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Abstract—This paper presents a hand vein authentication system 

using fast spatial correlation of hand vein patterns. In order to 
evaluate the system performance, a prototype was designed and  a 
dataset of 50 persons of different ages above 16 and of different 
gender, each has 10 images per person was acquired at different 
intervals, 5 images for left hand and 5 images for right hand. In 
verification testing analysis, we used 3 images to represent the 
templates and 2 images for testing. Each of the 2 images is matched 
with the existing 3 templates. FAR of 0.02% and FRR of 3.00 % 
were reported at threshold 80. The system efficiency at this threshold 
was found to be 99.95%. The system can operate at a 97% genuine 
acceptance rate and 99.98 % genuine reject rate, at corresponding 
threshold of 80. The EER was reported as 0.25 % at threshold 77. We 
verified that no similarity exists between right and left hand vein 
patterns for the same person over the acquired dataset sample. 
Finally, this distinct 100 hand vein patterns dataset sample can be 
accessed by researchers and students upon request for testing other 
methods of hand veins matching. 
 

Keywords—Biometrics, Verification, Hand Veins, Patterns 
Similarity, Statistical Performance.  
 

I. INTRODUCTION 
SSOCIATING an identity with an individual is called 
personal identification. The problem of resolving the 

identity of a person can be categorized into two types of 
problems; verification and identification. Verification 
(authentication) refers to the problem of confirming or 
denying a person’s claimed identity (Am I who I claim I am?). 
Identification (Who am I?) refers to the problem of 
establishing a person’s identity. Automatic human 
identification has become an important issue in today’s 
information and network-based society. The techniques for 
automatically identifying an individual based on his/her 
physiological or behavioral characteristics are called 
biometrics, which provides an answer to this need. Biometric 
techniques fall into two categories: physiological and 
 

Manuscript received April 30, 2007. This work was accomplished at 
Systems & Biomedical Engineering Department, Cairo University, Egypt. 

Mohamed Shahin is with Ismaillia Suez Canal Authority Hospital, Egypt 
(e-mail: mkhairy@hotmail.com). 

Ahmed Badawi is a visiting professor with University of Tennessee, 
Knoxville, Biomedical Engineering Department, 315 Perkins Hall, 1506 
Middle Dr., Knoxville, TN, 37996, USA (phone: 865-974-6009; fax: 865-946-
1787; e-mail: ambadawi@utk.edu). He is a professor on leave at Systems & 
Biomedical Engineering Department, Cairo University.  

Mohamed Kamel is with Systems & Biomedical Engineering Department, 
Cairo University, 13216, Egypt (e-mail: sherin_2002@mail.com). 

behavioral categories. Common physiological biometrics 
include face, eye (retina or iris), finger (fingertip, thumb, 
finger length or pattern), palm (print or topography), and 
geometry, back of the hand vein pattern or thermal images. 
Behavioral biometrics includes voiceprints, handwritten 
signatures, and keystroke/signature dynamics. 
     Personal verification has become an important and high-
demand technique for security access systems in the last 
decade. Shape of the subcutaneous vascular tree of the back of 
the hand contains information that is capable of authenticating 
the identity of an individual [1-5, 22] to a reasonable accuracy 
for automatic personal authentication purposes. The shape of 
the finger vein patterns and its use for identification purpose 
was proposed by Miura et al. [4]. The infrared region is of 
special advantage since the skin tissue is relatively transparent 
and the blood absorbs infrared light well. Hence, the veins-
background contrast is higher than the visible area.  Since the 
arrival of fairly low cost CCD cameras and computer power, it 
seems straightforward to try to consider these technologies [6-
7]. Normally, black and white CCD cameras are also sensitive 
in the near infrared region, so a filter blocking the visible light 
is all that is needed on the camera. Proper lighting is of course 
essential to obtain even illumination on the skin surface. There 
are many research attempts for the extraction, segmentation 
and tracing of subcutaneous peripheral venous patterns [8-11], 
its main aim is to make data reduction and noise suppression 
for good diagnostic purposes and for making some 
quantitative measurements like lengths and diameters for the 
extracted vessel segments. These techniques are based on 
mathematical morphology and curvature (veins direction) 
evaluation for the detection of vessel patterns in a noisy 
environment. Researchers in hand vein biometrics [1-5, 22] 
had a satisfactory result for either verification or identification 
purposes, regardless of the difference in datasets size, 
methods, or vein similarities used. The vein tree detection 
stage includes four consecutive sub stages, which are hand 
region segmentation (i.e. region of interest localization and 
background elimination), smoothing and noise reduction, local 
thresholding for separating veins, and postprocessing. In this 
paper we propose a design of a hand vein biometric 
authentication system performing a fast spatial correlation 
method for hand vein patterns matching. 

