
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:1, 2010

69

Improved asymptotic stability criteria for uncertain
neutral systems with time-varying discrete delays

Changchun Shen and Shouming Zhong

Abstract—This paper investigates the robust stability of uncertain
neutral system with time-varying delay. By using Lyapunov method
and linear matrix inequality technology, new delay-dependent sta-
bility criteria are obtained and formulated in terms of linear matrix
inequalities (LMIs), which can be easy to check the robust stability
of the considered systems. Numerical examples are given to indicate
significant improvements over some existing results.

Keywords—neutral system; Linear matrix inequalities; Lyapunov;
Stability.

I. INTRODUCTION

DURING the past several years, considerable attention
has been paid to the problem of stability analysis of

time-delay systems, for example, biological systems, chemi-
cal systems, long-transmission lines in pneumatic, hydraulic
systems, metallurgical processing systems, nuclear reactor,
electrical networks, and so on. It is well known that the
existence of time delays in a system may cause instability
or bad system performance. Therefore, stability analysis of
time-delay systems has been widely investigated by many
researchers, such as [1-5] and references therein.

As well known, neutral system being a special case of
time delay system exists in many dynamic systems, a number
of stability conditions have been developed for this type of
systems in the past. Recently, many researchers have paid a
lot of attentions on the problem of robust stability for neutral
systems with time-delay [6-8], and many efforts have been
made to obtain less conservative delay-dependent conditions
in the literature [7-12]. For instance, some robust stability
results for neutral systems with different types of time delay
were proposed in [7] and [8], respectively. In [9], Lyapunov
functional technique combined with matrix inequality tech-
nique and a new operator are used to investigate the problem
of robust stability for neutral systems with a constant neutral
delay. By using descriptor model transformation and decom-
position technique, some delay-dependent stability criterions
are obtained in [10]. In [11], the stability conditions of un-
certain neutral system with time-varying delay are developed
by descriptor model transformation technique and the norm-
bounded uncertainties is handled by S-procedure. Recently, a
free weighting matrices approach combining matrix inequality
technique are used in obtain the stability conditions so that less

Changchun Shen and Shouming Zhong are with the School of Mathematics
Science, University Electronic Science and Technology of China, Chengdu
611731, PR China.

Shouming Zhong is with Key Laboratory for NeuroInformation of Ministry
of Education, University of Electronic Science and Technology of China,
Chengdu 611731, PR China.

Email address: sccyjs2008@163.com.

conservative stability conditions are obtained in [12].
In this paper, the problem of stability analysis for neutral

systems with time-varying delays is discussed. Since model
transformation and bounding techniques for cross terms ap-
pearing in the derivative of corresponding Lyapunov functional
may introduce additional conservativeness [13], neither model
transformation nor bounding technique for cross terms is
applied in analyzing the considered systems which may yield
a less conservative stability condition. The free-weighting
matrix approach [12] is also employed to further reduce the
entailed conservativeness. Numerical examples illustrate the
effectiveness and improvement of the obtained results.

Notation: �n is the n-dimensional Euclidean space, �m×n

denotes the set of m×n real matrix. ‖·‖ refers to the Euclidean
vector norm and the induced matrix norm. L2[a, b] is the space
of the square integral function on the interval [a, b].

II. MODEL DESCRIPTION AND PRELIMINARIES

Consider the uncertain neutral systems with multiple time
delays described by following state equation:

ẋ(t) − Cẋ(t− τ) = (A+ ΔA(t))x(t)
+ (B + ΔB(t))x(t− h(t)),

x(t0 + θ) = ϕ(θ), ∀θ ∈ [−τ∗, 0],
(1)

where x(t) ∈ �n is the state vector, ϕ(·) ∈ L2[−max(τ, h), 0]
is a differentiable vector-valued initial function, τ > 0 is a
constant neutral delay, the discrete delay h(t) is a time-varying
function that satisfies

0 ≤ h(t) ≤ h, ḣ(t) ≤ hD < 1 (2)

where h, hD are constants, τ∗ = max(τ, h), A ∈ �n×n,
B ∈ �n×n, C ∈ �n×n and D ∈ �n×n are known constant
matrices, ΔA(t) and ΔB(t) are the parametric uncertainties
in the system, , which are assumed to be of the form

[

ΔA(t) ΔB(t)
]

= LK(t)
[

Ea Eb

]

(3)

where K(t) is an unknown real and possibly time-varying
matrix with Lebesgue measurable elements satisfying

KT (t)K(t) ≤ I (4)

and L, Ea and Eb are known real constant matrices which
characterize how the uncertainty enters the nominal matrices
A and B.

