
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:6, 2013

781

Abstract—CScheme, a concurrent programming paradigm based
on scheme concept enables concurrency schemes to be constructed

from smaller synchronization units through a GUI based composer

and latter be reused on other concurrency problems of a similar

nature. This paradigm is particularly important in the multi-core

environment prevalent nowadays. In this paper, we demonstrate

techniques to separate concurrency from functional code using the

CScheme paradigm. Then we illustrate how the CScheme

methodology can be used to solve some of the traditional

concurrency problems – critical section problem, and readers-writers

problem - using synchronization schemes such as Single Threaded

Execution Scheme, and Readers Writers Scheme.

Keywords—Concurrent Programming, Object Oriented

Programming, Environments for multiple-processor systems,

Programming paradigms.

I. INTRODUCTION

HILE Moore’s Law [1] is still applicable today,

computer engineers have shifted their focus from

increasing transistor density for the boosting of clock rate to

instead putting more execution units (CPU cores) on a single

CPU die [2]. Consequently, this adds extra burden on

developers because of the need to explicitly parallelize their

applications in order to take full advantage of the increasing

number of cores that each successive multi-core generation

will provide [3]. However, the conventional approaches to

parallel programming are error prone that it results in

problems like race condition, deadlock, livelock, and

starvation.

CScheme [8] is a scheme based programming paradigm that

is designed to alleviate concurrency problems. In the approach,

programmers express concurrency semantics through a set of

predefined schemes that can be configured through its inherent

synchronization units. Effective separation of concurrency

from the functionality is achieved through this approach. This

thereby leaves the engineering of software functionality to the

application developers, and the concurrency deployment to the

parallel programming experts.

In the CScheme, it makes use of aspect-oriented

programming [4] as the main approach to separation. This

technique has proved to increase software modularity in

practical situations where object-oriented programming does

not offer an adequate support. As such, we use AspectJ, a Java

based aspect oriented language. A detailed description of

Nathar Shah is with the Faculty of computing and informatics, Multimedia

University, 63100 Cyberjaya, Malaysia (e-mail: nathar@mmu.edu.my).

Visham Cheerkoot was with the faculty of computing and informatics,

Multimedia University, 63100 Cyberjaya, Malaysia (e-mail:

visham.cheerkoot@mmu.edu.my).

AspectJ is presented in many papers [5] at the AspectJ site.

Using AspectJ, all the synchronization concerns of a

particular object-oriented program can be separated thereby

alleviating the need for a programmer to take care of

synchronization issues while developing an object-oriented

application. Such synchronization concerns can be configured

using AspectJ’s aspects. By using CScheme tool, these

synchronization aspects do not need to be developed by the

programmer. Instead, we provide Synchronization Schemes,

which are pre-configured templates that define specific thread

coordination and communication mechanisms. Moreover, each

Synchronization Scheme comprises of several Synchronization

Units that can be further configured to take care of specific

synchronization issues. Furthermore, the provided

Synchronization Schemes can be composed to build custom

developer-defined Synchronization Schemes based on the

synchronization needs of the object-oriented software that

he/she is developing.

The technique is further explained in the next section. Our

objective in this paper is to demonstrate techniques to apply

CScheme paradigm on popular concurrency problems like

critical section problem and readers-writers problem. The

techniques make use of the Single Threaded Execution

Scheme, and Reader-Writer Scheme. Those schemes contain

set of synchronization units that can be manipulated by

different techniques. Our contributions in the paper are as

follows:

a) Illustrate an effective mechanism to separate functional

code from the concurrency constructs.

b) Device a technique using the CScheme paradigm for the

critical section problem.

c) Device a technique using the CScheme paradigm for the

readers-writers problem.

Section II describes Scheme-based concurrent programming

while Section III describes how the CScheme paradigm can be

used in some of the traditional concurrency problems. Section

IV discusses related work. Finally, in Section V, we will make

some future work remarks.

