
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1160

Abstract—How to coordinate the behaviors of the agents through
learning is a challenging problem within multi-agent domains.
Because of its complexity, recent work has focused on how
coordinated strategies can be learned. Here we are interested in using
reinforcement learning techniques to learn the coordinated actions of a
group of agents, without requiring explicit communication among
them. However, traditional reinforcement learning methods are based
on the assumption that the environment can be modeled as Markov
Decision Process, which usually cannot be satisfied when multiple
agents coexist in the same environment. Moreover, to effectively
coordinate each agent’s behavior so as to achieve the goal, it’s
necessary to augment the state of each agent with the information
about other existing agents. Whereas, as the number of agents in a
multiagent environment increases, the state space of each agent grows
exponentially, which will cause the combinational explosion problem.
Profit sharing is one of the reinforcement learning methods that allow
agents to learn effective behaviors from their experiences even within
non-Markovian environments. In this paper, to remedy the drawback
of the original profit sharing approach that needs much memory to
store each state-action pair during the learning process, we firstly
address a kind of on-line rational profit sharing algorithm. Then, we
integrate the advantages of modular learning architecture with on-line
rational profit sharing algorithm, and propose a new modular
reinforcement learning model. The effectiveness of the technique is
demonstrated using the pursuit problem.

Keywords—Multi-agent learning; reinforcement learning; rational
profit sharing; modular architecture.

I. INTRODUCTION

multiagent system (MAS) in which there is a number of
autonomous agents interacting, with each affecting the

actions of the others essentially constitutes a complex system.
Performing and completing tasks in such an environment can
be extremely difficult. In this paper, the cooperative MAS is
concerned, in which several agents attempt, through their
interaction, to jointly solve tasks or to maximize their utility[1].
Learning enables MAS to be more flexible and robust, and
makes them better able to handle uncertain and changing
circumstances. Thus how to coordinate different agents’

Manuscript received June 26, 2006. This work was supported in part by the
National Science Foundation under Grant 69985002.

Pucheng Zhou is with the School of Computer Science and Technology,
Harbin Institute of Technology, Harbin 150001, HeiLongJiang Province,
P.R.China(corresponding author to provide phone: 86-451-86413388; fax:
86-451-86221048; e-mail: zhoupc@hit.edu.cn).

Bingrong Hong is with the School of Computer Science and Technology,
Harbin Institute of Technology, Harbin 150001, HeiLongJiang Province,
P.R.China (e-mail: hongbr@hit.edu.cn).

behaviors by learning so as to achieve the common goal is an
important theme in multiagent domains. (e.g., see [2, 3])

Reinforcement learning (RL)[4, 5] is the problem faced by
an agent that must learn behavior through trial-and-error
interactions with dynamic environments, and it has been
applied successfully in many single agent systems. Learning
from the environment is robust because agents are directly
affected by the dynamics of the environment. Because of these
characters, RL has become one of the important learning
approaches for multiagent learning. (e.g., see [6, 7])

In a multiagent domain, to achieve the sharing goal, learning
agent needs to augment its state space to include more effective
information. At the same time, the increment of state space will
lead to slow down the learning process. Based on the idea of
modular architecture, Ono[8] proposed a modular Q-learning
model, which can reduce the state space effectively. However,
Q-learning is based on the environment which should obey the
Markovian property, that is, the environment can by modeled
by a Markov Decision Process, but for multiagent domain these
cannot be met with. The rational profit sharing, which is
proposed by Miyazaki[9], is a credit assignment mechanism
that bases on trials and errors. Learning agents interact with the
environment through trial and error, and reinforce effective
state-action pairs and suppress ineffective state-action pairs by
learning episode. Profit sharing in contrast with other
reinforcement learning approaches which are based on
Dynamic Programming, such as Temporal Difference method
and Q-learning, in that profit sharing guarantees convergence
to an effective policy even in domains that do not obey the
Markovian property, if a task is episodic and a credit is
assigned in an appropriate manner[10, 11]. Based on these
researches, in this paper we integrate the advantages of modular
architecture with rational profit sharing, and propose a new
modular reinforcement learning approach.

