a set of three dimensional vertices, edges and 
faces. V = {vi}(i=0,1,…,n-1)∈ R3 is the set of vertices, n is the 
number of vertices; edges E = {ei}, e = {vi, vj} is composed of 
two adjacent vertices vi and vj; triangular faces T = {ti}, t = {ei, 
ej, ek} is composed of three adjacent edges. The adjacent 
vertices of vertex vi are denoted by N(vi) = {vj∣ (vi, vj)∈ E }, 
the number of adjacent vertices is called the degree of vertex vi, 
and is denoted as |N(vi)| . In order to flatten the triangular mesh 
M, the process of our proposed algorithm for 3D surface 
flattening is described in detail as follow. 

Step 1: Import three dimensional triangular mesh M, and 
some preparations for surface flattening are required, such as 
hole filling [10]. 

Step 2: Obtain the initial planar graph by keeping the 
intrinsic characteristics of original triangular mesh M. 

Step 3: Create the linear-elastic finite element energy model, 
build the planar stiffness matrix, and calculate the internal force 
for every node based on its displacement. 

Step 4: Obtain the displacement of every node in initial 
planar graph by solve the internal force equilibrium function. 

Step 5: Calculate the value of internal force and 
displacement of every node, if they meet the convergence 
criterion, then output the flattening results, otherwise go back 
to step 3. 

III. SURFACE FLATTENING USING A ELASTIC FORCE 
EQUILIBRIUM MODEL 

In this section, a linear method based on keeping the intrinsic 
characteristics of angles and length ratios is introduced to 
create the initial planar graph, and an iterative energy release 
method based on linear-elastic finite element method is used to 
obtain the final flattening result. 

1) Initial planar graph created by preserving intrinsic 
characteristic 

It is important to create an appropriate initial planar graph, 
means that the initial planar graph is close to the global 
optimization and is little time-consuming. In order to get an 
appropriate initial planar graph, a linear method is adopted by 
preserving the intrinsic characteristics of angles and length 
ratios between two adjacent edges [11]. For a triangle T=△
p1p2p3 in triangular mesh M, the adjacent edge of p1p2 is p1p3 in 
counterclockwise; α213 is the orientation angle between p1p2 and 
p1p3; λ213 is the length ratio between p1p2 and p1p3, 
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|| ||
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λ = ; p1p3 is considered to be a edge which firstly 

rotate α213 from p1p2 and then scale λ213, the vector equation can 
be obtained: 
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The equation (1) is invariant to geometric transformation 
such as translation, rotation and scaling, it determines the 
relative positions with respect to its first order neighborhood 
vertices. In two dimensional space, vi = (xi, yi),  i = 1,2,3, 
equation (1) can be written as: 
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(3) 
Equation (3) can be obtained for arbitrary two adjacent edges 

in triangular mesh M, then the simultaneous equations can be 
obtained equivalent to the matrix form: 

AX=0                                         (4) 
Equation (4) only preserves the relative position in triangular 

mesh M, hence, global positions for some constraint nodes are 
required to specify. We generally specify the planar 
coordinates of a flat mesh or the planar coordinates of boundary 
nodes. Let Ps= (xs,ys) (s=0,1,…,l-1)∈ R2 be a set of constraint 
nodes, l is the number of constraint nodes, we can get the 
position constraint equations: xs = xt, ys = yt, (s,t=0,1,…,l-1), 
which is equivalent to the matrix form: 

CAX－R = 0                                     (5) 
where matrix CA is a sparse matrix with 2l row and 2n column; 
R is 2l×1 matrix composed of the coordinates of vertices of Pt. 

Our objective is to create the planar graph by preserving the 
angles and length ratios between two adjacent edges, and at the 
same time let the planar graph satisfy those position constrains. 
Penalty method is used here to achieve our objective, therefore, 
the penalty function is  

T T( ) ( ) ( ) ( ) ( )A AE θ= + − −X AX AX C X R C X R                    (6) 

where θ is the penalty number, Put T T
K A Aθ= +A A A C C and 

the above penalty function can be reformulated as the 
following: 

T T T T
K A( ) 2E θ θ= − +X X A X X C R R R                        (7) 

Let ( ) 0E∂
=

∂
X

X
, it follows that 

T
K Aθ=A X C R                                     (8) 