II. CSCHEME – A CONCURRENT SCHEME BASED CONCURRENT

PROGRAMMING

CScheme is a paradigm for concurrent programming based

on schemes [8]. A scheme is a generalization of a pattern of

same semantic. CScheme encapsulates a combination of

synchronization semantics in a generic manner such that those

semantics can be reused over-and-over again and be composed

in programs of similar need. The building blocks of a

synchronization scheme are called synchronization units,

which encapsulate synchronization as well as thread

Nathar Shah and Visham Cheerkoot

CScheme in Traditional Concurrency Problems

W

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:6, 2013

782

interaction mechanisms.

In any concurrent applications, the risks are in concurrent

access to shared data and thread coordination. Among the risks

in shared data accesses are sharing mutable static variables

across threads, changing the instance on which we synchronize

on one part of the program, synchronizing on string literals and

autoboxed values, improper guarding of non-atomic

operations, etc. Thread coordination risks are in improper use

of coordination primitives like wait() and notify(). As a result

of these risks, performance issues like deadlock, starvation,

and livelock arise. If one thread invokes a method frequently,

other threads that also need frequent synchronized access to

the same object will often be blocked [6].

The CScheme approach alleviates the risks by enabling the

programmers to deal with the threads in a controlled manner

through synchronization units’ manipulation. For example,

Shah et. al.[8] have developed synchronization schemes like

Single Threaded Execution Scheme, Readers Writers Scheme,

Guarded Suspension Scheme, and Thread Coordination

Scheme where their respective synchronization units can be

configured to the specifics of an application. The configuration

then regulates how thread coordination and access to shared

variables/resources happens. On the other hand, in CScheme, a

customized synchronization scheme is created using a GUI

Scheme builder tool that allows multiple synchronization units

or even compatible synchronization schemes to be composed

and checked using CheckThread [7] engine, a thread checker.

The thread checker makes use of static analysis to find

concurrency bugs at compile time.

Complete detail on the CScheme design and its design logic

are presented in [8].

III. CSCHEME FOR CONCURRENCY APPLICATIONS

This section demonstrates the usage of several

synchronization schemes and synchronization units presented

in the previous section. We consider a few case studies which

are well-known illustrative examples of common computing

problem in concurrency.

There are several classic synchronization problems that

have been invented to demonstrate synchronization primitives.

However, these problems are not necessarily analogous to real-

world problems but they do illustrate principles real solutions

should use.

A. CScheme for Critical Section Problem

The Critical Section Problem is a classic synchronization

problem that demonstrates a set of instructions that must be

controlled so as to allow exclusive access to a one process

only. This problem highlights the fact that execution of the

critical section by processes must be mutually exclusive in

time.

Consider the code sample in Fig. 1 below:

public class TrafficSensorController implements TrafficObserver{

 private int vehicleCount = 0;

 public void vehiclePassed(){

 vehicleCount++;

 }

 public int getAndClearCount(){

 int count = vehicleCount;

 vehicleCount = 0;

 return count;

 }

}

Fig. 1 Not Synchronized Code

This code shows that the instance variable “vehicleCount” is

subject to non-atomic changes in methods vehiclePassed() and

getAndClearCount(). If multiple threads attempt to execute

these methods simultaneously, there is a high possibility of

data corruption as well as lost updates.

Using Java, the critical section problem in the above case

can be solved as follows by making use of the “synchronized”

synchronization construct (Fig. 2):

public class TrafficSensorController implements TrafficObserver{

 private int vehicleCount = 0;

 public synchronized void vehiclePassed(){

 vehicleCount++;

 }

 public synchronized int getAndClearCount(){

 int count = vehicleCount;

 vehicleCount = 0;

 return count;

 }

}

Fig. 2 Error prone synchronization

Below, we show the approach of using our tool.

First, mark any field that will be subject to concurrent

access by threads with the “@SharedField” annotation (Fig. 3).

import annotations.SharedField;

public class TrafficSensorController implements TrafficObserver{

 @SharedField

 private int vehicleCount = 0;

 public void vehiclePassed(){

 vehicleCount++;

 }

 public int getAndClearCount(){

 int count = vehicleCount;

 vehicleCount = 0;

 return count;

 }

}

Fig. 3 Annotating shared field

Then launch the CScheme GUI tool. The next step is to

choose the desired resource file and scheme and its associated

synchronization unit that we want to apply to the chosen

resource file (Fig. 4).

