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Abstract—How to coordinate the behaviors of the agents through 
learning is a challenging problem within multi-agent domains. 
Because of its complexity, recent work has focused on how 
coordinated strategies can be learned. Here we are interested in using 
reinforcement learning techniques to learn the coordinated actions of a 
group of agents, without requiring explicit communication among 
them. However, traditional reinforcement learning methods are based 
on the assumption that the environment can be modeled as Markov 
Decision Process, which usually cannot be satisfied when multiple 
agents coexist in the same environment. Moreover, to effectively 
coordinate each agent’s behavior so as to achieve the goal, it’s 
necessary to augment the state of each agent with the information 
about other existing agents. Whereas, as the number of agents in a 
multiagent environment increases, the state space of each agent grows 
exponentially, which will cause the combinational explosion problem. 
Profit sharing is one of the reinforcement learning methods that allow 
agents to learn effective behaviors from their experiences even within 
non-Markovian environments. In this paper, to remedy the drawback 
of the original profit sharing approach that needs much memory to 
store each state-action pair during the learning process, we firstly 
address a kind of on-line rational profit sharing algorithm. Then, we 
integrate the advantages of modular learning architecture with on-line 
rational profit sharing algorithm, and propose a new modular 
reinforcement learning model. The effectiveness of the technique is 
demonstrated using the pursuit problem. 

Keywords—Multi-agent learning; reinforcement learning; rational 
profit sharing; modular architecture. 

I. INTRODUCTION

multiagent system (MAS) in which there is a number of 
autonomous agents interacting, with each affecting the 

actions of the others essentially constitutes a complex system. 
Performing and completing tasks in such an environment can 
be extremely difficult. In this paper, the cooperative MAS is 
concerned, in which several agents attempt, through their 
interaction, to jointly solve tasks or to maximize their utility[1]. 
Learning enables MAS to be more flexible and robust, and 
makes them better able to handle uncertain and changing 
circumstances. Thus how to coordinate different agents’ 
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behaviors by learning so as to achieve the common goal is an 
important theme in multiagent domains. (e.g., see [2, 3]) 

Reinforcement learning (RL)[4, 5] is the problem faced by 
an agent that must learn behavior through trial-and-error 
interactions with dynamic environments, and it has been 
applied successfully in many single agent systems. Learning 
from the environment is robust because agents are directly 
affected by the dynamics of the environment. Because of these 
characters, RL has become one of the important learning 
approaches for multiagent learning. (e.g., see [6, 7]) 

In a multiagent domain, to achieve the sharing goal, learning 
agent needs to augment its state space to include more effective 
information. At the same time, the increment of state space will 
lead to slow down the learning process. Based on the idea of 
modular architecture, Ono[8] proposed a modular Q-learning 
model, which can reduce the state space effectively. However, 
Q-learning is based on the environment which should obey the 
Markovian property, that is, the environment can by modeled 
by a Markov Decision Process, but for multiagent domain these 
cannot be met with. The rational profit sharing, which is 
proposed by Miyazaki[9], is a credit assignment mechanism 
that bases on trials and errors. Learning agents interact with the 
environment through trial and error, and reinforce effective 
state-action pairs and suppress ineffective state-action pairs by 
learning episode. Profit sharing in contrast with other 
reinforcement learning approaches which are based on 
Dynamic Programming, such as Temporal Difference method 
and Q-learning, in that profit sharing guarantees convergence 
to an effective policy even in domains that do not obey the 
Markovian property, if a task is episodic and a credit is 
assigned in an appropriate manner[10, 11]. Based on these 
researches, in this paper we integrate the advantages of modular 
architecture with rational profit sharing, and propose a new 
modular reinforcement learning approach. 