II. MODULAR REINFORCEMENT LEARNING

A. Markov Decision Processes and Reinforcement Learning
Markov Decision Process (MDP) is generally regarded as

the mathematical foundation for RL. A fully observable MDP
is a quadruple (S, A, T, R), where S is a finite set of states, A is
a set of actions, : [0,1]T S A S is the state transition
function that describes the probability (' | ,)p s s a of ending up
in state s’ when performing action a in state s, and

A Modular On-line Profit Sharing Approach in
Multiagent Domains

Pucheng Zhou, and Bingrong Hong

A

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1161

:R S A is reward function that returns a numeric value
after taking action a in state s.

An agent’s policy is a mapping : S A . The goal of the
agent is to find an optimal policy that maximizes the
expected sum of discounted rewards

0
(,) (| ,)t

t t
t

V s E r s (1)

where rt is the scalar reward at time step t, [0,1] is discount
factor. Equation (1) can be rewritten as

'
(,) (,) (' | ,) (',)

s S
V s r s a p s s a V s (2)

where a is the action determined by policy .
Dynamic Programming (DP) theory[12] guarantees there

exists at least a deterministic optimal policy * , that for any
s S , it satisfies

* *

'
(,) { ('| ,) (',)}

a A s S
V s max r p s s a V s (3)

Q-learning[13] is one kind of model-free RL algorithm is that
based on DP. In essence Q-learning is a temporal-difference
learning method. Q-learning directly computes the
approximation of an optimal action-value function, called
Q-value, by using the following update rule

1

(,) (,)

(1) (,) (,)

t t t t

t t t t
a

Q s a Q s a

r Q s a Q s amax
 (4)

here [0,1] is learning rate.

B. Modular Q-learning
The modular Q-learning architecture[8] consists of a

mediator module and learning modules which amount to the
number of agents involved in the task, shown as Fig 1. Each
agent in the learning module carries out Q-learning in the
environment. In each learning module, learning concentrates
on a single agent and the learning of other agents is not
considered. To complete the global goal, it needs a mediator
module to arbitrate the results of the learning modules. The
mediator module combines learning modules’ decision policies
using a simple heuristic decision procedure and determines a
final decision by the corresponding agent.

Agent i
Mediator Module

…
Learning
Module

i2

Learning
Module

i1

Learning
Module

iL

Action
Reward

State

Environment

Q i1 Q i2 Q iL

xi1 xi2 xiL

Fig. 1 The modular architecture for a learning agent

The learning agents can decide their action by using the
Greatest Mass (GM) strategy proposed by Whitehead[14],

1
arg max (,).

L
ik

ika A k
Q x a (7)

where Qik denotes the action-value function sustained by the
learning module ik, L is the number of learning modules.
Intuitively, this is a selection b majority among actions
proposed by individual learning-modules.

III. RATIONAL PROFIT SHARING

Profit sharing is originally proposed by Grefenstette[15].
The original version used profit sharing as a credit assignment
method based on trial-and-error experiences, without utilizing
any form of value estimation. However, this approach does not
guarantee the rationality of an acquired policy. To guarantee
convergence to a rational policy in a non-Markovian domain,
Miyazaki[9, 16] introduces the rationality theorem, which the
credit assignment function should satisfy, here we call it
rational profit sharing.

In a multiagent environment, at time step t the learning agent
observes a state st, which is generally the partially available
state of its environment. An action at is then selected from the
action set. After the action is executed, the agent determines
whether a reward r is generated. If there is no reward, the agent
stores the state-action pair so-called rule (st, at) in its episodic
memory, and repeats this cycle until a reward is generated. The
process of moving from an initial state to the final reward state
is called an episode. When a reward is given to the agent, the
rules stored in its episodic memory are reinforced at once. The
function that maps states to actions is called a policy. A policy
is called rational if and only if the expected reward per an
action is larger than zero. We call a subsequence of an episode a
detour when different actions are selected for the same state in
an episode. The rules on a detour are called ineffective rules. To
control the ineffective rules, Miyazaki[16] gives the following
rationality theorem of profit sharing.