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:6, 2013

783

Fig. 4 Configuring the scheme with its synchronization units

The next step is to configure the selected scheme as shown

below (Fig. 5). Here choose the methods in the source code

that would be guarded by the Captured Lock unit.

Fig. 5 Configuring Captured Lock Synchronization Unit

We add one more Captured Lock unit for the other methods

that need to guard the shared instance variable “vehicleCount”

from concurrent access.

After the scheme has been applied to the resource file, the

latter looks as follows (Fig. 6):

import my.com.checkthread.engine.annotations.ThreadSafe;

import annotations.CapturedLock;

import annotations.SharedField;

import annotations.SingleThreadedSchemeCapturedLockManaged;

@SingleThreadedSchemeCapturedLockManaged

public class TrafficSensorController implements TrafficObserver{

 @SharedField

 private int vehicleCount = 0;

 @CapturedLock

 @ThreadSafe

 public void vehiclePassed(){

 vehicleCount++;

 }

 @CapturedLock

 @ThreadSafe

 public int getAndClearCount(){

 int count = vehicleCount;

 vehicleCount = 0;

 return count;

 }

}

Fig. 6 The generated code after the configuration

As it can be noted, vehiclePassed() and getAndClearCount()

are now guarded by the “CapturedLock” from the Single

Threaded Execution Scheme. This will ensure that threads

access these methods to read/modify vehicleCount atomically.

The Shared Lock synchronization unit of the Single

Threaded Execution scheme can also be applied to this client

code. The Captured Lock unit uses the monitor of the resource

object as lock. However, the Shared Lock will use the monitor

of an external object to do this guarding against concurrent

thread access. Therefore, the Shared Lock unit is more

appropriate in cases where more than one shared resources

need to be guarded in the critical section.

The previous code sample will now be used with the Shared

Lock unit. The scheme and unit selection is shown below (Fig.

7).

Fig. 7 Applying the second resource with shared lock

synchronization unit

In this case, we do not have any synchronization unit

configuration to do. This is because, the engine will check for

all instance variables marked with the “@SharedField”

annotation. Then any methods which make use of these shared

fields will automatically be guarded with the Shared Lock.

The annotated client-code is shown below (Fig. 8) after

processing:

import my.com.checkthread.engine.annotations.ThreadSafe;

import annotations.SharedField;

import annotations.SharedLock;

import annotations.SingleThreadedSchemeSharedLockManaged;

@SingleThreadedSchemeSharedLockManaged

public class TrafficSensorController implements TrafficObserver{

 @SharedField

 private int vehicleCount = 0;

@SharedLock

@ThreadSafe

 public void vehiclePassed(){

 vehicleCount++;

 }

@SharedLock

@ThreadSafe

 public int getAndClearCount(){

 int count = vehicleCount;

 vehicleCount = 0;

 return count;

 }

}

Fig. 8 Generated code after applying the scheme and synchronization

units

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:6, 2013

784

B. CScheme for Readers Writers Problem

Our second case study deals with the famous Readers

Writers problem which shows a common computing problem

in concurrency. It deals with the situation where there are

several threads that need to access the same shared resource

one at a time, some to perform read operations while others to

perform write operations. The main constraint here is that no

two threads must access the resource for reading or writing

while another thread is performing a write operation on it.

However, two or more threads can access the shared resource

if their purpose is only for reading.

Consider the code sample below where we have an instance

variable “bid”. There are two methods, getBid(), to read the

bid value and setBid(), to return the bid value. In a

multithreaded environment, several threads might access a

“bid” object at the same time, some of which might be

modifying the state of the object while others might just be

reading the object’s state. Simultaneous access to an object by

both reader and writer threads may result in lost updates as

state changes made to an object by writer threads may not be

visible to reader threads or other writer threads. Hence, reader

threads and writer threads should not be allowed to access the

same object at the same time.