II. MODULAR REINFORCEMENT LEARNING

A. Markov Decision Processes and Reinforcement Learning 
Markov Decision Process (MDP) is generally regarded as 

the mathematical foundation for RL. A fully observable MDP 
is a quadruple (S, A, T, R), where S is a finite set of states, A is 
a set of actions, : [0,1]T S A S  is the state transition 
function that describes the probability ( ' | , )p s s a  of ending up 
in state s’ when performing action a in state s, and 
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:R S A  is reward function that returns a numeric value 
after taking action a in state s.

An agent’s policy is a mapping : S A . The goal of the 
agent is to find an optimal policy  that maximizes the 
expected sum of discounted rewards 

0
( , ) ( | , )t

t t
t

V s E r s                            (1) 

where rt is the scalar reward at time step t, [0,1]  is discount 
factor. Equation (1) can be rewritten as 

'
( , ) ( , ) ( ' | , ) ( ', )

s S
V s r s a p s s a V s      (2)

where a  is the action determined by policy .
Dynamic Programming (DP) theory[12] guarantees there 

exists at least a deterministic optimal policy * , that for any 
s S , it satisfies 

* *

'
( , ) { ( '| , ) ( ', )}

a A s S
V s max r p s s a V s        (3) 

Q-learning[13] is one kind of model-free RL algorithm is that 
based on DP. In essence Q-learning is a temporal-difference 
learning method. Q-learning directly computes the 
approximation of an optimal action-value function, called 
Q-value, by using the following update rule 

1

( , ) ( , )

(1 ) ( , ) ( , )

t t t t

t t t t
a

Q s a Q s a

r Q s a Q s amax
         (4) 

here [0,1]  is learning rate. 

B. Modular Q-learning
The modular Q-learning architecture[8] consists of a 

mediator module and learning modules which amount to the 
number of agents involved in the task, shown as Fig 1. Each 
agent in the learning module carries out Q-learning in the 
environment. In each learning module, learning concentrates 
on a single agent and the learning of other agents is not 
considered. To complete the global goal, it needs a mediator 
module to arbitrate the results of the learning modules. The 
mediator module combines learning modules’ decision policies 
using a simple heuristic decision procedure and determines a 
final decision by the corresponding agent. 

Agent i
Mediator Module 

…
Learning 
Module

i2

Learning 
Module

i1

Learning 
Module 

iL

Action 
Reward 

State 

Environment 

Q i1 Q i2 Q iL

xi1 xi2 xiL

Fig. 1 The modular architecture for a learning agent 

The learning agents can decide their action by using the 
Greatest Mass (GM) strategy proposed by Whitehead[14], 

1
arg max ( , ).

L
ik

ika A k
Q x a                           (7) 

where Qik denotes the action-value function sustained by the 
learning module ik, L is the number of learning modules. 
Intuitively, this is a selection b majority among actions 
proposed by individual learning-modules. 

III. RATIONAL PROFIT SHARING

Profit sharing is originally proposed by Grefenstette[15]. 
The original version used profit sharing as a credit assignment 
method based on trial-and-error experiences, without utilizing 
any form of value estimation. However, this approach does not 
guarantee the rationality of an acquired policy. To guarantee 
convergence to a rational policy in a non-Markovian domain, 
Miyazaki[9, 16] introduces the rationality theorem, which the 
credit assignment function should satisfy, here we call it 
rational profit sharing. 

In a multiagent environment, at time step t the learning agent 
observes a state st, which is generally the partially available 
state of its environment. An action at is then selected from the 
action set. After the action is executed, the agent determines 
whether a reward r is generated. If there is no reward, the agent 
stores the state-action pair so-called rule (st, at) in its episodic 
memory, and repeats this cycle until a reward is generated. The 
process of moving from an initial state to the final reward state 
is called an episode. When a reward is given to the agent, the 
rules stored in its episodic memory are reinforced at once. The 
function that maps states to actions is called a policy. A policy 
is called rational if and only if the expected reward per an 
action is larger than zero. We call a subsequence of an episode a 
detour when different actions are selected for the same state in 
an episode. The rules on a detour are called ineffective rules. To 
control the ineffective rules, Miyazaki[16] gives the following 
rationality theorem of profit sharing. 