The matrix A, K, and CA are sparse matrix, therefore the 
coefficient matrix AK of function (8) is a sparse matrix, a fast 
solution for sparse equation (8) cab be derived by TAUCS lib 
[12]. 
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Fig.1 Spatial triangle and its corresponding local coordinate system 

2)  Flattening optimization based on linear-elastic finite 
element method 

For the triangle T=△ p1p2p3 given in section 3.1, we can 
establish local coordinate system oxyz. Let the origin of oxyz 
placed in point p1, axis x orientates along p1p2, axis y is 
perpendicular to axis x and points to the side of point p3, the 
local coordinates of triangle T can be denoted as Pi= (xi,yi), i = 
1,2,3. The coordinate transformation matrix between local 
coordinate system and global coordinate system can be 
obtained directly 

0 0
0 0
0 0

⎡ ⎤
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⎢ ⎥⎣ ⎦

λ
T λ
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                                            (9) 
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λ , lox ， mox ， nox is the cosine 

value of axis ox corresponding to axis X，Y and Z respectively 

in global coordinate system, loy，moy，noy，loz，moz，noz can 
be calculated similarly.   
 The local coordinate system o0x0y0z0 is established in 3D 
triangular mesh, while onxnynzn is the local coordinate system in 
planar mesh corresponding to the triangle in 3D. The local 
coordinates of vertices in o0x0y0z0 and onxnynzn are x(3)、y(3) 

and xn(3)、yn(3) respectively. The stiffness matrix of triangular 
element e in local coordinate system is expressed as: 

e
e

T T

v
dv hA= =∫k B DB B DB                                   (10) 

where matrix B is the strain matrix of triangular element; 
matrix D is the elastic matrix defined in [13]; h is the thickness 
of the element; A is the area of triangular element. The strain 
matrix B can be written as: 
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where yij = yi – yj, xij = xi – xj, ( , 1, 2,3)i j = 。The stiffness 
matrix of element e in global coordinate system: 

e T e=K T k T                                     (12) 
where matrix T is the coordinate transformation matrix 

defined in equation (9). 

Suppose that the displacement vector triangular element in 
local coordinate system is q, 
                     T

1 1 2 2 3 3[ , , 0, , , 0, , , 0]x y x y x y= Δ Δ Δ Δ Δ Δq  
Let the local coordinate system onxnynzn is placed at 

o0x0y0z0, therefore, the value of displacement vector q can be 
calculated as follows 
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                         (13) 

Therefore, the stress of triangular element can be written as: 

u

v

uv

σ
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τ
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DBq                                   (14) 

Finally, the internal force of triangular element e in global 
coordinate system can be calculated: 

{ }
e

T T T T
in

v

dv hAσ= =∫F T B T B DB q                          (15) 

The states of three dimensional triangular mesh and planar 
mesh are considered, the linear-elastic deformation from three 
dimensional triangular mesh to planar mesh will cause node 
residual internal forces, and which has ignored the impact of 
external loads [14]. In order to obtain an equilibrium state of 
the internal force, Newton-Raphson (abbreviated as N_R) 
iterative method is used, and we can obtain the N_R iterative 
form: 

in ( )i i

ω

⎧ Δ =⎪
⎨

= +⎪⎩

i

i+1 i i

K q F q

q q Δq
                                     (16) 

where matrix K is the global stiffness matrix of triangular 
mesh M in global coordinate system, ( )in qF can be calculated 
by equation(15) for every element; where 0 <ω<1 denotes the 
relaxation factor; Δqi is the displacement of the ith iterative 
step. 

The purpose of iterative solution is to achieve a relative 
equilibrium in final state. Here, we adopt the displacement 
convergence criterion and internal force convergence criterion 
to determine the convergence and the convergence criterion are 
determined as: 
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where n is the number of nodes, ε and γ is the given precisions, 
the precision of displacement convergence criterion is 10-2, 
while ε is 10-3 for internal force convergence criterion. The 
iteration will be terminating if one of the convergence 
criterions is satisfied. 

IV. EXPERIMENTAL RESULTS 
In this paper, the described mesh projection algorithm was 

realized using object-oriented programming and C++ language, 
and was implemented on a 3.00GHz Pentium(R) 4 computer 
with 2.00GB memory. The present method is applied in surface 
flattening of different engineering fields such as model design, 
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mesh regeneration. In the following, we show several flattening 
examples using our method, and the data statistics and timings 
for these examples will be given. 