The original bid class is shown below (Fig. 9):

public class Bid {

 private int bid = 0;

 public int getBid(){

 int bid = this.bid;

 return bid;

 }

 public void setBid(int bid){

 if(bid>this.bid){

 this.bid = bid;

 }

 }

}

Fig. 9 The Bid class

The code sample below (Fig. 10) shows the implementation

of the Bid class using the

java.util.concurrent.locks.ReadWriteLock.

import java.util.concurrent.locks.ReadWriteLock;

import java.util.concurrent.locks.ReentrantReadWriteLock;

public class BidOriginal {

 private ReadWriteLockrwLock = new

ReentrantReadWriteLock();

 private int bid = 0;

 public int getBid(){

 int bid=0;

 rwLock.readLock().lock();

 try {

 bid = this.bid;

 } finally { rwLock.readLock().unlock();

 }

 return bid;

 }

 public void setBid(int bid){

 rwLock.writeLock().lock();

 try {

 if(bid>this.bid){

 this.bid = bid;

 }

 } finally {

 rwLock.writeLock().unlock();

 }

 }

}

Fig. 10 The bid class implementation with java’s read write lock

Below we show how the Reader Writer Scheme provided by

our tool can be applied to the Bid class in order to provide the

same reader-writer thread synchronization mechanism as

shown in the previous code sample.

First, we mark the instance variables that will be subject to

concurrent access by threads in our target class with the

“@SharedField” annotation (Fig. 11).

import annotations.SharedField;

public class Bid {

 @SharedField

 private int bid = 0;

 public int getBid(){

 int bid = this.bid;

 return bid;

 }

 public void setBid(int bid){

 if(bid>this.bid){

 this.bid = bid;

 }

 }

}

Fig. 11 Annotating the shared field of bid class

Then, we select a scheme for the resource class. After that,

we choose the synchronization unit. In this case, we choose the

Reader Writer Fair unit (equal preference is given to both

reader and writer threads thereby preventing starvation) (Fig.

12).

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:6, 2013

785

Fig. 12 Applying scheme and synchronization units to Bid class

After the “Process Resource” button is pressed, our target

class is processed with the applied synchronization scheme as

shown below (Fig. 13):

import annotations.ReadOnly;

import annotations.ReaderWriterFairSchemeManaged;

import annotations.SharedField;

import annotations.WriteOnly;

@ReaderWriterFairSchemeManaged

public class Bid {

 @SharedField

 private int bid = 0;

 @ReadOnly

 public int getBid(){

 int bid = this.bid;

 return bid;

 }

 @WriteOnly

 public void setBid(int bid){

 if(bid>this.bid){

 this.bid = bid;

 }

 }

}

Fig. 13 Applying scheme and synchronization units to Bid class

This scheme marks the getBid() method as “ReadOnly”, that

is it will only be accessed by reader threads while the setBid()

method is marked as “WriteOnly” implying that it will only be

accessed by writer threads. This scheme ensures that

“ReadOnly “methods can be simultaneously accessed by

reader threads while no writer thread is allowed to enter the

“WriteOnly” methods. “WriteOnly” methods can only be

accessed by one writer thread at a time while no reader thread

is executing a “ReadOnly” method. The Aspects that ensure

that a class follows a Fair Reader Writer mechanism are shown

below (Figs. 14 and 15):

import annotations.ReadOnly;

import annotations.ReaderWriterFairSchemeManaged;

import annotations.WriteOnly;

/**

 * The Class ReaderWriterSchemeFairImplAspect.

 * Implements ReaderWriterReentrantFairAbstractAspect.

 */

public aspect ReaderWriterSchemeFairImplAspect extends

ReaderWriterReentrantFairAbstractAspect {

 //concrete annotation-based pointcuts specification

 public pointcut readerWriterSchemeFairManaged() : execution(*

(@ReaderWriterFairSchemeManaged *).*(..));

 public pointcut readOperation() : execution(@ReadOnly * *(..))

 &&readerWriterSchemeFairManaged();

 public pointcut writeOperation(): execution(@WriteOnly * *(..))

