
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:5, No:11, 2011

1496

Abstract—Despite so many years’ development, the mainstream

of workflow solutions from IT industries has not made ad-hoc
workflow-support easy or inexpensive in MIS. Moreover, most of

academic approaches tend to make their resulted BPM (Business
Process Management) more complex and clumsy since they used to

necessitate modeling workflow. To cope well with various ad-hoc or

casual requirements on workflows while still keeping things simple
and inexpensive, the author puts forth first the TSM design pattern that

can provide a flexible workflow control while minimizing demand of

predefinitions and modeling workflow, which introduces a generic
approach for building BPM in workflow-aware MISs (Management

Information Systems) with low development and running expenses.

Keywords—Ad-hoc workflow, BPM, Design pattern, TSM

I. INTRODUCTION

T is a controversial issue to discuss the merit and demerit of

the many years’ academic research and application practice

of BPM (Business Process Management). Many practitioners,

as we know doubt are so many efforts really useful and

cost-effective for building a workflow-aware MIS? It seems that

most of BPM vendors, developers, and academic researchers, to

a great degree, tend to make things more complex and expensive

than need to be in this workflow-aware issue. Although

nowadays it is a usual practice for many IT consulters to suggest

a product solution of standalone BPMs, however, in many cases

a simple methodological approach, from our point of view, is

good enough to implement MISs capable of dealing ad-hoc

workflows well; there is no need for those so-called intensive

product or work. Under current approaches, modeling process

or workflow is an inevitable step [1], which usually makes BPM

more complex and costly than it needs to be for many situations.

Apart from disposing regular workflow, we sometimes need a

flexible WfMS (Workflow Management System) to support

ad-hoc workflow. An ad-hoc workflow or casual workflow, in

short Ah-FL, refers to less-confined or less-regular workflows,

which are often featured with necessary human intervention that

might affect the practical route of workflow at any node and any

time in the course, e.g., they can be encountered in developing a

MIS for Adhocracies organizations [2]. Ah-FL is not negligible

simply because

1) Anomalistic workflows exist in reality though they are less

frequent and desired;

2) Workflow exceptions exist due to situation change or

H. Yang is with the Guangdong Provincial Construction Information

Center, Guangzhou, China (phone: +86-133 4288 3896; fax: +8620-8725

1025; e-mail: yanght@gdcic.net, Haitao_yang@189.cn).

system incapability, etc.We must point out that anomalistic

flows and flow exceptions are often confused [3], [4]. In a well

taxonomy, exception handling belongs to the subject of reliable

design; whereas anomalistic flows refer to those that behave in

an unusual way. In workflow-aware MIS applications, process

automation is typically not a strict requirement for an Ah-FL,

and an abnormal routine might start at any node of flow process

at any time. There is a so-called 80/20 ratio phenomenon of the

regularized to ad-hoc cases [5], i.e., roughly speaking an 80

percents or so of the workflow cases belong to the regularized

category, about 20 percents are ad-hoc (casual). It is different

from that of production systems in the manufactory industries

[6].

Patterns of anomalistic flows can be classified into two

categories: the expected and the unexpected, “the former refers

to those that are known in advance to the workflow designer,

whereas the disposal of the later typically resorts to a human

intervention” as stated in [7]. Even for the expected anomalistic

workflows, when and which of them should occur might be

unpredictable despite their patterns could be enumerated in

advance [4], that is, their occurrences might be predictable or

unpredictable. All these contexts of reality create need for

WfMSs capable of supporting ad-hoc workflows.

II. THE PROBLEMS OF CURRENT BPM APPROACHES

Here we focus on implementing a software function to cope

flexibly with anomalistic flows. There are several major

obstacles for classical approaches to design such a flexible

WfMS:

(1) High complexity and overhead are introduced inevitably

by specifying and disposing expected exceptions [4] to cope

with changing application semantics, which counteracts the

automation and regulation merits of WfMSs.