II. DATA ACQUISITION AND PROCESSING 
     In visible light, the vein structure on the back of the hand is 
not easily discernible. The visibility of the vein structure 
varies significantly depending on factors such as age, levels of 
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subcutaneous fat, ambient temperature and humidity, physical 
activity, and hand position. In addition a multitude of other 
factors including surface features such as moles, warts, scars, 
pigmentation and hair can also obscure the image. 
Fortunately, the use of thermographic imaging in the near IR 
spectrum exhibit marked and improved contrast between the 
subcutaneous blood vessels and surrounding skin, and 
eliminates many of the unwanted surface features. The 
temperature gradient between the veins and surrounding tissue 
is generally more pronounced than the difference that can be 
seen by the naked eye. A commercially available conventional 
charge-couple device (CCD) monochrome camera, rather than 
a considerably more expensive thermal camera, is used to 
obtain the thermal image of the back of the hand. Though 
principally designed for use in visible light, CCD cameras are 
also sensitive to near IR wavelengths of the electromagnetic 
spectrum up to about 1100 nm. This is an actinic IR range, 
which covers the near infrared spectrum from 700-1400 nm. A 
CCD camera that is highly sensitive in the near infrared region 
was chosen. The camera characteristic curve is shown in Fig. 
1. The greatest intensity of IR radiation emitted by the human 
body is 10 mW/cm2 and is in the range of 3000-14000 nm [1]. 
Unfortunately, the CCD camera has no sensitivity in this 
region. Furthermore any naturally emitted near IR radiation is 
far too weak to be detected by the camera’s CCD imager. 
Consequently after experimentation with a variety of light 
sources, including high intensity tungsten lamps, it was found 
to be necessary to irradiate the back of the hand using an IR 
cold (solid-state) source. The reduced hemoglobin in venous 
blood absorbs more of the incident IR radiation than the 
surrounding tissue thus appearing darker. 
 

 
Fig. 1 Spectral sensitivity characteristics of used silicon based CCD 

sensor 
 
 The depth of absorption and radiation of actinic IR in 
biological tissue is approximately 3 mm, and so thermal IR 
radiation provides information only about surface (skin) 
temperatures of biological objects [1]. As a consequence only 
the subcutaneous vascular network is discernible in the image. 
The quality and extent of the revealed vein structure is 
however highly variable. The distinctiveness of the network 
depends on the thickness of the overlaying skin, on the degree 
of venous engorgement, on the conditions of the vein walls 
and on the nearness of the veins to the surface. 
 In our system, we have designed a near IR cold source to 
provide back-of-hand illumination. The IR cold source is a 
solid-state array of 24 LEDs (light emitting diodes). The 
diodes are mounted in a square shape, 6 LEDs in each side, on 

a designed and assembled PCB (printed circuit board). We 
made a housing and an attachment for fixing the LEDs around 
the CCD lens. Our experiments showed that the cold source 
provides better contrast than the ordinary tungsten filament 
bulbs. A commercially available, low cost, monochrome CCD 
fitted with an IR filter is used to image the back of hand. The 
transmission curve for the used filter (Hoya RM90) is shown 
in Fig. 2. The curve reveals that the filter has a small tail of 
transmittance down to about 750 nm.  
 