Lemma 1. Any ineffective rule can be suppressed iff

11, 2,..., ,
W

j i
j i

i W C f f (8)

where C is an upper bound of the number of conflicting
effective rules, and W is an upper bound of the length of
episodes. In practice, we can let C=M-1, where M is the number
of actions. fi denotes a reinforcement value for the rule selected
at i step before a reward is acquired. The inequality (8) is called
suppression condition.

Lemma 2. Profit sharing can learn a rational policy iff it
satisfies the suppression condition of lemma 1.

The algorithm for the profit sharing based on lookup table is
followed.

Algorithm 1. The profit sharing algorithm
Initialize, for all , () :s S a A s
 (,)w s a a small constant
Repeat (for each episode)

0t , initialize st

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1162

 Repeat (for each step of episode)
 According to st, choose at using weighted-roulette:

)(')',(
),()|Pr(

sAa
tt asw

aswssaa

 Save state-action pair (st, at) into episodic memory
 Perform action at; observe reward rt+1, and next state st+1
 1t t
 until st+1 is terminal state

T t , for each pair (si, ai) in episodic memory:
(,) (,) (,), 0,1,..., 1i i i i Tw s a w s a f i r i T

until the algorithm holds the stopping criteria

IV. MODULAR ON-LINE PROFIT SHARING APPROACH

Within the modular-Q model, each learning module only
concerns with a part of information of the environment, this
may reduce the size of state space. However, it will easily lead
to perceptual aliasing problem[17], i.e., the learning agent
wrongly treat two or more different states as one. At the same
time, in a multi-agent domain, the succeeded state of the
learning agent will not only be effected by its action and the
environment, but also be effected by other agents’ behaviors, in
other words, the environment cannot obey Markovian property.
However, even within non-Markovian environment, profit
sharing method can learn effective policy. So, here we adopt
profit sharing as a basic algorithm for each learning module.

A. On-line Profit Sharing Algorithm
Profit sharing algorithm shown in Algorithm 1 is an off-line

updating method, which does not change weights of its
state-action pairs until the end of a task. One drawback is that it
will require unbounded memory space to store all of the
selected state-action pairs during the task. Based on the idea of
eligibility traces[5,18], here we propose an on-line profit
sharing algorithm.

The idea behind eligibility traces is very simple. Each time
a state is visited it initiates a short-term memory process, a trace,
which then decays gradually over time. This trace marks the
state as eligible for learning. There are mainly two kinds of
eligibility traces, that is accumulating and replacing eligibility
traces, as defined by equation (9) and (10), respectively.

1

1

(,) 1 ,
(,)

(,)
t t t

t
t

e s a s s a a
e s a

e s a otherwise
 (9)

1

1 ,
(,) 0 ,

(,)

t t

t t t

t t

s s a a
e s a s s a a

e s a s s
 (10)

where is the decay parameter, and 0 1 .
We apply eligibility traces for implementing profit sharing

method incrementally, and propose a kind of on-line profit
sharing algorithm, as shown in Algorithm 2.

Algorithm 2. The on-line profit sharing algorithm
Initialize, for all , () :s S a A s
 (,)w s a a small constant

Repeat (for each episode)
 for all s, a : (,) 0e s a

0t , initialize st

 Repeat (for each step of episode)
 According to st, choose at using weighted-roulette:

)(')',(
),()|Pr(

sAa
tt asw

aswssaa

 Update eligibility traces:
if use accumulating eligibility traces, then

1(,) (,) 1t t t t t te s a e s a
if use replacing eligibility traces, then

(,) 1
(,) 0,for (),

t t t

t t t t t

e s a
e s a a A s a a

 Take action at; observe reward, rt+1, and next state, st+1

For all s, a:

1(,) (,) (,)
(,) (,)

t t

t t

w s a w s a r e s a
e s a e s a

1t t
 until st+1 is the terminal state
until the algorithm holds the stopping criteria

Theorem 1. If the following hold:
1. Algorithm 1 adopts credit assignment function

1(,) T i
T Tf i r r

 where 1
1C

, and .