The purpose of this paper is to formulate a practically
computable criterion to check the stability of system described
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by (1-4).
Before proceeding further, system (1) can be written as:

ẋ(t) − Cẋ(t− τ) = Ax(t) +Bx(t− h(t)) + Lu,
z = Eax(t) + Ebx(t− h(t)), (5)

with the constraint: u = K(t)z.
We further have:

uTu ≤ [Eax(t) + Ebx(t− h(t))]T

· [Eax(t) + Ebx(t− h(t))] (6)

In this paper, the following Lemma and Assumption are
needed:
Lemma 1.(Schur Complement). Given constant symmetric
matrices Σ1,Σ2,Σ3 where Σ1 = ΣT

1 and Σ2 = ΣT
2 > 0,

then Σ1 + ΣT
3 Σ−1

2 Σ3 < 0 holds if and only if:
[

Σ1 ΣT
3

Σ3 −Σ2

]

< 0 or

[ −Σ2 Σ3

ΣT
3 Σ1

]

< 0.

Assumption 1. All the eigenvalues of matrix C are inside the
unit circle.

III. MAIN RESULT

In this section, based on Lyapunov method and linear matrix
inequality techniques, following stability criteria are derived.
Theorem 1. Under Assumption 1, the system described by
(1-4) is robustly asymptotically stable, if there exist real
matrices Pi(i = 2, 3, · · · , 6), Ni(i = 1, 2, · · · , 5), Xij(i, j =
1, 2, · · · , 5), M11, M12 and M22, symmetric positive definite
matrices G, R, S, Q and P1, scalar ε > 0 satisfying the
following matrix inequalities:

Π =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Π11 Π12 Π13 Π14 Π15 εET
a

∗ Π22 Π23 Π24 Π25 0
∗ ∗ Π33 Π34 Π35 0
∗ ∗ ∗ Π44 Π45 εET

b

∗ ∗ ∗ ∗ Π55 0
∗ ∗ ∗ ∗ ∗ −εI

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

< 0 (7)

Ω =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

X11 X12 X13 X14 X15 N1

∗ X22 X23 X24 X25 N2

∗ ∗ X33 X34 X35 N3

∗ ∗ ∗ X44 X45 N4

∗ ∗ ∗ ∗ X55 N5

∗ ∗ ∗ ∗ ∗ G

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

≥ 0 (8)

[

M11 M12

MT
12 M22

]

≥ 0, (1 − hD)S −M22 ≥ G (9)

where
Π11 = P2A+ATP2 +Q+N1 +NT

1 + hX11,
Π12 = P1 − P2 +ATP3 +NT

2 + hX12,
Π13 = PT

2 C +ATP4 +NT
3 + hX13,

Π14 = PT
2 B +ATP5 +MT

12
+NT

4 −N1 + hX14,
Π15 = PT

2 L+ATP6 +NT
5 + hX15,

Π22 = hS +R− PT
3 − P3 + hX22,

Π23 = PT
3 C − P4 + hX23,

Π24 = PT
3 B − P5 −N2 + hX24,

Π25 = PT
3 L− P6 + hX25,

Π33 = PT
4 C + CTP4 −R+ hX33,

Π34 = PT
4 B + CTP5 −N3 + hX34,

Π35 = PT
4 L+BTP6 + hX35,

Π44 = PT
5 B +BTP5 − (1− hD)Q+ hM11 −M12 −MT

12 −
N4 −NT

4 + hX44,
Π45 = PT

5 L+BTP6 −NT
5 + hX45,

Π55 = PT
6 L+ LTP6 − εI + hX55.

Proof: We choose the following Lyapunov-Krasovskii
functional candidate as follows:

V = V1 + V2 + V3 + V4 (10)

where

V1 = ξT (t)EPξ(t)

V2 =
∫ t

t−τ

ẋT (s)Rẋ(s)ds+
∫ t

t−h(t)

xT (s)Qx(s)ds

V3 =
∫ 0

−h(t)

dθ

∫ t

t+θ

ẋT (ξ)Sẋ(ξ)dξ

V4 =
∫ t

0
dθ

∫ θ

θ−h(θ)

[

xT (θ − h(θ)) ẋT (s)
]

·
[

M11 M12

MT
12 M22

] [

x(θ − h(θ))
ẋ(s)

]

ds

where
ξ(t) =

[

xT (t) ẋT (t) ẋT (t− τ) xT (t− h(t)) uT
]T

,

E =
[

I 0 0 0 0
0 0 0 0 0

]T

,

P =
[

P1 0 0 0 0
P2 P3 P4 P5 P6

]

. where R > 0, S > 0, Q >

0 and P1 > 0 and
[

M11 M12

MT
12 M22

]

≥ 0 are solutions of (7-9).