Lemma 1. Any ineffective rule can be suppressed iff 

11, 2,..., ,
W

j i
j i

i W C f f                     (8) 

where C is an upper bound of the number of conflicting 
effective rules, and W is an upper bound of the length of 
episodes. In practice, we can let C=M-1, where M is the number 
of actions. fi denotes a reinforcement value for the rule selected 
at i step before a reward is acquired. The inequality (8) is called 
suppression condition. 

Lemma 2. Profit sharing can learn a rational policy iff it 
satisfies the suppression condition of lemma 1. 

The algorithm for the profit sharing based on lookup table is 
followed. 

Algorithm 1. The profit sharing algorithm 
Initialize, for all , ( ) :s S a A s
    ( , )w s a a small constant 
Repeat (for each episode) 

0t , initialize st
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    Repeat (for each step of episode) 
        According to st, choose at using weighted-roulette: 

)(' )',(
),()|Pr(

sAa
tt asw

aswssaa

        Save state-action pair (st, at) into episodic memory 
        Perform action at; observe reward rt+1, and next state st+1
        1t t
    until st+1 is terminal state 

T t , for each pair (si, ai) in episodic memory: 
( , ) ( , ) ( , ), 0,1,..., 1i i i i Tw s a w s a f i r i T

until the algorithm holds the stopping criteria 

IV. MODULAR ON-LINE PROFIT SHARING APPROACH

Within the modular-Q model, each learning module only 
concerns with a part of information of the environment, this 
may reduce the size of state space. However, it will easily lead 
to perceptual aliasing problem[17], i.e., the learning agent 
wrongly treat two or more different states as one. At the same 
time, in a multi-agent domain, the succeeded state of the 
learning agent will not only be effected by its action and the 
environment, but also be effected by other agents’ behaviors, in 
other words, the environment cannot obey Markovian property. 
However, even within non-Markovian environment, profit 
sharing method can learn effective policy. So, here we adopt 
profit sharing as a basic algorithm for each learning module. 

A. On-line Profit Sharing Algorithm  
Profit sharing algorithm shown in Algorithm 1 is an off-line 

updating method, which does not change weights of its 
state-action pairs until the end of a task. One drawback is that it 
will require unbounded memory space to store all of the 
selected state-action pairs during the task. Based on the idea of 
eligibility traces[5,18], here we propose an on-line profit 
sharing algorithm. 

The idea behind eligibility traces is very simple. Each time 
a state is visited it initiates a short-term memory process, a trace, 
which then decays gradually over time. This trace marks the 
state as eligible for learning. There are mainly two kinds of 
eligibility traces, that is accumulating and replacing eligibility 
traces, as defined by equation (9) and (10), respectively. 

1

1

( , ) 1 ,
( , )

( , )
t t t

t
t

e s a s s a a
e s a

e s a otherwise
                 (9) 

1

1 ,
( , ) 0 ,

( , )

t t

t t t

t t

s s a a
e s a s s a a

e s a s s
              (10) 

where  is the decay parameter, and 0 1 .
We apply eligibility traces for implementing profit sharing 

method incrementally, and propose a kind of on-line profit 
sharing algorithm, as shown in Algorithm 2. 

Algorithm 2. The on-line profit sharing algorithm 
Initialize, for all , ( ) :s S a A s
    ( , )w s a a small constant 

Repeat (for each episode) 
     for all s, a : ( , ) 0e s a

0t , initialize st

    Repeat (for each step of episode) 
        According to st, choose at using weighted-roulette: 

)(' )',(
),()|Pr(

sAa
tt asw

aswssaa

        Update eligibility traces: 
if use accumulating eligibility traces, then 

1( , ) ( , ) 1t t t t t te s a e s a
if use replacing eligibility traces, then 

( , ) 1
( , ) 0,for ( ),

t t t

t t t t t

e s a
e s a a A s a a

        Take action at; observe reward, rt+1, and next state, st+1

For all s, a:

1( , ) ( , ) ( , )
( , ) ( , )

t t

t t

w s a w s a r e s a
e s a e s a

1t t
    until st+1 is the terminal state 
until the algorithm holds the stopping criteria 

Theorem 1. If the following hold:  
1. Algorithm 1 adopts credit assignment  function 

1( , ) T i
T Tf i r r

 where 1
1C

, and .