2. Algorithm 2 uses accumulating eligibility traces.
3. the intermediate rewards are zero until the end of each

episode.
Then, Algorithm 1 is equivalent to Algorithm 2, both of them
can learn a rational policy.

Proof. First, we will prove that these two algorithms are
equivalent.

According to Kronecker Delta function:
1,

(,)
0,

i j
i j

i j
Equation (9) can be rewritten as

1
1

0 0 1 1

1 1

0

(,) (,) (,) (,)

(,) (,) (,) (,)
(,) (,)) (,) (,)

(,) (,)

t t t t
t t

t t t t
t

t n
n n

n

e s a e s a s s a a
s s a a s s a a

s s a a s s a a

s s a a

In Algorithm 2, for any state-action pair (s, a), after one
iteration the incremental weight is 1(,) (,)t tw s a r e s a , so at
time step T when an episode ends, the total update is

1

1
0
1

1
0 0

(,) (,)

(,) (,)

T

on t t
t
T t

t n
t n n

t n

w s a r e s a

r s s a a

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1163

1
1

1 2
0

1
1

0

(,) (,) (,) (,)

(,) (,)

n n
n n n n

n
T

T n
T n n

n

r s s a a r s s a a

r s s a a

 Because all the intermediate rewards until the end of an
episode are zero, that is, 1 2 1 0Tr r r , so

1
1

0
(,) (,) (,)

T
T n

on T n n
n

w s a r s s a a (11)

On the other hand, for Algorithm 1, at time step T when an
episode is over, for any state-action pair, the sum of
incremental weight can be written as

1

0
(,) (,) (,) (,)

T

off T i i
i

w s a f i r s s a a (12)

Since 1(,) T i
T Tf i r r , equation (12) can be transformed to

1
1

0
(,) (,) (,) (,)

T
T i

off T i i on
i

w s a r s s a a w s a

Therefore, for any state-action pair, the sums of all the
updates in these two algorithms are same after learning, so they
are equivalent.

Next, we will show that these two algorithms can learn a
rational policy.

For Algorithm 1, according to the credit assignment function,
we will have

1-1 1
1 1

0 0

1

()(,)
1

1

tt t
T i T t

T T T
i i

T t
T

CC f i r C r r

Cr

Because
1 1

1
C

C
,

so
-1

1 1

0
(,) (,)

1

t
T t T t

T T T T
i

CC f i r r r f t r .

Therefore, it satisfies the suppression condition in lemma 1,
and according to lemma 2, it will learn a rational policy.
Because of the equivalence of Algorithm 1 and 2, we can
conclude that Algorithm 1 will also learn a rational policy.

Theorem 2. If the following hold:
1. 2 1W , where is the decay parameter in equation

(10), and W is an upper bound of the length of episodes in
Lemma 1.

2. Algorithm 2 uses replacing eligibility traces.
3. the intermediate rewards are zero until the end of each

episode.
Then, Algorithm 2 can learn a rational policy.

Proof. First, define a function
0,

(,) 1 (,)
1,

i j
f i j i j

i j
Then equation (10) can be rewritten as

1(,) (,) (,) (,) (,)t t t t te s a f s s e s a s s a a

1

1 1

1

0 1

(,) (,) (,)
(,) (,) (,) (,) (,)

(,) (,) (,) (,) (,)

n
t t n t n

t t t t t

tt
t n

n n i t t
n i n

f s s f s s e s a
f s s s s a a s s a a

s s a a f s s s s a a

For any state-action pair (s,a), after one iteration the
incremental weight is 1(,) (,)t tw s a r e s a , so at time step T
when an episode ends, the total update is

1

1
0

(,) (,)
T

on t t
t

w s a r e s a

Because all the intermediate rewards until the end of an
episode are zero, that is, 1 2 1 0Tr r r , so