The derivative of V along the trajectory of system (1) is
given by

V̇ = V̇1 + V̇2 + V̇3 + V̇4 (11)

From (11), we have

V̇1 = 2ξT (t)PT

[

ẋ(t)
0

]

= 2ξT (t)PT

·
⎡

⎣

ẋ(t)
(

Ax(t) − ẋ(t) + Cẋ(t− τ(t))
+Bx(t− h(t)) + Lu

)

⎤

⎦

= 2ξT (t)PT

⎡

⎣

ẋ(t)
(

Ax(t) − ẋ(t) + Cẋ(t− τ(t))
+Bx(t− h(t)) + Lu

)

⎤

⎦

= ξT (t)(Γ + ΓT )ξ(t)
(12)

where

Γ =

⎡

⎢

⎢

⎢

⎢

⎣

P1 PT
2

0 PT
3

0 PT
4

0 PT
5

0 PT
6

⎤

⎥

⎥

⎥

⎥

⎦

[

0 I 0 0 0
A −I C B L

]

V̇2 ≤ ẋT (t)Rẋ(t) − ẋT (t− τ)Rẋ(t− τ) + xT (t)Q
· x(t) − (1 − hD)xT (t− h(t))Qx(t− h(t))

(13)
V̇3 ≤ hẋT (t)Sẋ(t) − (1 − hD)

∫ t

t−h(t)
ẋT (s)Sẋ(s)ds

(14)
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V̇4 ≤ hxT (t− h(t))M11x(t− h(t)) + 2xT (t)MT
12· x(t− h(t)) − 2xT (t− h(t))M12x(t− h(t))

+
∫ t

t−h(t)
ẋT (s)M22ẋ(s)ds

(15)
Then substituting (12-15) into (11), we further have

V̇ ≤ xT (t)[P2A+ATP2 +Q]x(t) + 2xT (t)[P1 − P2

+ATP3]ẋ(t) + 2xT (t)[PT
2 C +ATP4]ẋ(t− τ)

+ 2xT (t)[PT
2 B +ATP5 +MT

12
]x(t− h(t)) + 2xT (t)

· [PT
2 L+ATP6]Lu+ ẋT (t)[hS +R− PT

3 − P3]ẋ(t)
+ 2ẋT (t)[PT

3 C − P4]ẋ(t− τ) + 2ẋT (t)[PT
3 B − P5]

· x(t− h(t)) + 2ẋT (t)[PT
3 L− P6]u+ ẋT (t− τ)

· [PT
4 C + CTP4 −R]ẋ(t− τ) + 2ẋT (t− τ)[PT

4 B
+ CTP5]x(t− h(t)) + 2ẋT (t− τ)[PT

4 L+ CTP6]u
+ xT (t− h(t))[PT

5 B +BTP5 − (1 − hD)Q+ hM11

−M12 −MT
12]x(t− h(t)) + 2xT (t− h(t))[PT

5 L

+BTP6]u− ∫ t

t−h(t)
ẋT (s)ẋ(s)Gds+ uT [PT

6 L

+ LTP6]u+ 2[xT (t)N1 + ẋT (t)N2 + ẋT (t− τ)N3

+ xT (t− h(t))N4 + uTN5] · [x(t) − x(t− h(t))
− ∫ t

t−h(t)
ẋ(s)ds].

We define

Σ =

⎡

⎢

⎢

⎢

⎢

⎣

Σ11 Σ12 Σ13 Σ14 Σ15

∗ Σ22 Σ23 Σ24 Σ25

∗ ∗ Σ33 Σ34 Σ35

∗ ∗ ∗ Σ44 Σ45

∗ ∗ ∗ ∗ 0

⎤

⎥

⎥

⎥

⎥

⎦

where Σij = Πij −hXij for i, j = 1, 2, · · · , 5, and Πij(i, j =
1, 2, · · · , 5) are the same as defined in the Theorem 1.