2. Algorithm 2 uses accumulating eligibility traces.  
3. the intermediate rewards are zero until the end of each 

episode. 
Then, Algorithm 1 is equivalent to Algorithm 2, both of them 
can learn a rational policy.

Proof. First, we will prove that these two algorithms are 
equivalent.  

According to Kronecker Delta function: 
1,

( , )
0,

i j
i j

i j
Equation (9) can be rewritten as 

1
1

0 0 1 1

1 1

0

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )
( , ) ( , )) ( , ) ( , )

( , ) ( , )

t t t t
t t

t t t t
t

t n
n n

n

e s a e s a s s a a
s s a a s s a a

s s a a s s a a

s s a a

In Algorithm 2, for any state-action pair (s, a), after one 
iteration the incremental weight is 1( , ) ( , )t tw s a r e s a , so at 
time step T when an episode ends, the total update is 

1

1
0
1

1
0 0

( , ) ( , )

( , ) ( , )

T

on t t
t
T t

t n
t n n

t n

w s a r e s a

r s s a a
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1
1

1 2
0

1
1

0

( , ) ( , ) ( , ) ( , )

( , ) ( , )

n n
n n n n

n
T

T n
T n n

n

r s s a a r s s a a

r s s a a

    Because all the intermediate rewards until the end of an 
episode are zero, that is, 1 2 1 0Tr r r , so 

1
1

0
( , ) ( , ) ( , )

T
T n

on T n n
n

w s a r s s a a           (11) 

On the other hand, for Algorithm 1, at time step T when an 
episode is over, for any state-action pair, the sum of 
incremental weight can be written as  

1

0
( , ) ( , ) ( , ) ( , )

T

off T i i
i

w s a f i r s s a a               (12) 

Since 1( , ) T i
T Tf i r r , equation (12) can be transformed to 

1
1

0
( , ) ( , ) ( , ) ( , )

T
T i

off T i i on
i

w s a r s s a a w s a

Therefore, for any state-action pair, the sums of all the 
updates in these two algorithms are same after learning, so they 
are equivalent. 

Next, we will show that these two algorithms can learn a 
rational policy. 

For Algorithm 1, according to the credit assignment function, 
we will have 

1-1 1
1 1

0 0

1

( )( , )
1

1

tt t
T i T t

T T T
i i

T t
T

CC f i r C r r

Cr

Because
1 1

1
C

C
,

so
-1

1 1

0
( , ) ( , )

1

t
T t T t

T T T T
i

CC f i r r r f t r .

Therefore, it satisfies the suppression condition in lemma 1, 
and according to lemma 2, it will learn a rational policy. 
Because of the equivalence of Algorithm 1 and 2, we can 
conclude that Algorithm 1 will also learn a rational policy.  

Theorem 2. If the following hold:  
1. 2 1W , where  is the decay parameter in equation 

(10), and W is an upper bound of the length of episodes in 
Lemma 1.  

2. Algorithm 2 uses replacing eligibility traces.  
3. the intermediate rewards are zero until the end of each 

episode.  
Then, Algorithm 2 can learn a rational policy. 