(2) In many business, some of their expected anomalistic

flows could only be effectively described in a natural language,

thus it is impossible for a software system being artificiality of

the contemporary era to understand such an abnormity.

(3) Hard to cover unexpected abnormity of workflows in a

coherent way [8], [9].

(4) Solutions from industries are usually product-targeted.

Commercial workflow products are expensive, open source

solutions needs much improvement [10].

(5) Approaches from academic societies often suffer a heavy

toll of implementation or not at the stage of practicality.

(6) Lacking interoperability [11].

To overcome these problems we propose a generic approach

of BPM design pattern basing on the TSM (transceiver-similar

TSM: A Design Pattern to Make Ad-hoc BPMs

Easy and Inexpensive in Workflow-aware MISs
Haitao Yang

I

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:5, No:11, 2011

1497

mechanism) for ad-hoc BPMs.

III. THE PROPOSED TSM APPROACH

Instead of basing on workflow definition, an alternative

approach is naturally outlined when each node involved in a

workflow hands over tasks to their next nodes according to their

next stop’s address, and takes over tasks by filling in the records

of sending&receiving log. The core of TSM is an address

book-based mechanism of dispatching and receiving tasks,

which links sequential activities into a workflow sequence. The

idea of TSM pattern has the following kernel content: 1)

transitions of an ongoing workflow are ignited by the

manipulation of sending a task to designated addresses by

participants in the current node of the workflow; 2) the

addresses to which participants can send task objects are

confined by the current accessible lists of address; 3) the

maintenance of the relational database table of Sending Record

(SR) embodies the implementation of dispatch and receive

operations, which is carried out centrally by the TSM service,

where the SRs table functions as a bridge between activities in a

process instance. TSM take on two basic tasks: 1) address

configuration management, 2) maintaining SRs to implement a

dispatching and receiving mechanism.

III.i. TSM Address Book Configuration

In TSM a workflow is realized via a sequence of activities

being interlinked by dispatch or receive operations, so TSM is

referred to as a transceiver-similar workflow mechanism, where

the Address Book (AB) configuration is the core of system

management. Generally AB configuration has two basic ways:

central and distributed. We assume the Centrally Configuring

AB (CCAB) way, regarding that enforcing workflow per se

reflects an essence of demanding stronger control.

In CCAB, there is a Basic AB (BAB) that flatly lists all

addresses of all participants. Apart from BAB, there could be

many Classified ABs (CABs) derived from the BAB or even

other CABs. Each CAB is applied to a specific type of business

process; the items of a CAB can be subcategorized into different

address groups (AG). We have,

<CAB item> ::= <CAB> | <TAI>, <CAB> ⊆ <BAB>,

<AG> ::= {<TAI>} ⊆ a specific <CAB>

Where, TAI (Terminal Address Item) is an item indicating a

specific primitive address without sub-item. The related basic

data structures include:

TAI: (ADDRESS, SUBJECT, POST, <ADDITIONAL FIELDS>)

S1: AB COLLECTION (BOOK_ID, TAI)

S2: PARENT-CHILD ASSOCIATION (BOOK_ID, PARENT_ID)

III.ii. Operation of TSM

During a workflow process of dispatching and receiving a

flowing task (FT), the FT is not moved actually, which resides

where it was created in the database. An action of passing an FT

is indicated by a corresponding SR. The operation of TSM is

outlined as follows:

(1) Each FT has its set of SRs, named sSet in short. At the

beginning, each sSet is empty.

(2) Each sending operation will trigger the TSM engine to

create an sSet, which inserts one unique SR in the corresponding

sSet for each addressee of the sending action. In each SR there is

a unique addressee that is defined by a target address. The

creation of an SR indicates that the sender has started to hand

over the designated FT to the addressee defined in the SR for a

succedent disposal.

(3) The reception of an FT can be handled manually or

automatically, which is up to the practical design of the related

application, not the focus of TSM.