 &&readerWriterSchemeFairManaged();

}

Fig. 14 The aspect code that does the weaving task between a class

and a Fair Reader-Writer synchronization unit

import java.util.concurrent.locks.ReadWriteLock;

import java.util.concurrent.locks.ReentrantReadWriteLock;

/**

 * The Class ReaderWriterReentrantFairAbstractAspect.

 * Abstract Aspect for RW Fair Scheme processing

 */

public abstract aspect ReaderWriterReentrantFairAbstractAspect

perthis(readOperation() || writeOperation()) {

 /**

 * Read operation abstract pointcut.

 */

 public abstract pointcut readOperation();

 /**

 * Write operation abstract pointcut.

 */

 public abstract pointcut writeOperation();

 private ReadWriteLock rwLock = new ReentrantReadWriteLock(true);

 /**

 * Advice for Read operation pointcut.

 * Binds the pointcut with a read lock of the Fair

ReentrantReadWriteLock.

 */

 Object around() : readOperation() {

 rwLock.readLock().lock();

 try {

 returnproceed();

 } finally {

 rwLock.readLock().unlock();

 }

 }

 /**

 * Advice for Write operation pointcut.

 * Binds the pointcut with a write lock of the Fair

ReentrantReadWriteLock.

 */

 Object around() : writeOperation() {

 rwLock.writeLock().lock();

 try {

 return proceed();

 } finally {

 rwLock.writeLock().unlock();

 }

 }

}

Fig. 15 The abstract aspect used in Fig. 14

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:6, 2013

786

The “perthis” construct is used in order to ensure that a new

aspect is created for each object that matches a

“readOperation()” or a “writeOperation()”pointcut.

If the “RW Non-Fair” synchronization unit of the Reader

Writer synchronization scheme is chosen, the steps to process

a resource class with this unit is similar to those of the “RW

Fair” unit. However, the target class, after applying the

scheme, will look as follows:

import annotations.ReadOnly;

impor tannotations.ReaderWriterNonFairSchemeManaged;

import annotations.SharedField;

import annotations.WriteOnly;

@ReaderWriterNonFairSchemeManaged

public class Bid {

 @SharedField

 private int bid = 0;

 @ReadOnly

 public int getBid(){

 int bid = this.bid;

 return bid;

 }

 @WriteOnly

 public void setBid(int bid){

 if(bid>this.bid){

 this.bid = bid;

 }

 }

}

Fig. 16 The generated class after applying RW Fair unit

The Aspects that ensure that a class follows a Reader Writer

Non-Fair mechanism are shown below (Figs. 17 and 18):

import annotations.ReadOnly;

import annotations.ReaderWriterNonFairSchemeManaged;

import annotations.WriteOnly;

/**

 * The Class ReaderWriterSchemeNonFairImplAspect.

 * Implements ReaderWriterReentrantNonFairAbstractAspect.

 */

public aspect ReaderWriterSchemeNonFairImplAspect extends

ReaderWriterReentrantNonFairAbstractAspect {

 //concrete annotation-based pointcuts specification

 public pointcut readerWriterSchemeNonFairManaged() : execution(*

(@ReaderWriterNonFairSchemeManaged *).*(..));

 public pointcut readOperation() : execution(@ReadOnly * *(..))

 &&readerWriterSchemeNonFairManaged();

 public pointcut writeOperation(): execution(@WriteOnly * *(..))

 &&readerWriterSchemeNonFairManaged();

}

Fig. 17 The aspect weaved for Non-Fair Reader Writer

synchronization unit

import java.util.concurrent.locks.*;

/**

 * The Class ReaderWriterReentrantNonFairAbstractAspect.

 * Abstract Aspect for RW Non-Fair Scheme processing

 */

public abstract aspect ReaderWriterReentrantNonFairAbstractAspect

perthis(readOperation() || writeOperation()) {

 /**

 * Read operation abstract pointcut.

 *

 */

 public abstract pointcut readOperation();

 /**

 * Write operation abstract pointcut.

 */

 public abstract pointcut writeOperation();

 private ReadWriteLock rwLock = new ReentrantReadWriteLock();

 /**

 * Advice for Read operation pointcut.

