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Likelihood Estimation for Stochastic Epidemics
with Heterogeneous Mixing Populations
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Abstract—We consider a heterogeneously mixing SIR stochastic
epidemic process in populations described by a general graph.
Likelihood theory is developed to facilitate statistic inference for the
parameters of the model under complete observation. We show that
these estimators are asymptotically Gaussian unbiased estimates by
using a martingale central limit theorem.
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I. INTRODUCTION

Understanding the spread of an infectious disease is a
highly crucial issue in order to prevent major outbreaks of
an epidemic. Mathematical modeling of infectious disease has
a long history; see e.g. [4], [13] and references therein.

In the last decades, there has been an increase in research
activity regarding modeling epidemics among populations with
various heterogeneities and their effects on disease propagation
[3]. Epidemics with two levels of mixing have been introduced
by [5], [6]. Such a model assumes two different kind of con-
tacts; a local and a global. Apart from describing the infection
process of such a model, the authors in [6] briefly consider
statistical inference for their model. See also [10] on how to
draw Bayesian inference for such type of models. Recently, [8]
studied statistical inference for epidemics with three levels of
mixing. Heterogeneities caused by social structures are also
incorporated in relatively simple models by using random
network models, e.g. [2], [9], [11]. Population age structures
have also been addressed in [7].

In this paper, aiming to further extend the heterogeneities
in the stochastic epidemic models, we treat the underlying
population structure as an arbitrary graph and explore non-
uniform mixing in the spreading of epidemics. Inferences
for the infection rate and removal rate are drawn under
complete observation by using the likelihood theory. Based
on the likelihood theory for counting processes [1], we show
that these estimators are asymptotically Gaussian unbiased
estimates by using a martingale central limit theorem [14].

The rest of the paper is organized as follows. The model
is described in detail in Section 2. In Section 3 the likelihood
is derived for the case of complete observation of the epi-
demics. Section 4 contains our main results followed by some
discussions.

II. THE MODEL

Consider the SIR epidemic model with a closed population
of n + m individuals out of which m are initially infected
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and the n remaining individuals are susceptible to the disease
in question. We shall model the population structure using a
general network, G. Specifically, each individual in the popu-
lation will be represented by a vertex in G and the adjacency
of two vertices means contact between the two corresponding
individuals. Furthermore, a Markovian epidemic process with
heterogeneous mixing can be defined on G. We now describe
the model in more detail.

Let G = (V,E) be a simple connected graph with vertex
set V = {1, 2, · · · , n + m}, edge set E and |V | = n + m.
Assume m = μn with μ > 0, that is, a positive (usually
small) proportion of population is initially infectious. For any
v ∈ V , the neighborhood of vertex v is denoted by Nv and
let |Nv| = dv . Thus Nv restricts the set of individuals with
whom the individual v can make contact. The infectious peri-
ods of different individuals are assumed to be independently
distributed according to exponential random variables Iv with
means (ββv)−1, where βv > 0 is a deterministic function
involving some individual specific characteristics, such as age,
sex and physique. We refer to ββv > 0 as the removal rate.

An infective v will make contacts with a given neighbor in
Nv at the time points of a homogeneous Poisson process with
intensity (ΓΓv)/dv , where Γv > 0 is a deterministic function,
which may contain individual properties like βv do. The Pois-
son processes governing different infective-susceptible pairs
are assumed to be independent of one another; they are also
independent of the infectious periods Iv . Therefore, during
his infectious period an infective makes contacts with his
neighbors at the time points of a Poisson process with a
constant intensity ΓΓv > 0, where ΓΓv is known as the
infection rate.

If a contacted individual is still susceptible, then he becomes
infectious and is immediately able to infect other individuals
(in his neighborhood). An individual is considered removed
once his infectious period has terminated, and is then immune
to new infections, playing no further role in the epidemics.
The epidemic continues until there are no more infectious
individuals left in the population.