 
Fig. 2 Transmission curve for the RM90 Hoya IR filter 

 
The IR filter ensures that no visible light reaches the CCD 
sensor. After using the cold IR light source and the IR filter, 
the image constructed on the CCD sensor is totally a thermal 
graph for the back of the hand. The mostly distinguishable 
component in the image is the superficial vein tree pattern as 
shown in Fig.3 to the right. A comparison between visible 
light image and infrared image for the same person’s hand is 
demonstrated in Fig. 3.   

A simplified schematic diagram for our hand vein image 
acquisition prototype module is demonstrated in Fig. 4. As in 
Fig.3 to the left, the hand is presented as a clenched fist with 
the thumb and all the other fingers are hidden. It allows a 
person to easily position his/her hand in front of the camera 
and it eases the shape matching search process (translation 
and rotation variations).   

 

 
Fig. 3 Visible light image (left) and IR image (right) for the same 

person 

 
Fig. 4 Schematic of the hand vein pattern imaging module 
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The intensity of IR source is attenuated by the use of diffusing 
paper and it helps for obtaining an equally distributed 
illumination on the hand area. A monochrome frame-grabber 
is used to capture an image of the back of a hand for computer 
processing. Images are captured using a 320W X 240H pixels 
video digitizer with a gray-scale resolution of 8-bits per pixel.   
     A sample hand vein image from our data set is shown in 
Fig. 5 for a male hand. A dataset of 50 persons of different 
ages above 16 and of different gender, each has 10 images per 
person was acquired at different intervals, 5 images for left 
hand and 5 images for right hand. The data set is for normal 
persons who do not complain from any diseases such as 
arthritis. 
 

 
Fig. 5 Acquired image of 320W x 240H pixels, 8-bits per pixel 

A.  Hand Vein Image Processing Stages 
This is the second stage in the Hand Vein Verification 

System (HVVS) after the acquisition, which covers the 
detection of vein structures from the acquired infrared image 
for the back of the hand. The vein tree detection stage includes 
four steps, which are hand region segmentation (i.e. region of 
interest localization and background elimination), smoothing 
and noise reduction, local thresholding for separating veins, 
and finally the postprocessing. Fig. 6. illustrates the block 
diagram of the processing stage. 

 
 

         
 

                              
Fig. 6 Block diagram of hand veins processing stage 

 

  B.  Hand Region Segmentation 
     Image segmentation is one of the most important steps 
leading to the analysis of processed image data. Its main goal 
is to divide an image into parts that have a strong correlation 
with objects or areas of the real world contained in the image.    
     Binarization is the case of segmenting the image into two 
levels; object (hand region) and background; the object 
segment which is the region of interest (ROI) in white and the 
background segment in black as shown in Fig. 7. The 
algorithm used in the segmentation sub stage is an iterative 
method used for calculating and selecting an optimal 
threshold, which is used to segment the image into two 
distinct parts; hand and background [13].  We used this 

resultant binary image to calculate the center of gravity 
(COG) for our ROI (hand region). Then we translated the 
grayscale hand region to the center of the image after 
assigning the background area to zero gray value pixels. Thus 
we completely localized, separated and centered the hand 
region for subsequent processing steps.   
 