1(,) (,)on T Tw s a r e s a
Assume at time step T-1 the visited state-action pair is (sc, ad),

then
1(,) (,)on c d T T c d Tw s a r e s a r

At the same time, for any other unvisited state-action pair at
time T-1, which is denoted by

(,) (,) | , () (,)u v u v u v u c ds a U s a s S a A s s a
we have

1(,) (,)on u v T T u vw s a r e s a
Then for all unvisited state-action pairs at time T-1, the sum

of incremental weights is

1
(,) (,)

12
1

0 (,) 1

1 1
(,)

(,) (,)

(,) (,) (,)

(,) (,)

u v u v

u v

u v

on u v T T u v
s a U s a U

TT
T n

T u n v n u i
n s a U i n

T u T v T
s a U

w s a r e s a

r s s a a f s s

r s s a a

(13)

Because at time T-1 for any (su, av), it holds
1 1(,) (,) 0u T v Ts s a a

so

1 1
(,)

(,) (,) 0
u v

T u T v T
s a U

r s s a a (14)

According to the definition, it is apparent that
1

1

(,) 1
T

u i
i n

f s s

so
1

1

(,) (,) (,) (,) (,)
T

u n v n u i u n v n
i n

s s a a f s s s s a a

For each time step at n=0, 1, … , T-2, within the set U there is
at most one state-action pair would be visited, so

(,)
(,) (,) 1

u v

u n v n
s a U

s s a a

Hence
1

(,) 1

(,) (,) (,) 1
u v

T

u n v n u i
s a U i n

s s a a f s s (15)

Integrate equation(14) and equation (15) with equation(13),
we have

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1164

2
1

(,) 0
(,)

1
u v

TT
T n

on u v T T
s a U n

w s a r r

Because
2 1 1 1W W T

Therefore

(,)
(,) (,)

u v

on u v T on c d
s a U

w s a r w s a

Therefore, it satisfies the suppression condition in lemma 1,
according to lemma 2 Algorithm 2 can learn a rational policy.

B. The Proposed Modular Reinforcement Learning Model
Based on the analysis mentioned above, here we propose a

modular profit sharing model, as shown in Fig 2. The learning
model of the agent consists of three modules, they are State
Decomposition Module (SDM), Learning Module (LM) and
Mediator Module (MM), respectively. SDM determines the
state of each LM, and then each LM sends its local policy to
MM. MM will determine to choose an appropriate action for
the learning agent to take.

MM

Environments and
other Agents

Reward

State

Action

LM1

ASM

PSM

…

LM2

ASM

PSM

LML

ASM

SAPT

PSM

SAPT SAPT

SDM

Agent

Fig. 2 The modular on-line profit sharing model of the agent

Each LM consists of three submodules.
ASM: Action Selection Module, which will send the local

policy to MM, including the available actions and their weights
for the current state.

SAPT: State-Action Pair weight Table, which keeps all of
the state-action pairs and its weight, also it stores the eligibility
trace of each state-action pair.

PSM: Profit Sharing Module. According to the received
reward r, the current state s and the chosen action a of MM,
PSM updates the weight of each state-action pair using on-line
profit sharing algorithm.

The proposed learning algorithm is shown as Algorithm 3.

Algorithm 3. The proposed modular on-line profit sharing
algorithm

1. Initialize, set learning parameters, for all , ()s S a A s
in each LM:

(,)w s a a small constant
2. Repeat (for each episode):

1) for all , ()s S a A s in each LM, (,) 0, 0e s a t
2) Repeat (for each step of episode)

 (1) Observe current state s(t)
 (2) Determine the state of each LM, si(t)(i=1, …,L, L is

the number of LM)
(3) Each LM sends its available actions a A(si(t)) and

weight w(si(t), a) to MM
(4) Based on received policies from each LM, MM

chooses action a(t) using GM strategy:

(()) 1
() arg max ((),)

i ik

L
ik

ik ia A s t k
a t w s t a

(5) Each LM updates the eligibility trace of the visited
state-action pair.