(4) The finish of an FT’s handover to a specific addressee is

indicated by the receiver’s sign-for, before which the addresser

can withdraw the handover just by deleting the corresponding

SR. Nevertheless an SR bearing a valid signature of reception

can not be deleted.

(5) An FT could be sent to multiple addressees; in this case

the sending action will create multiple SRs with one SR for one

addressee distinctly.

(6) The finish of an FT’s handover indicates that the

disposal of the FT in the addresser’s hand for that specific round

of workflow is complete.

(7) Each time the same FT passing the same node in a path

of workflow, its corresponding SR should have a distinct SR

identity.

The data structure of SR is defined by relation S3:

<FT_ID, SN, p-SN, S-Addr, R-Addr, sign-for, sign-time, send-time,

transfer-time>.

Where, field <S-Addr> stands for the addresser's address,

<R-Addr> for the addressee's address, the values of both

<S-Addr> and <R-Addr> should come from the address field of

TAI in an AB (see section III.i); <p-SN> stands for the <SN> of

the predecessor SR, of which the addressee is the addresser of

the current SR; <sign-for> is to be filled in with a valid signature

of the addressee (or whose attorney) , <sign-time> is for noting

down the time when the <signs-for> is filled in, <send-time> for

recording the time when the SR is created, and <transfer-time>

for the time when the addressee has forwarded the FT to the next

node in the workflow.

The TSM-based design pattern for workflow software is

summarized as in Fig. 1.

Fig. 1 TSM operation pattern illustration

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:5, No:11, 2011

1498

III.iii. Employing TSM in a MIS

TSM should be employed at the design stage of developing a

BPM function for a workflow-aware MIS. It is the duty of

workflow client applications to categorize the received FT by

information from semantic attributes in the SR, and to interface

the users with their FTs in a proper way. A node interface design

should link each local accessible AB (derived or original) to a

proper category via which the local FT outlet is controlled.

Participants can pick the next addressees from their accessible

ABs to transfer their current FTs, which is up to the working

rules they should know. Participant’s any breach to the post

regulation can be easily audited from the sSet without exception.

Besides, any mistakenly sent FTs could be returned to the

sender via a normal sending action in the reverse direction.

N01

<Id1, 3, >

<Id1, 7, 1>

<Id1, 9, 5> <Id1,11,10>

<Id1, 2, >

N04

N05

N03

<Id1, 1, >

N07 N08

N06

N02

N09

<Id1, 12, 6>

<Id1, 5, 3> <Id1, 8, 4>

<Id1, 4, 2>

<Id1, 10, 8>

<Id1, 6, 3>

Fig. 2 Trace Diagram of Flow

<Id1, 7, 1, "N02", "N09", "Miller", "6/27/2010 17:18", "6/27/2010 10:11", >

<Id1, 1, , "N01", "N02", "Ann", "6/27/2010 7:59", "6/27/2010 7:57", "6/27/2010 10:11">;

<Id1, 2, , "N01", "N03", "Daly", "6/27/2010 8:16", "6/27/2010 7:57", "6/27/2010 9:22">;

<Id1, 3, , "N01", "N04", "John", "6/27/2010 8:09", "6/27/2010 7:57", "6/27/2010 9:23">;

<Id1, 4, 2, "N03", "N06", "Tom", "6/27/2010 9:59", "6/27/2010 9:22", "6/27/2010 13:10">;

<Id1, 5, 3, "N04", "N06", "Bob", "6/27/2010 17:07", "6/27/2010 9:23", "6/28/2010 8:31">;

<Id1, 6, 3, "N04", "N04", "John", "6/27/2010 9:23", "6/27/2010 9:23", >;

