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Analysis of Relation between Unlabeled and
Labeled Data to Self-Taught Learning Performance
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Abstract—Obtaining labeled data in supervised learning is often
difficult and expensive, and thus the trained learning algorithm tends
to be overfitting due to small number of training data. As a result,
some researchers have focused on using unlabeled data which may
not necessary to follow the same generative distribution as the labeled
data to construct a high-level feature for improving performance on
supervised learning tasks. In this paper, we investigate the impact of
the relationship between unlabeled and labeled data for classification
performance. Specifically, we will apply difference unlabeled data
which have different degrees of relation to the labeled data for
handwritten digit classification task based on MNIST dataset. Our
experimental results show that the higher the degree of relation
between unlabeled and labeled data, the better the classification
performance. Although the unlabeled data that is completely from
different generative distribution to the labeled data provides the lowest
classification performance, we still achieve high classification perfor-
mance. This leads to expanding the applicability of the supervised
learning algorithms using unsupervised learning.

Keywords—Autoencoder, high-level feature, MNIST dataset, self-
taught learning, supervised learning.

I. INTRODUCTION

MACHINE learning plays the major roles in many areas

of application: classification, regression, and clustering.

It mainly focuses on implementing algorithms capable of

learning or adapting their structure (parameters) based on a set

of observed data from physical system. The task of learning

from labeled data is basically called supervised learning that

has been widely used in many applications. In supervised

learning, the state-of-the-art algorithms for recognizing hand-

written images require thousands of labeled handwritten im-

ages and similarly, face recognition uses thousands of labeled

face images for training the supervised learning algorithms. In

general, the supervised learning algorithms are implemented

based on the assumption that the training and testing data

are drawn from the same generative distribution. However, in

many real-world problems, this assumption may not always

hold true leading to degradation of the generalization perfor-

mance. Another challenging problem in supervised learning

arise when the number of labeled training data is small or

expensive to collect such as object images, speech data, DNA

microarray data. So, the supervised learning is limited on that

situation. Based on M. Banko’s and E. Brill’s research [1],

they found that to get better performance more labeled data

is needed to provide to the learning algorithm. Sometimes, an
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aphorism ”it is not who has the best algorithm that wins. It’s

who has the most data” has been coined in machine learning

community. Consequently, even an inferior learning algorithm

can often outperform a superior one if it has more training

data [2].

For complex applications in computer vision, suppose we

want to implement the machine learning model for car recog-

nition. Suppose input to a learning algorithm consists of a set

of 100×100 pixel image which can be represented as a high-

dimensional pixel intensity vector x ∈ R
10,000. In practice,

if we have enough number of labeled training data, it should

be possible to achieve high performance from the supervised

learning algorithm. However, this prediction is not easy in

practice because a slight shift on the camera angle, or a light-

ing conditions, or occlusion of the object, or shape variation

can affect the prediction performance dramatically. So, we

need the hypothesis function (h) that is capable of capturing

useful image features and also is robust to many factors of vari-

ations. Based on those requirements, more complex learning

algorithm is needed leading to more number of parameters to

be determined. In such case, thousands of labeled data at least

are required to train the learning algorithm. Having a small

number of labeled training data for implementing the complex

model highly causes the learning algorithm to be overfitting.

As a result, the traditional supervised learning approach cannot

perform well in this situation.

In learning process, each input image as a high-dimensional

input vector x is forwarded to train the learning algorithm. In

this case, each vector representing pixel intensity value in the

image is usually called low-level feature. In practice, if we

have large amount of labeled data, it should be possible to

build a specific machine learning model to recognize whether

the object in the image is car or non-car from the 10,000-

dimensional input vector. In an alternative setting, suppose we

have a feature representation that is able to represent special

characteristic parts in the car image, e.g., car’s wheel, a car’s

door. Providing these high-level features, it is much easier to

predict by the learning algorithm with a high accuracy whether

the image contains car or not. This formulation illustrates

the impact of good feature representation for the supervised

learning algorithms. However, it is not obvious to specify these

high-level features in practice. Therefore, it is desirable to

have a method that automatically constructs high-level feature

representation without hand-tuning feature representation by

experts for improving prediction performance of the super-

vised learning.