Fig. 7 Segmentation results; (a) Input gray scale image (b) Binary 
image and (c) Output image after ROI determination and centering 

 

     C.  Smoothing and Noise Reduction 
     Two approaches could be used for noise filtering. First 
approach is using Gaussian smoothing filter. The disadvantage 
of Gaussian filter is its non-edge preserving ability, since it 
blurs the image with equal weights; also edges of the veins are 
blurred and completely diffuse after performing several 
smoothing iterations. The second approach is an edge-
preserving technique like nonlinear diffusion [16-17]; in 
which the image gradient was used to weight the diffusion 
process. Fig. 8 show results of the smoothing filters used on 
three line profiles, where we used a median filter of 5*5 mask 
in order to remove the hand traces from the acquired image 
then we used the nonlinear diffusion filter based on edge 
weighted diffusion in order to smoothen the image while 
preserving the vein edges. The smoothing and noise removal 
sub stages effect is shown in Fig. 8 for 5 iterations of 
nonlinear diffusion of optimized diffusion parameters for 
these images, while the edges are not affected.   
 

                
Fig. 8 Effect of smoothing sub stage on the three image line profiles 

 

     D.  Hand Vein Pattern Segmentation 
     Hand vein segmentation is specifically to divide a hand 
vein image into a foreground (veins in the back of the hand) 
and a background (non-vessel areas). Segmentation methods 
can be divided into four groups, which are threshold-based 
segmentation, edge based segmentation, and region based 
segmentation and segmentation by matching. In this work, the 
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first thresholding method is adopted since it is 
computationally inexpensive.  Considering that we want to 
process and study veins only, global thresholding (i.e. single 
threshold for the whole image) is not a good technique for this 
purpose. A better approach is to calculate the average around 
each pixel of the image in an area of NxN neighbor pixels and 
to use average value as a threshold value [11]. The local 
threshold process separates the vein pattern from the 
background; hence the desired vein image is extracted. 
Experimentally and after optimization, we have chosen a 
31x31 mask size for computing the threshold for binarizing 
the central pixel. The result is shown in Fig. 9. 

 

 
Fig. 9 Processed image (left) and its local thresholded image (right) 

     E. Hand Vein Pattern Postprocessing 
     It is demonstrated from Fig. 9 that the resultant binary 
hand vein contains some noise and un-sharp edges. We 
experimentally applied 5x5 median filter for improving and 
validating the output binary hand vein pattern and for 
reducing the effect of these unwanted defects. We also 
converted the vein pattern into white in a black background 
which in this case the entire image. The final pattern after the 
post processing sub stage is shown in Fig. 10. 
 

 
Fig. 10 Hand vein pattern before (left) and after postprocessing 

(right) 

     F. Matching of Hand Vein Patterns 
     The ordinary use of the designed hand attachment does not 
allow rotational degrees more than -15 to 15 and translations 
in X and Y more than -35 pixels to 35 pixels. After image 
acquisition and hand vein extraction sub stages, we have a 
binary image that contains the segmented back of the hand 
vein pattern. This is suitable for the next and the final sub 
stage, the matching of hand vein patterns. The input for the 
matching sub stage is two binary hand vein images like the 
one in Fig. 10 (right), the matching output is Yes (the two 
images are for the same pattern) or No (the input images are 
not correlated). We used rigid registration technique [14] 
since we already constrained our data acquisition system with 

the attachment in order to prevent any large translation or 
rotation. One of the two images is remained stationary while 
we apply 2D transformation (x-translation, y-translation and 
rotation) on the other image in order to align it with the first 
pattern (Registration) to find the maximum correlation 
percentage between two hand vein images as in equations 1-2.  
 

),(/)100*(),,(
,,

TXMinTXForallTyTxnCorrelatio
TyTx

•=
θ

θ      (1) 

 
)),,(( θTyTxnCorrelatioMaxtionMaxCorrela =          (2) 