For any matrix

X =

⎡

⎢

⎢

⎢

⎢

⎣

X11 X12 X13 X14 X15

X22 X23 X24 X25

∗ X33 X34 X35

∗ ∗ X44 X45

∗ ∗ ∗ X55

⎤

⎥

⎥

⎥

⎥

⎦

≥ 0,

We have

ξT (t)(hX)ξ(t) − ∫ t

t−h(t)
ξT (t)Xξ(t)ds ≥ 0. (16)

Then, the following inequality can be obtained:

V̇ ≤ ξT (t)Φξ(t) − ∫ t

t−h(t)

[

ξ(t)
ẋ(s)

]T

Ω
[

ξ(t)
ẋ(s)

]

ds

(17)
where Φ = Σ + hX and

Ω =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

X11 X12 X13 X14 X15 N1

X22 X23 X24 X25 N2

∗ X33 X34 X35 N3

∗ ∗ X44 X45 N4

∗ ∗ ∗ X55 N5

∗ ∗ ∗ ∗ G

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

A sufficient condition for asymptotic stability of system is
that there exist real matrices Ni(i = 1, 2, · · · 5), R > 0, G > 0,

S > 0, Q > 0 and P1 > 0 and
[

M11 M12

MT
12 M22

]

≥ 0 such that

V̇ ≤ ξT (t)Φξ(t) − ∫ t

t−h(t)

[

ξ(t)
ẋ(s)

]T

Ω
[

ξ(t)
ẋ(s)

]

ds < 0

(18)
for all ξ(t) 	= 0. Using the S-procedure in [1], one can see
that this condition is implied by the existence of a nonnegative
scalar ε > 0 such that

V̇ ≤ ξT (t)Φξ(t) − ∫ t

t−h(t)

[

ξ(t)
ẋ(s)

]T

Ω
[

ξ(t)
ẋ(s)

]

ds

+ ε{[Eax(t) + Ebx(t− h(t))]T [Eax(t)
+ Ebx(t− h(t))] − uTu} < 0

(19)
for all ξ(t) 	= 0. By using Lemma 1, the matrix inequalities (7-
9) imply (19). It is well known that Assumption 1 guarantees
the stability of different system x(t)−Cx(t− τ) = 0. There-
fore, system described by (1-4) is robustly asymptotically
stable according to Theorem 8.1 in [2].

Applying the similar method in the proof of Theorem 1, it is
easy to obtain the following Theorem for the nominal system
of systems (1)-(4), that is the system

ẋ(t) − Cẋ(t− τ) = Ax(t) +Bx(t− h(t)) (20)

Theorem 2. Under Assumption 1, the system (20) is robustly
asymptotically stable, if there exist real matrices Pi(i =
2, 3, 4, 5), Ni(i = 1, 2, 3, 4), Xij(i, j = 1, 2, 3, 4), M11, M12

and M22, symmetric positive definite matrices G, R, S, Q and
P1, scalar ε > 0 satisfying the following matrix inequalities:

Π =

⎡

⎢

⎢

⎣

Π11 Π12 Π13 Π14

Π22 Π23 Π24

∗ Π33 Π34

∗ ∗ Π44

⎤

⎥

⎥

⎦

< 0 (21)

Ω =

⎡

⎢

⎢

⎢

⎢

⎣

X11 X12 X13 X14 N1

X22 X23 X24 N2

∗ X33 X34 N3

∗ ∗ X44 N4

∗ ∗ ∗ G

⎤

⎥

⎥

⎥

⎥

⎦

≥ 0 (22)

[

M11 M12

MT
12 M22

]

≥ 0, (1 − hD)S −M22 ≥ G (23)

where Πij(i, j = 1, 2, 3, 4) are the same as defined in the
Theorem 1.
Remark 1. Choosing a special matrix:

X =

⎡

⎢

⎢

⎢

⎢

⎣

N1

N2

N3

N4

N5

⎤

⎥

⎥

⎥

⎥

⎦

T

G−1

⎡

⎢

⎢

⎢

⎢

⎣

N1

N2

N3

N4

N5

⎤

⎥

⎥

⎥

⎥

⎦

we obtain X ≥ 0 satisfying Ω ≥ 0. Applying the similar
method in the proof of Theorem 1 and Schur Complement,
Corollary 1 is presented as follows.
Corollary 1. Under Assumption 1, the system described by
(1-4) is robustly asymptotically stable, if there exist real
matrices Pi(i = 2, 3, · · · , 6), Ni(i = 1, 2, · · · , 5), Xij(i, j =
1, 2, · · · , 5), M11, M12 and M22, symmetric positive definite
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matrices G, R, S, Q and P1, scalar ε > 0 satisfying the
following matrix inequalities:

Π̂ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Π̂11 Π̂12 Π̂13 Π̂14 Π̂15 hN1 εET
a

Π̂22 Π̂23 Π̂24 Π̂25 hN2 0
∗ Π̂33 Π̂34 Π̂35 hN3 0
∗ ∗ Π̂44 Π̂45 hN4 εET

b

∗ ∗ ∗ Π̂55 hN5 0
∗ ∗ ∗ ∗ −hG 0
∗ ∗ ∗ ∗ ∗ −εI

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

< 0

(24)
[

M11 M12

MT
12 M22

]

≥ 0, (1 − hD)S −M22 ≥ G (25)

where Π̂ij = Πij −hXij for i, j = 1, 2, · · · , 5, and Πij(i, j =
1, 2, · · · , 5) are the same as defined in the Theorem 1.
Remark 2. Choosing a special matrix:

X =

⎡

⎢

⎢

⎣

N1

N2

N3

N4

⎤

⎥

⎥

⎦

T

G−1

⎡

⎢

⎢

⎣

N1

N2

N3

N4

⎤

⎥

⎥

⎦

and using the similar method in the proof of Theorem 2 and
Schur Complement, we can obtain the Corollary 2.
Corollary 2. Under Assumption 1, the system described by (1-
4) is robustly asymptotically stable, if there exist real matrices
Pi(i = 2, 3, 4, 5), Ni(i = 1, 2, 4, 5), Xij(i, j = 1, 2, 3, 4),
M11, M12 and M22, symmetric positive definite matrices G,
R, S, Q and P1, scalar ε > 0 satisfying the following matrix
inequalities:

Π̂ =

⎡

⎢

⎢

⎢

⎢

⎣

Π̂11 Π̂12 Π̂13 Π̂14 hN1

Π̂22 Π̂23 Π̂24 hN2

∗ Π̂33 Π̂34 hN3

∗ ∗ Π̂44 hN4

∗ ∗ ∗ −hG

⎤

⎥

⎥

⎥

⎥

⎦

< 0 (26)

[

M11 M12

MT
12 M22

]

≥ 0, (1 − hD)S −M22 ≥ G (27)

where Π̂ij = Πij − hXij for i, j = 1, 2, 3, 4, and
Πij(i, j = 1, 2, 3, 4) are the same as defined in the Theorem 1.

IV. EXAMPLES

Example 1. Consider the uncertain neutral system with time-
varying delay as follow:

ẋ(t) −
[

c 0
0 c

]

ẋ(t− τ) =
[ −2 + δ1 0

0 −1 + δ2

]

x(t)

+
[ −1 + γ1 0

−1 −1 + γ2

]

x(t− h(t))

(28)
where δ1, δ2, γ1 and γ2 are unknown parameters satisfying

|δ1| ≤ 1.6, |δ2| ≤ 0.05, |γ1| ≤ 0.1, |γ2| ≤ 0.3.

By applying the criteria in [14-17] and Theorem 1 in this
paper, Table 1 gives the maximum value h for stability of
system (28) for different c with hD = 0.1. Table 2 gives the
maximum value h for stability of system (28) for different hD

0 50 100 150 200 250 300 350 400
−0.02

0

0.02

0.04
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0.08

0.1

x
(t

)

 t/s 

Fig. 1. The time responses of state variable x(t) with α = 0.
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Fig. 2. The time responses of state variable x(t) with α = 0.1.

with c = 0.1 . It is clear to see that the results in this paper
are much less conservative than those in [14-17].

Moreover, it is should be pointed out that if we let c = 0.1
and hD = 0, from Theorem 1, The maximum bound h guaran-
teeing robust stability of system (28) is 2.206. However, using
the criteria in [15-17], the nominal system is asymptotically
stable for any h satisfying h < 0.87, h < 0.998 and h < 1.10,
respectively. It shows again that the stability criterion in this
paper is much less conservative than these in [15-17].

For c = 0 and hD = 0, the upper bounds on time-varying
delay obtained from Theorem 2. For comparison, the Table
3 list the upper bounds obtained from the criteria in the
literature. According the Table 3, it is clear to see that the
criterion in this paper gives much less conservative results
than those in the literature.