The first example in Fig.2 shows a three ball surface 
flattened by the method. Fig.2(a) shows the three dimensional 
model with 1925 triangle facets and 790 nodes. Fig.2(b) shows 

the initial planar graph by preserving the intrinsic 
characteristics of angles and length ratios between two adjacent 
edges. After the internal force is released by linear-elastic finite 
element method, the resulting flattening surface with low 
distortion is shown in Fig.2(c). 

 

 
(a)                                                  (b)                                                            (c) 

Fig. 2 Flattening of three ball surface (a) three ball model, (b) initial planar graph by intrinsic characteristic preserving, (c) flattening results by 
linear-elastic finite element method 

 
We tested the sensitivity of our algorithm to different types 

of constraints defined in initial planar graph generation. 
Fig.3(a) shows the side floor model with 12174 triangle facets 
and 6262 nodes. Fig.3(b) shows the initial planar graph with 
constrained region, and the final flattening surface after 8 times 
iterations is shown in Fig.3(c). Fig.3(d) shows the initial planar  

 
graph with several constrained nodes, and the final resulting 
flattening surface after 10 times iterations is shown in Fig.3(e). 
From Fig.3, we can see that the constraints only affect the times 
of iteration in the progress of internal force release iterative, 
and the final resulting flattening surface is not sensitive to the 
constraints. 

 
Fig.3. Flattening of side floor with different constraints (a) side floor model, (b) initial planar graph by constraint region, (c) flattening result with 

result of Fig.3(b), (d) initial planar graph by constraint nodes, (c) flattening result with result of Fig.3(d) 
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Fig.4 shows the flattening result of a fender surface using in 
mould design of auto body. Fig.4(a) shows the three 
dimensional model with 28954 triangle facets and 15096 
nodes, the model is very complex and many elements are 
undercut. The flattening result with 10 times iteration is shown 
in Fig.4(b). From Fig.4, we can see 
that flattening result is similar to the original model with low 
distortion. Table.1 shows the data statistics and runtime for 
several model presented in this paper. The initial time refers to 
the initial planar graph generation by our intrinsic 
characteristics preserving method, while the iterative time 
refers to the internal force release by Newton-Raphson 

iteration. The runtime of side floor refers to the initial planar 
graph with constrained region shown in Fig(b). In order to 
confirm the effectiveness of our algorithm, we adopt angular 
distortion and area distortion to evaluate the flattening 

distortion. Similar to [6], the angular distortion is ( )
3 f

E
n
α , 

where E(α) is defined in [6] as follows. 
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j j
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j k T k
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= −∑ ∑                             (20) 

     
(a)                                                                                               (b) 

Fig.4 Flattening of fender (a) three dimensional surface, (b) flattening result 
 
Where nf is the facet number; j

kα  is the planar angles and 
j

kβ  is the original angles; the weight j
kω  are set to 21 j

kβ . Area 
distortions in this paper are measured by method proposed in 
[6]. 

TABLE.I  
STATISTICS AND RUNTIME 

 
Model 

Mesh data Runtime Distortion 

Node Facet Initia
l 

Iterativ
e Angle Area 

Three 
balls 790 1925 0.03 0.21 0.00289 0.0247 

Side 
floor 6262 12174 0.21 1.95 0.00575 0.0156 

Fender 15096 28954 1.03 8.92 0.00781 0.0129 

V.  CONCLUSIONS AND FUTURE WORK 
An efficient flattening algorithm for triangulated surface is 

presented in this paper. An intrinsic characteristics preserving 
method is introduced in order to generate the initial developing 
graph. The method is little time consuming and the generated 
initial developing graph is close to the global optimization. 
Then, the linear-elastic finite element method is introduced to 
release the internal force. Unified and explicit formulas are 
derived to compute the flattening results, and the presented 
method is easy to comprehend and to implement. Numerical 
results show that the flattening results obtained by our method 
have small distortion compare with the three dimensional  
 

 
meshes, and can deal with most complex surfaces efficiently 
and robustly.In future work, we will consider the surface 
flattening problem with conformal mapping technology. The 
conformal mapping technology will reduce the distortion 
during flattening process, and a new equilibrium state is taken 
into account to speed up the convergence.. 
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