Inspired by these observations, there is a research group

at Stanford University [3] who has proposed a new formal-
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Fig. 1. Machine learning pipeline of image classification

ism, called self-taught learning, by using unlabeled data to

construct a high-level feature for improving the supervised

learning performance. The advantage of this new framework

doesn’t assume that the unlabeled data follows the same

generative distribution as the labeled training data. However,

there are several key ingredients to choose: number of features

to learn, number of layers of features, learning rates, sparsity

penalty, and relation of distribution between unlabeled and

labeled data that are important to the self-taught learning

performance.

In this paper, the objective is to investigate the impact of

the distribution relation between unlabeled and labeled data

on the classification performance. We will start by reviewing

related work of high-level feature construction algorithms in

section II, then move on to an unsupervised feature learning

based on unlabeled data (self-taught learning) in section III.

Experimental procedures and results are given in section IV

and V, respectively. Finally, a conclusion is draw in section

VI.

II. HIGH-LEVEL FEATURE CONSTRUCTION

It appears that number of labeled training data and good

feature representation are very important to successfully im-

plement the learning algorithm. One possible method that is

normally used is to create a new set of features with con-

taining relevant information to the learning algorithm. Feature

extraction is a general method that has been widely used

for dimensionality reduction and feature discovery. A basic

concept of feature extraction is to map an input space (x ∈ R
n)

to a new feature space, f(x) ∈ R
d where d � n. In particular,

instead of using raw input pixel intensities of the image x ∈ X ,

we create a new set of informative input features from certain

functions ϕi(x) of the original input vector. Then, the learning

algorithm will try to map the new features f : ϕ(x) → y
rather than using the original n-dimensional input vector. So,

the pipeline of object recognition task can be illustrated in

Fig.1. Unfortunately, it has no straightforward recipe to choose

the functions that provides good feature representation without

trial and error approach by human efforts. So, it is cumbersome

and expensive to obtain high-quality feature representation

based on this method. Principle component analysis (PCA) is

one of the unsupervised learning methods that is widely used

in feature construction. In PCA, the new features are obtained

by projecting the features into a low-dimensional subspace

with maximal variant of the data. Other approaches proposed

in literature such as kernel PCA, ISOMAX, independent

component analysis (ICA), latent semantic analysis (LSA), etc.

In this paper, we will apply a multilayer neural network

to perform feature construction [4],[5]. Basically, a neural

network is a mathematical model which consists of an inter-

connected group of neurons and it processes the information

using an activation function. Most of the neural network

Fig. 2. An autoencoder feature extractor

models are arranged as layers such that outputs of each layer

(n-th layer) forward to neuron in the next layer (n + 1-th

layer) until the last layer to produce the output(s) y ∈ Y . This

neural network will learn to mapping relationship between

labeled input and output data so that the error is minimized.

A special neural network designed by setting the target values

to be equal to the inputs itself is called an autoencoder

neural network [7] shown in Fig. 2. This network applies

backpropagation algorithm to adjust the parameters by setting

y(i) = hw,b(x
(i)) = x(i) where w, b are parameters of the

neural network model. Basically, this network tries to learn an

approximation to the identity function, so as to the output y(i)

is similar to the input x(i) . By limiting the number of hidden

units less than n, the network is forced to learn a compressed

representation of the input.

III. SELF-TAUGHT LEARNING

Due to the difficulty and expensive to obtain labeled data,

some research group [3], [6] has proposed a new idea to

learn a good feature representation from a massive amount of

unlabeled data which is significantly easier to obtain than the

given labeled data. This new learning framework is known as

self-taught learning. At the beginning, assume we are given

a labeled training data for object classification task of m
examples which are drawn from a particular distribution D.

T =
{
(x

(1)
l , y(1)), (x

(2)
l , y(2)), . . . , (x

(m)
l , y(m))

}

where y(i) ∈ {1, 2, . . . , C} is the class label corresponding to

the input x
(i)
l ∈ R

n.