Fig. 3 An Instance of sSet

III.iv. Illustration of TSM’s Flexibility and Expressiveness

TSM can accommodate any of FT flow traces, and can handle

well any transfer at any moment during a workflow process, as

is exemplified in Fig. 2, in contrast against the current WfMS

products on the expressiveness of arbitrary course [12]. To be

simple, in Fig. 2 we extract a tuple of three attributes <FT_ID,

SN, p-SN> from the SR relation for just illustration. Fig. 2

demonstrates a flow scenario of an FT with <FT_ID> = “Id1”,

where the FT was forked at nodes {N01, N04, N06}, and

circumfluence occurred at node N06. The workflow in Fig. 2

contained a series of traces:
1: <Id1,1,>�<Id1,7,1>

2: <Id1,2,>�<Id1,4,2>�<Id1,8,4>�<Id1,10,8>�<Id1,11,10>

3: <Id1,3,>�<Id1,5,3>�<Id1,9,5>

4: <Id1,3,>�<Id1,6,3>�<Id1,12,6>...

For example, after node N09 received the FT of Id1 from

node N02, and before node N06 sent back the FT of Id1 to node

N03, the snapshot of the sSet is exemplified as in Fig. 3, where,

to be terse and illustrative, we just identify each address with the

corresponding node’s name, and using an arrow-headed line to

link an SR’s <send-time> to its predecessor’s <transfer-time>.

To present those forking branches which are not simultaneous,

as branches <Id1,5,3> and <Id1,12,6> emitted from node N04 in

Fig. 3, we have to insert a circumfluence, e.g., <Id1,12,6>, at the

forking node. In the case of circumfluence SR, its <sign-time> is

equal to the <signs-for>, as seen Fig. 3.

As the above example shows, the trace diagram of flow can

intuitively presents all forking traces of a workflow, and further

all temporal sequences of transitions of workflows can be

sufficiently described and logged by TSM just in one set of SRs

no matter how complex the flows will be.

IV. COMPARING TSM WITH CURRENT BPM APPROACHES

TSM is a design pattern, which represents a methodological

solution, applicable to designing any Ah-FL involved system,

and TSM’s main modules can be encapsulated and embedded in

various applications. Of course, instances of TSM could also

run as a standalone workflow engine. An obvious advantage of

TSM is its simple implementation, according to the experience

of our developing team, for example, a skillful programmer

oneself can code all the basic codes of a TSM implementation

from scratch within one week, there comes the cost advantage of

our TSM approach too. As to the cost issue of BPM commercial

product, according to [13], “the investments to purchase BPM

software is hefty, in addition, BPM cost includes training,

maintenance contracts, customization and development of

applications, support and administration costs and finally,

implementation expenses.” And according to [14], “for a typical

implementation that leverages a leading BPMS, the budget will

be for $250,000 to $500,000 to address a meaningful process in

employed organization”, which contrasts with the cost of our

TSM approach that only costs a week wage of common skillful

programmer. The comparison of TSM’s solution with current

approaches’ is in brevity listed in Table I.

V. CONCLUSION

MIS project practices from our software development team

have validated that the implementation of TSM is so simple

such that its example is no more than a pure document of

programming, contrasting with today commonly complicated

and often expensive practices in IT industries. Regarding that an

TABLE I

COMPARISON BETWEEN TSM AND CURRENT APPROACHES

Complexity low variable in cases usually high

flexibility methodological Integration-oriented definition-oriented

automation low high variable

maintenance easy hard variable, often hard

interoperability inherent extrinsic extrinsic, or limited

Influence on MIS easy integration dependant on vendors turn to be heavy

Factors TSM’s Commercial Academic

Expense/workload inexpensive expensive Heavy workload

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:5, No:11, 2011

1499

integration of heterogeneous systems usually comes with the

cost of higher complexity, lower running efficiency, and harder

maintenance, a concise design pattern solution like TSM shall

serve better for the same purpose of supporting Ah-FLs than

those of product integration level. Empirically, it is the TSM

design pattern that should be suggested instead of workflow

products for dealing with Ah-FLs at ease under a low expense.

Furthermore, we can explore a combination usage of TSM’s and

classical approaches, especially for BPMs of strictly-regular

workflows where both automation and flexibility are weighted.