Proof. First, define a function 
0,

( , ) 1 ( , )
1,

i j
f i j i j

i j
Then equation (10) can be rewritten as 

1( , ) ( , ) ( , ) ( , ) ( , )t t t t te s a f s s e s a s s a a

1

1 1

1

0 1

( , ) ( , ) ( , )
( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) ( , )

n
t t n t n

t t t t t

tt
t n

n n i t t
n i n

f s s f s s e s a
f s s s s a a s s a a

s s a a f s s s s a a

For any state-action pair (s,a), after one iteration the 
incremental weight is 1( , ) ( , )t tw s a r e s a , so at time step T
when an episode ends, the total update is 

1

1
0

( , ) ( , )
T

on t t
t

w s a r e s a

Because all the intermediate rewards until the end of an 
episode are zero, that is, 1 2 1 0Tr r r , so

1( , ) ( , )on T Tw s a r e s a
Assume at time step T-1 the visited state-action pair is (sc, ad),

then 
1( , ) ( , )on c d T T c d Tw s a r e s a r

At the same time, for any other unvisited state-action pair at 
time T-1, which is denoted by 

( , ) ( , ) | , ( ) ( , )u v u v u v u c ds a U s a s S a A s s a
we have 

1( , ) ( , )on u v T T u vw s a r e s a
Then for all unvisited state-action pairs at time T-1, the sum 

of incremental weights is 

1
( , ) ( , )

12
1

0 ( , ) 1

1 1
( , )

( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , )

u v u v

u v

u v

on u v T T u v
s a U s a U

TT
T n

T u n v n u i
n s a U i n

T u T v T
s a U

w s a r e s a

r s s a a f s s

r s s a a

(13)

Because at time T-1 for any (su, av), it holds 
1 1( , ) ( , ) 0u T v Ts s a a

so

1 1
( , )

( , ) ( , ) 0
u v

T u T v T
s a U

r s s a a               (14) 

According to the definition, it is apparent that 
1

1

( , ) 1
T

u i
i n

f s s

so
1

1

( , ) ( , ) ( , ) ( , ) ( , )
T

u n v n u i u n v n
i n

s s a a f s s s s a a

For each time step at n=0, 1, … , T-2, within the set U there is 
at most one state-action pair would be visited, so 

( , )
( , ) ( , ) 1

u v

u n v n
s a U

s s a a

Hence
1

( , ) 1

( , ) ( , ) ( , ) 1
u v

T

u n v n u i
s a U i n

s s a a f s s             (15) 

Integrate equation(14) and equation (15) with equation(13), 
we have 
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2
1

( , ) 0
( , )

1
u v

TT
T n

on u v T T
s a U n

w s a r r

Because
2 1 1 1W W T

Therefore

( , )
( , ) ( , )

u v

on u v T on c d
s a U

w s a r w s a

Therefore, it satisfies the suppression condition in lemma 1, 
according to lemma 2 Algorithm 2 can learn a rational policy.  

B. The Proposed Modular Reinforcement Learning Model 
Based on the analysis mentioned above, here we propose a 

modular profit sharing model, as shown in Fig 2. The learning 
model of the agent consists of three modules, they are State 
Decomposition Module (SDM), Learning Module (LM) and 
Mediator Module (MM), respectively. SDM determines the 
state of each LM, and then each LM sends its local policy to 
MM. MM will determine to choose an appropriate action for 
the learning agent to take.

MM

Environments and 
other Agents 

Reward

State 

Action

LM1

ASM

PSM

…

LM2

ASM

PSM

LML

ASM

SAPT

PSM

SAPT SAPT 

SDM

Agent

Fig. 2 The modular on-line profit sharing model of the agent 

Each LM consists of three submodules. 
ASM: Action Selection Module, which will send the local 

policy to MM, including the available actions and their weights 
for the current state. 

SAPT: State-Action Pair weight Table, which keeps all of 
the state-action pairs and its weight, also it stores the eligibility 
trace of each state-action pair. 

PSM: Profit Sharing Module. According to the received 
reward r, the current state s and the chosen action a of MM, 
PSM updates the weight of each state-action pair using on-line 
profit sharing algorithm. 

The proposed learning algorithm is shown as Algorithm 3. 