In addition, suppose that a set of k unlabeled data is avail-

able in which these unlabeled data don’t have any constraint

to the labeled data.

{
x(1)
u , x(2)

u , . . . , x(k)
u

}
, x(i)

u ∈ R
n

The approach to construct a higher-level feature represen-

tation based on self-taught learning consists of three separate

stages as follows [3], [9]:
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A. Learning higher-level feature representation:

To construct higher-level feature representation, a modified

version of the sparse autoencoder algorithm based on Ol-

shausen & Field [7] is applied to learn the basic elements that

comprises in the input image (such as edges in natural image

and strokes in handwritten characters [8]). The formulation in

this step can be set up as follows:

min
a,b

J(a, b) =
k∑

i=1

‖x(i)
u −

s∑
j=1

a
(i)
j bj‖22 + β‖a(i)‖ (1)

s.t. ‖bj‖22 ≤ 1

The optimized parameters in (1) are a set of basis vectors

b = {b1, b2, . . . , bs} where bj ∈ R
n and s is the number

of hidden neurons. All activations in the hidden layer are

represented as a = {a(1), a(2), . . . , a(k)} where a(i) ∈ R
s .

So, a
(i)
j is the activation associated with the basis bj of the

input x
(i)
u . The goal of this optimization problem is two-fold:

(i) to minimize the error between x
(i)
u and a weighted linear

combination of the basis bj (ii) to force the activation vector

to have low L1-norm leading to most of a(i) elements to be

nearly zero. Therefore, x
(i)
u =

∑s
j=1 a

(i)
j bj can be represented

as a sparse weighted combination of small number of bases.

B. Constructing a higher-level feature to the labeled data:

After implementing sparse autoencoder algorithm to learn

from the unlabeled data x
(i)
u , we obtain a set of bases b as

described in the previous step. Then, a higher-level feature

representation of the labeled training data x
(i)
l is created based

on a sparse linear combination of the bases bj . This can be

obtained by solving the following optimization problem:

a(x
(i)
l ) = min

a(i)
‖x(i)

l −
k∑

j=1

a
(i)
j bj‖22 + β‖a(i)‖ (2)

The objective of the optimization in (2) is to approximately

express x
(i)
l in terms of a sparse weighted sum of the bases

feature bj so that a(x
(i)
l ) is a new feature representation of

x
(i)
l . Consequently, the new high-level feature representation

of the labeled data can be written as:

T̂ =
{
(a(x

(1)
l ), y(1)), (a(x

(2)
l ), y(2)), . . . , (a(x

(m)
l ), y(m))

}

C. Training high-level feature to classifier:

Finally, a supervised learning algorithm such as logistic

regression, support vector machine, neural network, etc. can

be trained by applying the high-level feature representation

T̂ from the previous step to obtain a classification model

hw,b(a(x
(i)
l )) that makes predictions on the y(i) values. For

prediction of the testing sample xtest, we first have to compute

the high-level feature a(xtest) by solving:

a(xtest) = min
a

‖xtest −
k∑

j=1

ajbj‖22 + β‖a‖ (3)

Then, the learning algorithm will make a prediction by

computing hw,b(a(xtest)).

Now, let’s see a detail of implementing a new high-level

sparsity feature which is detailed by Andrew Ng et al [2], [9].

Suppose we have only a set of data x(1), x(2), . . . , x(k), where

x(i) ∈ R
n. Let’s define a

(2)
j (x) to represent the activation of

this hidden unit j in the second layer when the network is

given a specific input x. Further, let’s denote ρ̂ be the average

activation value of hidden unit j over all the k unlabeled data.