(6) Take action a(t); observe reward, r(t+1), and next
state, s(t+1)

(7) For all of the state-action pair in each LM, update its
weight and eligibility trace:

1(,) (,) (,)
(,) (,)

t t

t t

w s a w s a r e s a
e s a e s a

(8) If state s(t+1) is a terminal state, then go to step 3);
otherwise, t t+1, go to step (2)

3) If the algorithm holds the stopping criteria, then the
learning process is over; otherwise, go to step 1).

V. SIMULATION

A. Problem Domain
To evaluate the learning approach proposed in this paper, we

choose a modified version of the pursuit problem[19] as the test
bed. In an 8 8 toroidal grid world, a single prey and four
hunter agents are placed at random positions in the grid, as
shown in Fig 3(a). At each time step, agents synchronously
execute one out of five actions: staying at the current position
or moving north, south, west, or east. The prey and the hunter
cannot share a cell, but more than one hunter can be at the same
position. Also, an agent is not allowed to move off the
environment. Every agent can see objects at a certain distance.
The distance and the cells it covers are, respectively, called the
visual depth and the visual environment of the agent. An agent
having visual depth d can see all the cells inside the
(2d+1) (2d+1) square around it. These cells are the visual
environment of the agent. Each agent is assigned a unique
identifier. A hunter agent can locate the relative position and
recognize the identifier of any other agents in its visual
environment. The prey is captured, when all of its neighbor cell
are occupied by the hunters, as shown in Fig 3(b). Then all of
the agents are relocated at new random positions.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1165

(a) (b)

Fig. 3 (a) Example of the pursuit problem in a grid world.
(b) Examples of capturing states

The pursuit problem has the following characteristics. 1) The
environment is fully dynamic, partially observable and
non-deterministic. 2) The hunters agents are learning agents,
while the prey selects its own action based on a random strategy.
3) The hunter agents are self-interested, and there is no
communication between each other.

B. Experimental Setting and Simulation Results
To test the proposed algorithm, we compare modular profit

sharing based on accumulating eligibility trace (MPS-AET),
with modular profit sharing based on replacing eligibility trace
(MPS-RET) and Modular Q-learning (Modular-Q). According
to theorem 1, in MPS-AET we set decay parameter 0.1, in
MPS-RET let 0.5 . For Modular-Q, the learning rate

0.1 or 0.8 , discount factor 0.9 . The total learning
episodes are 5000, and the maximum iterations within an
episode are 1500 time steps. The visual depth of the hunter is
d=3. Upon capturing the prey, all the hunters surrounding the
prey receive a reward of 100, and accordingly all of their
constituents learning modules uniformly receive the same
reward regardless of what actions they have just proposed. In
any other case hunters receive a reward of zero.

Since the hunter cannot finish capture the prey alone,
therefore, to capture the prey, the hunter should take the
information of the prey and other hunters into account, so as to
better coordinate its behavior with other hunters’. For the
problem of (N+1) hunters capturing one prey, according to
conventional state coding, the state of Hunteri can be denoted as
s:=<P, Hi1, …, H iN>, where P is the relative position of the prey
to Hunteri, and Hik(k=1, …, N) denotes the relative position of
Hunterik to Hunteri. When the hunter with visual depth d, the
size of the state space is |S|=(vs+1)N+1. For module architecture,
the state space of each learning module for the hunter is a
combination of the relative positions of the prey and one other
hunter, that is, the size of state space is |Si|=(vs+1)2, accordingly,
the size of total state space is |S|=N (vs+1)2, in other words, the
relationship between the size of the state space and the number
of learning agents is transformed from exponential to power,
which means greatly reduce the size of state space.

Fig 4 is the learning curve of the three learning algorithm
under different time after several trials, Fig 5 gives the
histogram of the learning results for three algorithms.