Algorithm 3. The proposed modular on-line profit sharing 
algorithm 

1. Initialize, set learning parameters, for all , ( )s S a A s
in each LM: 

( , )w s a a small constant 
2. Repeat (for each episode): 

1) for all , ( )s S a A s  in each LM, ( , ) 0, 0e s a t
2) Repeat (for each step of episode) 

        (1) Observe current state s(t)
        (2) Determine the state of each LM, si(t)(i=1, …,L, L is 

the number of LM) 
(3) Each LM sends its available actions a A(si(t)) and

weight w(si(t), a) to MM 
(4) Based on received policies from each LM, MM 

chooses action a(t) using GM strategy: 

( ( )) 1
( ) arg max ( ( ), )

i ik

L
ik

ik ia A s t k
a t w s t a

(5) Each LM updates the eligibility trace of the visited 
state-action pair. 

(6) Take action a(t); observe reward, r(t+1), and next 
state, s(t+1)

(7) For all of the state-action pair in each LM, update its 
weight and eligibility trace: 

1( , ) ( , ) ( , )
( , ) ( , )

t t

t t

w s a w s a r e s a
e s a e s a

(8) If state s(t+1) is a terminal state, then go to step 3); 
otherwise, t t+1, go to step (2) 

3) If the algorithm holds the stopping criteria, then the 
learning process is over; otherwise, go to step 1). 

V. SIMULATION

A. Problem Domain 
To evaluate the learning approach proposed in this paper, we 

choose a modified version of the pursuit problem[19] as the test 
bed. In an 8 8 toroidal grid world, a single prey and four 
hunter agents are placed at random positions in the grid, as 
shown in Fig 3(a). At each time step, agents synchronously 
execute one out of five actions: staying at the current position 
or moving north, south, west, or east. The prey and the hunter 
cannot share a cell, but more than one hunter can be at the same 
position. Also, an agent is not allowed to move off the 
environment. Every agent can see objects at a certain distance. 
The distance and the cells it covers are, respectively, called the 
visual depth and the visual environment of the agent. An agent 
having visual depth d can see all the cells inside the 
(2d+1) (2d+1) square around it. These cells are the visual 
environment of the agent. Each agent is assigned a unique 
identifier. A hunter agent can locate the relative position and 
recognize the identifier of any other agents in its visual 
environment. The prey is captured, when all of its neighbor cell 
are occupied by the hunters, as shown in Fig 3(b). Then all of 
the agents are relocated at new random positions. 
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(a) (b) 

Fig. 3 (a) Example of the pursuit problem in a grid world.  
(b) Examples of capturing states

The pursuit problem has the following characteristics. 1) The 
environment is fully dynamic, partially observable and 
non-deterministic. 2) The hunters agents are learning agents, 
while the prey selects its own action based on a random strategy. 
3) The hunter agents are self-interested, and there is no 
communication between each other. 

B. Experimental Setting and Simulation Results 
To test the proposed algorithm, we compare modular profit 

sharing based on accumulating eligibility trace (MPS-AET), 
with modular profit sharing based on replacing eligibility trace 
(MPS-RET) and Modular Q-learning (Modular-Q). According 
to theorem 1, in MPS-AET we set decay parameter 0.1, in 
MPS-RET let 0.5 . For Modular-Q, the learning rate 

0.1  or 0.8 , discount factor 0.9 . The total learning 
episodes are 5000, and the maximum iterations within an 
episode are 1500 time steps. The visual depth of the hunter is 
d=3. Upon capturing the prey, all the hunters surrounding the 
prey receive a reward of 100, and accordingly all of their 
constituents learning modules uniformly receive the same 
reward regardless of what actions they have just proposed. In 
any other case hunters receive a reward of zero. 