ρ̂j =
1

k

k∑
i=1

[
a
(2)
j (x(i))

]
(4)

To form succinct feature representation, the hidden unit’s

activations are enforced to mostly be zero (sparse) by setting

the following optimization constraint.

s∑
j=1

ρ log
ρ

ρ̂j
+ (1− ρ) log

1− ρ

1− ρ̂j
(5)

where ρ is called a sparsity parameter, usually setting to a

small value close to zero. In addition, this penalty term can be

written in the form of Kullback-Leibler (KL)-divergence by:

KL(ρ||ρ̂j) = ρ log
ρ

ρ̂j
+ (1− ρ) log

1− ρ

1− ρ̂j
(6)

The KL-divergence in (6) has the property that KL(ρ||ρ̂j) =
0 if ρ̂j = ρ. Thus, our goal is to minimize this penalty term

so that a(2) considered a new high-level feature has sparse

representation. As a result, the overall cost function can be

defined as:

Jsparse(w, b) = J(w, b) + β

s2∑
j=1

KL(ρ||ρ̂j) (7)

where J(w, b) = 1
k

∑k
i=1

(
1
2

∥∥hw,b(x
(i))− y(i)

∥∥2) and β

is a weight to control the sparsity penalty term. So, this new

feature representation is referred to as a high-level represen-

tation and is sequentially forwarded to train the supervised

learning algorithm.

IV. EXPERIMENTAL PROCEDURE

In our experiments, we will use the self-taught learning

framework with the sparse autoencoder as the feature extractor

and softmax regression as a classifier for MNIST database

of handwritten digit gray-scale images. The handwritten digit

database consists of 60,000 examples for training and 10,000

examples for testing, respectively. Each handwritten digit

image has been size-normalized and centered in a fixed-size

28× 28 image field.

To implement the softmax regression [2] as a digit classifier,

T̂ is used to determine the model parameters. Basically, the

softmax regression is designed to estimate the probability that

p(y = j|x(i)) for each value of j = 1, . . . , 10 by:



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:7, No:4, 2013

389

Fig. 3. Block diagram of the experiment procedure

hθ(x
(i)) =

⎡
⎢⎢⎢⎣

p(y(i) = 1|x(i); θ)
p(y(i) = 2|x(i); θ)

...

p(y(i) = 10|x(i); θ)

⎤
⎥⎥⎥⎦ =

1∑10
j=1 e

θT
j x(i)

⎡
⎢⎢⎢⎢⎣

eθ
T
1 x(i)

eθ
T
2 x(i)

...

eθ
T
10x

(i)

⎤
⎥⎥⎥⎥⎦

where θ = [θ1, . . . , θ10]
T is a matrix parameter of the

model. The parameters of the softmax regression can be

obtained by optimizing the following cost function.

J(θ) = − 1

m

⎡
⎣

m∑
i=1

10∑
j=1

1
{
y(i) = j

}
log

eθ
T
j x(i)

∑k
l=1 e

θT
l x(i)

⎤
⎦

+
λ

2

10∑
i=1

n∑
j=1

θ2ij (8)

where 1{·} is called an indicator function which provides

value 1 if 1{True statement} and 0 otherwise. For classifi-

cation of the handwritten digit image, the softmax regression

will classify to a class which has highest probability of

p(y = j|x; θ).
The procedure of the experiment can be displayed by Fig.3

which can be summarized by the following steps.

1) Learning high-level feature representation from unla-

beled data: First of all, the sparse autoencoder shown

in Fig.2 is trained by the unlabeled dataset to find a

set of bases. In our experiment, the sparse autoencoder

comprises 784 input neurons and one hidden layer with

200 neurons.

2) Constructing high-level features to the labeled training

data: The new feature representation of the training

handwritten digit images (x
(i)
l ∈ R

784) is created by

forwarding to the trained sparse autoencoder from the

previous step. So, the new features can be expressed as

a(x
(i)
l ) ∈ R

s where s = 200.

3) Training high-level feature to classifier: A softmax

regression is implemented by using the new feature

representation a(x
(i)
l ) where l = 1, · · · ,m from the

output of the trained sparse autoencoder as a training

data.

4) Evaluating classification performance on testing data:

For evaluation of classification performance, a testing

data (x
(i)
test) will be mapped to a new set of high-level

feature representation, a(x
(i)
test) by the trained sparse

autoencoder. Finally, the trained softmax regression will

make a prediction and we then compute the accuracy.