 * Binds the pointcut with a read lock of the Non-Fair

ReentrantReadWriteLock.

 */

 Object around() : readOperation() {

 rwLock.readLock().lock();

 try {

 return proceed();

 } finally {

 rwLock.readLock().unlock();

 }

 }

 /**

 * Advice for Write operation pointcut.

 * Binds the pointcut with a write lock of the Fair

ReentrantReadWriteLock.

 */

 Object around() : writeOperation() {

 rwLock.writeLock().lock();

 try {

 return proceed();

 } finally {

 rwLock.writeLock().unlock();

 }

 }

}

Fig. 18 The abstract aspect of the aspect in Fig. 17

IV. RELATED WORK

The paper Aspects of Synchronization [9] discusses about

how Aspect Oriented Programming encourages the separation

of the different aspects of a system and how synchronization is

a very important aspect in a concurrent object-oriented

program. It also describes how synchronization itself has

different aspects and by separating the latter, flexible, generic

implementations of common synchronization constraints can

be derived.

The dissertation referred in [10] presents an approach for

constructing concurrent programs which separately handles

functional and nonfunctional concerns. The approach defines

solutions for each non-functional concern related to

concurrency, such as object synchronization, and integrates

those solutions as well as their composition in an incremental

development process of concurrent programs. In addition, the

approach allows the most appropriate solution for each

concern to be customized by the programmer to take into

account the specific needs of the program being built.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:6, 2013

787

V. FUTURE WORK

The next plan is to add more Synchronization Schemes to

our proposed paradigm. The two main schemes of interest that

we want to add are the Guarded Suspension scheme as well as

the Scheduler scheme. The Guarded Suspension scheme is to

be used when there exists a condition that prevents a method

from doing what it is supposed to do. The scheme will solve

this issue by suspending the execution of the method until that

condition no longer exists. The aim of the Scheduler scheme is

to provide a mechanism to implement a scheduling policy by

controlling the order in which threads are scheduled to execute

single-threaded code.

We also plan to extend the capability of the bug detection

mechanism that we are using in order to be able to find more

concurrency related bugs in the client-code. Moreover, we

plan to create an eclipse plug-in version for our GUI tool so

that so that development will be easier for programmers who

utilize the widely used Eclipse IDE.

REFERENCES

[1] Gordon, E.M., 1998. Cramming more components onto integrated

circuits. Proc. IEEE, 86: 82-85.

[2] Bryan, C. and B. Jeff, 2008. Real-world concurrency. Queue

Concurrency Prob., 6: 17-25..

[3] Ali-Reza, A., K. Christos and S. Bratin, 2006. Unlocking concurrency.

Queue Comput. Archit., 4: 25-33.

[4] Kiczales, G., J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.M.

Loingtier and J. Irwin, 1997. Aspect-Oriented Programming. In Proc

European Conference on Object-Oriented Programming, Finland, June

9-13, 1997, pp.220- 240.

[5] Xerox Corporation, 2002. The aspect JTM programming guide. Palo Alto

Research Center, Inc., USA.

http://www.eclipse.org/aspectj/doc/released/progguide/index.html

[6] Brian, G., P. Tim, B. Joshua, B. Joseph, H. David and L. Doug, 2006.

Java Concurrency in Practice. Addison Wesley Professional, India

[7] Joe, C., 2009. Cool Concurrency with CheckThread, eclipse CON, 2009

http://checkthread.org/checkthread_eclipsecon2009.pdf.

[8] Shah, N., Cheerkoot, V, 2011. A Scheme Based Paradigm for

Concurrent Programming. Journal of Software Engineering, vol. 5, no.

3, pp. 108-115.

[9] David, H., N. James and P. John, 1997. Aspects of synchronisation.

Technol. Object-Oriented Languages Syst., 2: 14-14.

[10] Ant’onio, M.F., 1999. Concurrent object-oriented programming:

Separation and composition of concerns using design patterns. Ph.D

Thesis, Pattern Languages and Object-Oriented Frameworks.