 
Where X in equation 1 is an image which contains the 

first test binary hand vein pattern, T is the second image 
which contains the transformed template binary hand vein 
pattern, •  is the logical AND operator, || operator is the 
summation of ones in the matrix. |X| equals the number of 
ones in the X image pattern, Min (|X|,|T|) is the minimum 
count of the white pixels between the two patterns to be 
matched. However Fujitsu researchers have presented a 
contactless/touchless palm vein authentication which is more 
convenient and non hygienic for users, we restricted our 
research designed prototype for a contact system type in order 
to simplify our matching phase and derive a dependent 
statistical measures for this proposed prototype. However 
accounting for scale (Age or hand to camera distance) in the 
registration algorithm is simple, we did not account for the 
scale in our matching since the distance from hand to camera 
is fixed and we assume that the real biometric system capture 
a new template each time interval. In real systems, capturing 
the hand template at equal monthly intervals after correct 
authentication is suggested in order to track the changes in the 
hand with age.  The matching (similarity) percentage is 
calculated as the ratio of the count of overlapped white pixels 
between input images to the number of white pixels in one of 
the two input images (the image with the minimum count of 
the white pixels). We calculated the matching ratio for each 
transformation step then we choose the maximum ratio as the 
final matching ratio between the two input hand vein patterns. 
In our fast implementation and for saving time of matching, 
we made the parameters (x-translation, y-translation, and 
rotation) steps equals 5, getting the maximum matching ratio 
on this grid, finally we made a fine search (tune pixel by pixel 
and 0.5 degree) to find the overall maximum correlation ratio. 
The result of matching sub-stage is shown in Fig. 11. A case 
of correct true match is demonstrated. The resultant pattern is 
correlated to the input images and it is shown that the 
matching ratio is 81.87 % (same person). A case of correct 
mismatch is shown in Fig. 12, the matching ratio is small as 
48.27 % (different persons). 
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Fig. 11 Example of true match for different patterns (left and right) of 

the same person and its associated high correlation (bottom) 
 

  
Fig. 12 Example of correct mismatch between different persons (left 

and right) and its associated low correlation (bottom) 

 
III.  RESULTS 

  A. Overall Performance 
     The system was tested over a dataset collected using the 
designed system consisting of 50 persons of different age and 
gender for each 5 left and 5 right images were acquired. The 
person was asked to put his/her right hand on the hand 
attachment frame and the system operator captures the first 
image for the current person right hand veins. Then the 
person replaces his/her right hand with the left one for 
acquiring the first image for the left hand vein pattern. This 
process was repeated until we acquire five images for the 
right hand and five images for the left hand in different scenes 
(5 minutes interval between every acquired image) 
independent of each other, i.e. ten images for each person. We 
will prove in our statistical analysis that the hand vein pattern 
is unique to some level for each person and for each hand. 
Thus we considered as if we have 100 persons of which 5 
images are in the dataset since we found that the left and right 
hand vein images are different. In order to find the 
dissimilarity threshold in correlation ratio between the 100 
hands we have chosen only the first image pattern for each of 
the 100 hands and for a correlation ratio threshold that exceed 
80%, we achieved 100% classification (Distinct pattern). For 
evaluating the uniqueness of the vein patterns, all possible 

comparisons are made between the whole data. We matched 
each image from our data set with all the 500 hand vein 
images in our dataset and then we recorded the matching 
ratios. We constructed the correlation matrix for representing 
the matching result between each image and all other images. 
We performed statistical analysis for selecting an optimal 
threshold to get the highest system performance, by testing 
the system over the whole dataset. To evaluate the hand vein 
performance, we used measures of performance, which 
include: sensitivity, specificity, false accept rate (FAR), false 
reject rate (FRR), and efficiency. Fig. 15 shows graphically 
how FAR(%), and FRR (%) change with different thresholds. 
Our aim is to select an optimal threshold. We want a single 
criterion, such that it takes into account the maximization of 
true events (GAR, GRR) and minimization of error events 
(FAR, FRR). Fig. 13 illustrates the change of system 
performance at different thresholds. Efficiency, which we will 
consider as our criterion for evaluating the system 
performance at different thresholds, reaches its maximum of 
about 99.88% at a threshold of 78. At this threshold the 
Sensitivity is 92.16%, the Specificity is 99.97%, FAR is 
0.03%, and FRR is 7.84%. Receiver Operating Characteristic 
(ROC) curve is shown in Fig. 14. A receiver operating curve 
provides an empirical assessment of the system performance 
at different operating points which is more informative than 
FAR and FRR.  
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Fig. 13 System Performance (Efficiency) at different thresholds 
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Fig. 14 General analysis receiver operator characteristic curve (ROC) 
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Fig. 15 FRR (Type I Error) versus FAR (Type II Error) 