0 1000 2000 3000 4000 5000
0

100

200

300

400

500

600

700

A
ve

ra
ge

 s
te

ps
 u

nt
il

ca
pt

ur
e

Time(episodes)

 Modular-Q, =0.1
 Modular-Q, =0.8
 MPS-AET, =0.1
 MPS-RET, =0.5

Fig. 4 The graph of comparison of three learning algorithms

1000 2000 3000 4000 5000
0

100

200

300

400

A
ve

ra
ge

 s
te

ps
 u

nt
il

ca
pt

ur
e

Time(episodes)

 Modular-Q, =0.1
 Modular-Q, =0.8
 MPS-AET , =0.1
 MPS-RET , =0.5

Fig. 5 The histogram of three learning algorithms

From these two graphs, we can find that, both MPS-AET and
MPS-RET are better than Modular Q-learning. These can be
explained as following. For the pursuit problem discussed here,
the environment cannot obey Markovian property, which
means the premise of Q-learning converging to the optimal
policy cannot be satisfied anymore. Moreover, because of the
limited sense ability, the hunter will wrongly treat two or more
different states as one, which lead to the perceptual aliasing
problem. Since the learning agent will choose inappropriate
action, which will slow down the learning speed. In addition,
Q-learning is an off-policy learning method. This means that
Q-learning is guaranteed to converge to the optimal solution
under MDP environment regardless of what policy is followed
during training, as long as each state-action pairs is visited
infinitely of in the limit. However, in Modular-Q, the one-step
value updates for each learning module are computed under the
assumption that all future actions will be chosen optimally for
that Markovian environment. This assumption is invalid under
the action selection mechanisms described above, which uses
the heuristic policy such as GM strategy. Because the chosen
action by mediator module will represent some compromise
policy in which the different learning modules share control.
This means that the computed Q-values do not converge to the
actual expected return under the composite policy. Modular
profit sharing method will suppress ineffective state-action
pairs that may trap into loop without reward, and reinforce

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1166

effective state-action pairs, so it will gradually converge to a
rational policy, and obtain better learning results. Additionally,
we can find that based on the parameters setting above,
MPS-RET is a little better than MPS-AET, which seems
someway like the reinforcement learning with replacing
eligibility traces compares to reinforcement learning with
accumulating eligibility traces.

To test performances of proposed algorithms under different
parameter settings, we let decay parameter with different values.
Fig 6 and 7 are average learning results for MPS-AET and
MPS-RET under different decay parameters, respectively.
When decay parameter doesn’t hold the conditions of theorem
1, then the performance of the algorithm declines, the average
capturing time is longer. This is because when decay parameter
does not hold the conditions of theorem 1, during the learning
process, some state-action pairs that will lead to trap into loop
without any reward also are reinforced, so it will affect the
performance of the learning algorithm. In addition, from the
learning curves we can find that, different decay parameter has
different effect to the learning algorithm. As for the simulation
in this paper, for MPS-AET, when decay parameter 0.1 , the
learning algorithm performs best. For MPS-RET, in generally,
the algorithm performs better with the increment of decay
parameters.

0 500 1000 1500 2000

50

100

150

200

Av
er

ag
e

st
ep

s
un

til
 c

ap
tu

re

Time(episodes)

 MPS-AET, =0.05
 MPS-AET, =0.10
 MPS-AET, =0.15
 MPS-AET, =0.20
 MPS-AET, =0.50

Fig. 6 The learning result of MPS-AET algorithm with
different decay parameters.

0 500 1000 1500 2000

50

100

150

200

A
ve

ra
ge

 s
te

ps
 u

nt
il

ca
pt

ur
e

Time(episodes)

 MPS-RET, =0.10
 MPS-RET, =0.20
 MPS-RET, =0.30
 MPS-RET, =0.50
 MPS-RET, =0.80

Fig. 7 The learning result of MPS-RET algorithm with
different decay parameters

VI. CONCLUSION

In order to solve the problem of huge states in multiagent
learning, as well as the perceptual aliasing problem because of
the limited sense ability of learning agents, we proposed a new
modular reinforcement learning approach. Firstly, a kind of
on-line profit sharing algorithm is proposed, and then based on
the advantages of modular architecture and on-line profit
sharing method, a modular on-line profit sharing approach is
presented. Experimental results showed that the proposed
learning algorithm could be used to achieve optimal solution
better, instead of traditional reinforcement learning methods.