Since the hunter cannot finish capture the prey alone, 
therefore, to capture the prey, the hunter should take the 
information of the prey and other hunters into account, so as to 
better coordinate its behavior with other hunters’. For the 
problem of (N+1) hunters capturing one prey, according to 
conventional state coding, the state of Hunteri can be denoted as 
s:=<P, Hi1, …, H iN>, where P is the relative position of the prey 
to Hunteri, and Hik(k=1, …, N) denotes the relative position of 
Hunterik to Hunteri. When the hunter with visual depth d, the
size of the state space is |S|=(vs+1)N+1. For module architecture, 
the state space of each learning module for the hunter is a 
combination of the relative positions of the prey and one other 
hunter, that is, the size of state space is |Si|=(vs+1)2, accordingly, 
the size of total state space is |S|=N (vs+1)2, in other words, the 
relationship between the size of the state space and the number 
of learning agents is transformed from exponential to power, 
which means greatly reduce the size of state space. 

Fig 4 is the learning curve of the three learning algorithm 
under different time after several trials, Fig 5 gives the 
histogram of the learning results for three algorithms.  
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Fig. 4 The graph of comparison of three learning algorithms 
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Fig. 5 The histogram of three learning algorithms 

From these two graphs, we can find that, both MPS-AET and 
MPS-RET are better than Modular Q-learning. These can be 
explained as following. For the pursuit problem discussed here, 
the environment cannot obey Markovian property, which 
means the premise of Q-learning converging to the optimal 
policy cannot be satisfied anymore. Moreover, because of the 
limited sense ability, the hunter will wrongly treat two or more 
different states as one, which lead to the perceptual aliasing 
problem. Since the learning agent will choose inappropriate 
action, which will slow down the learning speed. In addition, 
Q-learning is an off-policy learning method. This means that 
Q-learning is guaranteed to converge to the optimal solution 
under MDP environment regardless of what policy is followed 
during training, as long as each state-action pairs is visited 
infinitely of in the limit. However, in Modular-Q, the one-step 
value updates for each learning module are computed under the 
assumption that all future actions will be chosen optimally for 
that Markovian environment. This assumption is invalid under 
the action selection mechanisms described above, which uses 
the heuristic policy such as GM strategy. Because the chosen 
action by mediator module will represent some compromise 
policy in which the different learning modules share control. 
This means that the computed Q-values do not converge to the 
actual expected return under the composite policy. Modular 
profit sharing method will suppress ineffective state-action 
pairs that may trap into loop without reward, and reinforce 
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effective state-action pairs, so it will gradually converge to a 
rational policy, and obtain better learning results. Additionally, 
we can find that based on the parameters setting above, 
MPS-RET is a little better than MPS-AET, which seems 
someway like the reinforcement learning with replacing 
eligibility traces compares to reinforcement learning with 
accumulating eligibility traces. 

To test performances of proposed algorithms under different 
parameter settings, we let decay parameter with different values. 
Fig 6 and 7 are average learning results for MPS-AET and 
MPS-RET under different decay parameters, respectively. 
When decay parameter doesn’t hold the conditions of theorem 
1, then the performance of the algorithm declines, the average 
capturing time is longer. This is because when decay parameter 
does not hold the conditions of theorem 1, during the learning 
process, some state-action pairs that will lead to trap into loop 
without any reward also are reinforced, so it will affect the 
performance of the learning algorithm. In addition, from the 
learning curves we can find that, different decay parameter has 
different effect to the learning algorithm. As for the simulation 
in this paper, for MPS-AET, when decay parameter 0.1 , the 
learning algorithm performs best. For MPS-RET, in generally, 
the algorithm performs better with the increment of decay 
parameters. 
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Fig. 6 The learning result of MPS-AET algorithm with  
different decay parameters. 
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Fig. 7 The learning result of MPS-RET algorithm with  
different decay parameters 

VI. CONCLUSION

In order to solve the problem of huge states in multiagent 
learning, as well as the perceptual aliasing problem because of 
the limited sense ability of learning agents, we proposed a new 
modular reinforcement learning approach. Firstly, a kind of 
on-line profit sharing algorithm is proposed, and then based on 
the advantages of modular architecture and on-line profit 
sharing method, a modular on-line profit sharing approach is 
presented. Experimental results showed that the proposed 
learning algorithm could be used to achieve optimal solution 
better, instead of traditional reinforcement learning methods. 
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