 
Hand Vein Verification System (HVVS) is accurate in the 

low to medium security level: e.g., for a threshold 75, the 
genuine acceptance rate is 96.72% for only a 0.18% FAR. 
Although the 0.18% FAR may seems high, in practice it is 
much smaller, since a user of the system does not know the 
identity of which other users can claim that their hand veins 
match. Fig. 15 demonstrates FAR(%) and FRR(%) curves on 
the same graph. To get around this, vendors often provide a 
variable threshold setting, which allows the customer to strike 
a balance. If a site needs near 100% rejection of impostors, 
authorized users will have to pay for some % rejection rate.  

A commonly used point to examine the quality of 
performance is to evaluate Equal Error Rate (EER) point and 
it assumes that the costs of FA and FR are equal, and that the 
class prior probabilities (of client and impostor distributions) 
are also equal. From Fig. 15, we obtained an ERR for the test 
data = 0.695% at Threshold = 72. 
 

B.  Similarity between Right and Left Patterns 
A previous study on the individuality of biometric signal 

such as fingerprint was performed in [18] in order to prove the 
uniqueness of fingerprint features. In the previous section we 
proved that the hand vein pattern is unique to some extent for 
each identity (person), in this section we will estimate the 
probability for the true match between the right and left hand 
vein patterns for the same identity. If this probability is low, 
we will decide that the hand vein patterns are unique for each 
identity and are unique for each hand i.e. the hand vein pattern 
for the right hand is different from the hand vein pattern for 
the left hand of the same person. Else if the resultant estimated 
probability value is large, we will conclude that the hand vein 
patterns are unique for each identity but not unique for each 
hand.  

Using the correlation matrix, we calculated the mean and 
standard deviation for the matching ratios between the right 
and left hand vein pattern for the same person [15]. We 
calculated the probability for the matching ratio to be greater 
than the threshold we determined in the previous section. The 
probability of the matching ratio to be greater than 78% (for 
deciding a true match), is the probability for the two hands 
(right and left) for the same person to have a similar vein 
pattern. Table I shows the probability values for the thresholds 
displayed in the range from 70% to 80%. The probability at 
the threshold that gave us the maximum efficiency in the 

previous section (78%) is: Probability (Similarity >= 78%) = 
0.0002. 

       
TABLE I 

STATISTICAL RESULTS FOR THE PERFORMANCE OF THE SYSTEM, PROBABILITY 
FOR THE TRUE MATCH BETWEEN THE RIGHT AND LEFT HAND VEIN PATTERNS 

FOR THE SAME IDENTITY 

Thres
hold MEAN 

Std. 
Dev. 

Z = 
(Threshold 
-Mean)/ 
Std.Dev. 

P(Z) 0.5-
P(Z) 

P(Similarity 
>= 
Threshold) 
% 

70 58.106 5.531 
2.14
9 0.4842 0.0158 1.58 

71 58.106 5.531 2.329 0.4901 0.0099 0.99 
72 58.106 5.533 2.510 0.4940 0.0060 0.6 
73 58.106 5.533 2.691 0.4964 0.0036 0.36 
74 58.106 5.533 2.872 0.4979 0.0021 0.21 
75 58.106 5.533 3.052 0.4989 0.0011 0.11 
76 58.106 5.533 3.233 0.4994 0.0006 0.06 
77 58.106 5.533 3.414 0.4997 0.0003 0.03 
78 58.106 5.533 3.594 0.4998 0.0002 0.02 
79 58.106 5.533 3.775 0.4999 1E-04 0.01 
80 58.106 5.533 3.956 0.5 0 0 

       

The calculated probability is small enough to some extent in 
order to let us conclude that the hand vein patterns are unique 
for each identity and is unique for each hand i.e. the hand vein 
pattern for the right hand is different from the left hand for the 
same person. Fig. 16 shows two hand vein images for the 
same person, the left one for his left hand and the right one for 
his right hand. 