As mentioned earlier, the objective of this paper is to

investigate the impact of the relation between the unlabeled

data and the labeled data to the classification performance.

TABLE I
EXPERIMENTAL RESULTS ON MNIST HANDWRITTEN DIGIT DATASET

Unlabeled data domain % classification accuracy

- Without unsupervised learning 92.64
- Natural images 93.47
- USPS handwritten database 93.82
- MNIST handwritten database 95.12

Fig. 4. Samples of natural image data to learn by sparse autoencoder

Fig. 5. Samples of USPS handwritten character unlabeled data to learn by
sparse autoencoder

Fig. 6. Smples of MNIST unlabeled data to learn by sparse autoencoder

So, we apply 3 different sources of the unlabeled data to

train the sparse autoencoder which has different degree of

relation to the labeled data: (i) natural images , (ii) handwritten

digits and english characters (”0”-”9” and ”A”-”Z”) from

USPS database, and (iii) handwritten digit image (”0”-”9”)

from training dataset itself. The numbers of unlabeled sample

images of each data are 50,000 for natural image and MNIST

handwritten data, and 1,404 for USPS handwritten character

data, respectively. The samples of these unlabeled data are

illustrated in Fig.4-6.

V. EXPERIMENTAL RESULTS

The classification results of MNIST handwritten digit with

different unlabeled data learning by sparse autoencoder are

reported in Table.I. It appears that classification accuracies of

the new high-level features on all unlabeled data domains ob-

tained from the sparse autoencoder outperform the raw feature

alone which yields 92.64% in accuracy. In comparison among

different unlabeled data of unsupervised feature learning, the

new set of features from MNIST unlabeled data achieves top

of the performance of 95.12%.

The visualizations of some bases of each unlabeled data

learned by the sparse autoencoder are shown in Fig.7-9. It is

not surprising that the learned bases from MNIST handwritten

digit data appears to represent the digit texture which is

most similar to the original handwritten digit data comparing
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Fig. 7. Visualization samples of learned bases of 50 hidden neurons from
natural image

Fig. 8. Visualization samples of learned bases of 50 hidden neurons from
USPS handwritten character

Fig. 9. Visualization samples of learned bases of 50 hidden neurons from
MNIST handwritten digit

to the learned bases from other unlabeled data. Thus, the

classification performance of new input features obtained from

MNIST unlabeled data achieves highest accuracy. The reason

of significant improvement is because the softmax regression

classifier is allowed to learn the concept of digit structure

rather than pixel intensity of the digit image.

In semi-supervised learning, the learning algorithm is im-

plemented to improve the performance using labeled and unla-

beled data but it requires strong assumption that both data must

draw from the same distribution. Therefore, new features from

MNIST unlabeled data in the experiment can be considered a

kind of semi-supervised learning. However, while the USPS

unlabeled data seems to have close relation to the MNIST

handwritten digit data, it cannot be convincedly categorized

into the semi-supervised learning since the USPS data is drawn

from different space which has different characteristics such

as different pen strokes and it is not gray-scale image.

VI. CONCLUSION

From the experiment, we can find that sparse autoen-

coder learned from unlabeled data can produce a higher-

level feature representation which is useful to the supervised

learning algorithm. In addition, the relation between labeled

and unlabeled data has direct impact to the performance of

the self-taught learning. Based on the experimental results, the

closer relation between labeled and unlabeled data, the higher

the performance accuracy will achieve. Thus, careful chosen

unlabeled data can help to achieve even better performance

improvement.

Although the semi-supervised learning achieves higher clas-

sification performance in handwritten digit than the self-

taught learning algorithm, it can be applicable to a broader

problem and also could be used to improve the supervised

learning performance. In addition, the self-taught learning can

be applied to mitigate the problem of having small number

of labeled training data by using unlabeled data which is

not necessary to share the same distribution with the labeled

data. Consequently, the ability to use readily unlabeled data

based on self-taught learning formalism has potential to make

supervised learning significantly easier and widely applicable.
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