ACKNOWLEDGMENT

The Author thanks all members of his software development

team for coding the TSM design pattern in related projects.

REFERENCES

[1] W. M. P. van der Aalst, and A. H. M. ter Hofstede, “Workflow patterns

initiative,” http://www.workflowpatterns.com/

[2] S. Carlsen, J. Krogstie, and O. I. Lindland, “Evaluating flexible workflow

systems,” in Proc. 30th Hawaii Int'l Conf. on System Sciences, 1997,

vol.2, pp. 230–239. DOI: 10.1109/HICSS.1997.665502
[3] C. Hagen, and G. Alonso, “Exception handling in workflow management

systems,” IEEE Trans. Software Eng., vol. 26, no. 10, pp. 943–958.
[4] F. Casati, S. Ceri, S. Paraboschi, and G. Pozzi, “Specification and

implementation of exceptions in workflow management systems,” ACM

Trans. Database Syst., vol. 24, no. 3, pp. 405–451.
[5] Staffware Company, “Workflow patterns according to Staffware,”

http://www.workflowpatterns.com/vendors/documentation/vc_staffware.

pdf

[6] R. Bastos, and D. Ruiz, “Towards an approach to model business

processes using workflow modeling techniques in production systems,”

in Proc. 34th Annual Hawaii Int'l Conf. on System Sciences, CA: IEEE

Press, 2001, vol. 9, pp. 9036–9045. DOI: 10.1109/HICSS.2001.927231

[7] W. Barbara, S. Shazia, and R. Manfred, “Beyond rigidity-dynamic

process lifecycle support: a survey on dynamic changes in process-aware

information systems,” Computer Science – Research and Development,

2009, vol. 23, no. 2, pp. 47–65.

[8] M. Adams, D. Edmond, and A. H. M. ter Hofstede, “The application of

activity theory to dynamic workflow adaptation issues,” in proc. 7th

Pacific Asia Conf. on Inf. Syst., Adelaide, South Australia, 2003, pp.

1836–1852.
[9] A. Borgida, and T. Murata, “Tolerating exceptions in workflows: a

unified framework for data and processes,” in Int'l Joint Conf. on Work

Activities, Coordination and Collaboration (WACC'99), pp. 59–68. San
Francisco, CA: ACM Press, 1999.

[10] P. Wohed, A. H. M. ter Hofstede, N. Russell, B. Andersson, and W. M. P.

van der Aalst, “On the maturity of open source BPM systems,” BPTrends,

2009, vol. 7, no. 6, pp. 1-11.

[11] J. Xinhua, and Z. Lina, “Inter-operation of distributed workflow engine

on asynchronous web services,” in proc. 3rd Int'l Conf. on Semantics,

Knowledge and Grid, 2007, pp. 590-591.

[12] Z. Marco, W. M. P. van der Aalst, R. Nick, L. Philipp, and W. Hannes,

“An analysis of windows workflow's control-flow expressiveness,” in

proc. 7th IEEE European Conf. on Web Services, 2009, pp. 200-209.

[13] N. Y. Chow, “How to calculate ROI for your BPM Project”, 2010.

http://www.bpmenterprise.com/content/c060529a.asp

[14] C. Mark, and P. Paul, “Business process management (BPM) Definition

and Solutions,” 2007,

http://www.cio.com/article/106609/Business_Process_Management_BP

M_Definition_and_Solutions?page=5

Haitao Yang. This author received his Eng. Bachelor in

mechanics, MS degree in computational mathematics, and

PhD degree in computer software and theory, from the

National University of Defense Technology, Sun Yat-Sen

University, and the Institute of Computing Technology of

Chinese Academy of Sciences, China, respectively in 1983,

1989 and 2008. He has been engaging in software industry over two decades,

with a rich experience of programmer, designer, analyst, researcher, and project

manager. In recent years, his major research interest is on Internet computing

and information system engineering.