REFERENCES

[1] Panait L, Luke S, “Cooperative Multi-Agent Learning: The state of the
art.” Autonomous Agents and Multi-Agent Systems, 2005, 11(3): 387-434

[2] Ho F, Kamel M. “Learning coordinating strategies for cooperative
multiagent systems.” Machine Learning, 1998, 33(2-3): 155-177,

[3] Garland A, Alterman R. “Autonomous agents that learn to better
coordinate.” Autonomous Agents and Multi-Agent System, 2004, 8(3):
267-301

[4] Kaelbing L P, Littman M L, Moore A W. “Reinforcement learning: A
survey.” Journal of Artificial Research, 1996, 4: 237-285

[5] Sutton R S, Barto A G. Reinforcement learning: An introduction.
Cambridge, MA: MIT Press, 1998

[6] Excelente-Toledo CB, Jennings NR. “Using reinforcement learning to
coordinate better.” Computational Intelligence, Vol. 21 No. 3, pp.
217-245. Blackwell Publishing 2005

[7] CHEN G, YANG ZH. “Coordinating Multiple Agents via Reinforcement
Learning.” Autonomous Agents and Multi-Agent Systems, 2005, 10(3):
273-328

[8] Ono N, Fukumoto K. “Multi-agent reinforcement learning: A modular
approach.” In Proceedings of the Second International Conference on
Multi-agent Systems. Portland, Oregon, USA. 1996, pp: 252-258, AAAI
Press

[9] Miyazaki K, Yamamura M, Kobayashi S. “On the rationality of profit
sharing in reinforcement learning.” In Proceedings of the third
International Conference on Fuzzy Logic, Neural Nets and Soft
Computing, pages 285-288. Fuzzy Logic Systems Institute, 1994

[10] Arai S, Sycara K. “Effective learning approach for planning and
scheduling in multi-agent domain.” In Proceedings of the 6th
International Conference on Simulation of Adaptive Behavior. Paris,
France. September 2000, pp: 507-516

[11] Arai S, Sycara K P, Payne T R. “Experience-based reinforcement
learning to acquire effective behavior in a multi-agent domain.” In
Proceedings of the 6th Pacific Rim International Conference on
Artificial Intelligence. Melbourne, Australia. 2000, pp: 125-135

[12] Bellman R. Dynamic programming. Princeton, NJ: Princeton University
Press, 1957

[13] Watkins C J, Dayan P. “Technical Note: Q-learning.” Machine learning,
1992, 8: 279-292

[14] Whitehead S, Karlsson J, Tenenberg J. “Learning multiple goal behavior
via task decomposition and dynamic policy merging.” Robot Learning,
Norwell, MA: Kluwer Academic Press, 1993

[15] Grefenstette J J. “Credit assignment in rule discovery systems based on
genetic algorithms.” Machine Learning, 1988, 3: 225-245

[16] Miyazaki K, Kobayashi S. “On the rationality of profit sharing in
partially observable markov decision process.” In Proceedings of the
fifth International Conference on Information Systems Analysis and
Synthesis. Orlando, FL, USA. 1999, pp: 190-197

[17] Whitehead S D, Balland D H. Active perception and reinforcement
learning. In Proceedings of 7th International Conference on Machine
Learning. 1990, pp: 162-169

[18] Singh S P, Sutton R S. “Reinforcement learning with replacing eligibility
traces.” Machine Learning, 1996, 22: 123-158

[19] Benda M, Jagannathan V, Dodhiawalla R. “On optimal cooperation of
knowledge source.” Technical Report No. BCS-G2010-28, Boeing
Advanced Technology Center, Boeing Computer Services, Seattle, WA,
1986