Example 2. Consider the following uncertain neutral system

TABLE I
STABILITY BOUNDS OF TIME-DELAY FOR DIFFERENT |c| WITH hD = 0.1

|c| 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70
Han in [14] 0.92 0.73 0.55 0.41 0.29 0.19 0.11 0.04
Zhao in [15] 1.10 0.85 0.64 0.47 0.33 0.22 0.13 0.05
Yu in [16] 1.166 0.962 0.778 0.616 0.472 0.346 0.235 0.130
Kwon in[17] 1.17 1.07 0.95 0.83 0.70 0.51 0.31 0.14
h in this paper 2.05 1.84 1,64 1.43 1.23 1.02 0.82 0.61
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TABLE II
STABILITY BOUNDS OF TIME-DELAY FOR DIFFERENT hD WITH |c| = 0.1

hD 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
h in [14] 0.80 0.73 0.65 0.57 0.49 0.41 0.33 0.24 0.16 0.07
h in this paper 2.20 1.84 1.55 1.30 1.08 0.89 0.76 0.55 0.40 0.24

TABLE III
COMPARATIVE RESULTS OF h FOR DIFFERENT hD

[18] [19] [14] [20] [21] [15] [22] ours
h 0.2412 0.2412 1.030 1.1490 1.1490 1.1490 1.1623 2.4510

with time delays

ẋ(t) − Cẋ(t− τ) = (A+ ΔA(t))x(t)
+ (B + ΔB(t))x(t− h) (29)

where A =
[ −0.9 0.2

0.1 −0.9

]

, B =
[ −1.1 −0.2

−0.1 −1.1

]

, C =
[ −0.2 0

0.2 −0.1

]

and ΔA(t), ΔB(t) are unknown matrices

satisfying and ‖ΔA(t)‖ ≤ α, ‖ΔB(t)‖ ≤ α, α ≥ 0, ∀t. The
system (29) is of the form of (4) with L = αI , Ea = Eb = I ,
Ec = 0.

For ΔA(t) = 0 and ΔB(t) = 0, system (29) is studied in
[15, 23, 24]. Using the criterion in this paper, the maximum
value of h for the nominal system to be asymptotically stable is
h = 1.8266. By the criteria in [15, 23, 24], the nominal system
is asymptotically stable for any h satisfying h ≤ 1.3718, h ≤
1.7884 and h ≤ 1.7856, respectively. Similar to Example 1,
this example shows again that the stability criterion in this
paper is much less conservative than these in [15, 23, 24].

The effect of the uncertainty bound alpha on the maximum
time delay for stability h is also studied. the maximum value h
for stability of system (29) is listed in Table 4 different value
of α. One can see that as α increases, h decreases.
Example 3. Consider the following uncertain neutral system
with time delays

ẋ(t) − Cẋ(t− τ) = (A+ ΔA(t))x(t)
+ (B + ΔB(t))x(t− h) (30)

where A =
[ −1 1

0 −1

]

, B =
[

0.5 0
0.5 −0.5

]

, C =
[

0.4 0
0 0.4

]

and the system (31) is of the form of (19) with

L = αI , Ec = 0, Ea =
[

0.6 0
0 0.6

]

, Eb =
[

0 −0.1
0.1 0.3

]

,

F =
[

0.8 0
0 0.8

]

.

For α = 0 and α = 0.1, this system has been studied in
[25]. By the criteria in [25], the maximum value of h for the
nominal system to be asymptotically stable is h ≤ 1.0616 and
h ≤ 0.7922. Using the criterion in this paper, the nominal
system is asymptotically stable for any h. It is clear to see
that the criterion in this paper gives much less conservative
results than those in [25].

By choosing h(t) = 10.4 + 0.3 sin2(t), system (30) with
τ = 0.4 is asymptotically stable, as show in Fig 1-2. In
numerical simulation, the two cases are given with the initial
state ϕ(θ) = [0.1, 0.1]T . Fig. 1 depicts the time response of

TABLE IV
STABILITY BOUNDS OF TIME-DELAY FOR DIFFERENT α

|c| 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Han in [14] 1.61 1.51 1.41 1.30 1.19 1.08 0.96 0.83
h in this paper 1.82 1.67 1.54 1.43 1.33 1.25 1.17 1.11

state variable x(t) with no uncertainties. Fig. 2 depicts the
time response of state variable x(t) with uncertainties. It is
obvious that uncertainties are the important source of neutral
system instability.

V. CONCLUSION

In This paper, the problem of robust stability for a class of
uncertain neutral systems with time-varying delays is investi-
gated. Sufficient conditions are given in terms of linear matrix
inequalities which can be easily solved by LMI Toolbox in
Matlab. Numerical examples are given to indicate significant
improvements over some existing results.
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