 
Fig. 16 Two-hand vein patterns for the same person, left and right 

hand 
 

  C.  Verification Testing  
 To obtain the verification accuracy of our system, each of 

the images was matched with all of the images in the dataset 
after reducing it to 300 patterns (3 template images for each 
hand). A matching is noted as a correct matching if two 
images are from the same hand. The total number of matching 
is 20000 (200 images* 100 different hands). The probability 
distributions for genuine and imposter are estimated by the 
correct and incorrect matching, respectively, and are shown in 
Fig. 17.  

  Fig. 18 depicts the corresponding ROC curve, for all 
possible operating points. From Fig. 18, we can see that our 
system can operate at a 97 % genuine acceptance rate and a 
0.02 % false acceptance rate, and the corresponding threshold 
is 80. The system’s testing equal error rate is 0.25 % at 
threshold 77. In this verification testing analysis, we used 3 
images to represent the templates and 2 images to test. Each 
image is matched with the existing 3 templates. The same 
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analysis for the 300*300 as in section A was repeated. Figures 
17-19 show the results. For the 300*300 templates, the 
optimal threshold is 79 with FAR of 0.02% and FRR of 
7.22%. For the testing phase, matching the 200 test with the 
300 templates of 100 hands, the optimal threshold is 80 with 
FAR of 0.0202% and FRR of 3.00%. The system efficiency at 
this threshold was found to be 99.95%. Fig. 19 shows FAR 
and FRR versus threshold. The EER obtained is 0.25 % at 
threshold 77. 
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Fig. 17 Verification test results for genuine and imposter 
distributions 
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Fig. 18 Verification testing, ROC curve 
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Fig. 19 FAR & FRR for template and test analysis 

 
IV.  CONCLUSION 

     The designed system was tested for verification purpose 
only over a dataset collected with the designed prototype 
system. This dataset is for 50 persons of different age and 
gender of which ten images per person were acquired (five for 
the right hand and five for the left) in different scenes at 
different intervals and are independent of each other, i.e. ten 

images for each person. Verification performance statistical 
parameters were estimated for the overall system such as: 
Genuine Accept Rate (Sensitivity), Genuine Reject Rate 
(Specificity), False Accept Rate (FAR), False Reject Rate 
(FRR), Efficiency and Receiver Operating Curve (ROC). 
System overall performance (overall efficiency) was found to 
be 99.88% at threshold (matching ratio) equal 78. At this 
maximum efficiency the Sensitivity obtained is 92.16%, the 
Specificity is 99.97%, FAR is 0.03%, and FRR is 7.84%. For 
the testing phase, matching the 200 test with the 300 templates 
of 100 hands, the optimal threshold obtained is 80 with FAR 
of 0.02% and FRR of 3.00 %. The obtained system efficiency 
at this threshold is 99.95%. The obtained EER is 0.25% at 
threshold 77. However the difference in methods, datasets, 
and algorithms that were found in the hand veins biometric 
work of [1-4, 21-22], our performance results are comparable. 
We studied the similarity between right and left hand vein 
pattern for the same person. We verified that the hand vein 
pattern is unique for each person and is also unique for each 
hand based on our hand vein images dataset. Finally, since 
there is no available dataset for hand vein research purposes, 
the acquired hand veins dataset considered for 100 distinct 
hands of 5 images per hand will be available for free upon 
request for testing other methods to other researchers and 
students working in biometrics. 
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