III. MAXIMUM LIKELIHOOD ESTIMATORS

We assume the aforementioned SIR epidemic process is
observed completely, i.e. the infection times τv and removal
times ρv of all infected individuals are observed, up until
some time s (see Remark 5). Consequently, the length of the
infectious period Iv = ρv − τv is also known. Moreover, we
assume that the functions Γv , βv and the population structure
incorporated in G are fully known. Based on the observed
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data we want to draw inferences on the parameters Γ and β
involving in the infection rate and removal rate, respectively,
by means of Maximum Likelihood (ML) theory.

Let fv and Fv denote, respectively, the density and distribu-
tion functions of the infectious period Iv . Define by Xn(t) and
Yn(t) the sets of susceptible and infectious individuals at time
t, respectively. Hence, Xn(t) := |Xn(t)| and Yn(t) := |Yn(t)|
are the numbers of susceptibles and infectives respectively at
time t. Recall that Xn(0) = n and Yn(0) = μn. Define I(t) =
n − Xn(t), a counting process for the number of infections
that have occurred in (0, t], and R(t) = n+m−Xn(t)−Yn(t)
a counting process for the number of removals in (0, t].

The counting processes I(t) and R(t) have intensities∑
v∈Yn(t)(ΓΓv/dv)|Xn(t)∩Nv| and

∑
v∈Yn(t) fv(t−τv)/(1−

Fv(t − τv)), respectively [3]. From the likelihood theory
for counting processes [1], it follows that the log-likelihood
function can by expressed as

ls(Γ, β) =
∫ s

0

ln
( ∑

v∈Yn(t)

(ΓΓv/dv)|Xn(t) ∩Nv|
)
dI(t)

−
∑

v∈Yn(t)

(ΓΓv/dv)|Xn(t) ∩Nv|dt

+
∑

v;τv≤s<ρv

ln(1 − Fv(s− τv))

+
∑

v;ρv≤s

ln fv(ρv − τv). (1)

To estimate Γ we differentiate the log-likelihood (1) with
respect to Γ

∂ls(Γ, β)
∂Γ

=
∫ s

0

1
Γ

(
dI(t)

−
∑

v∈Yn(t)

(ΓΓv/dv)|Xn(t) ∩Nv|dt
)

=
I(s)
Γ

−
∫ s

0

∑
v∈Yn(t)

Γv|Xn(t) ∩Nv|
dv

dt.

Solving the likelihood equation ∂ls(Γ, β)/∂Γ = 0 hence gives
the ML estimate

Γ̂ =
I(s)∫ s

0

∑
v∈Yn(t)(Γv/dv)|Xn(t) ∩Nv|dt

. (2)

It is straightforward to see the intensity for R(t) is just
β

∑
v∈Yn(t) βv . The derivative of the likelihood with respect

to β then becomes

∂ls(Γ, β)
∂β

=
∫ s

0

1
β

(
dR(t) − β

∑
v∈Yn(t)

βvdt
)

=
R(s)
β

−
∫ s

0

∑
v∈Yn(t)

βvdt.

Accordingly, the ML estimator is

β̂ =
R(s)∫ s

0

∑
v∈Yn(t) βvdt

. (3)

We will prove that the ML estimates Γ̂ and β̂ are asymp-
totically Gaussian unbiased estimators.

IV. MAIN RESULTS

In this section, for v ∈ V , we assume that 1 ≤ dv ≤M for
some M <∞. For mathematical convenience we suppose that
Γv = Γu := Γi if |Nv| = |Nu| = i. Moreover, the number of
different βv , say N , is finite. We signify them as {βk}1≤k≤N .
Without loss of generality, we assume

μ =
M∑
i=1

i∑
j=0

aij =
N∑

k=1

bk, (4)

for aij ≥ 0 and bk ≥ 0. Thereby, aijn represents the number
of initial infectives that have i neighbors out of which j are
susceptible, while bkn is the number of initial infectives with
removal rate ββk.

To prove the asymptotic normality of the estimators, we
choose to use the density dependent jump Markovian frame-
work developed in [3](Chap. 5) and [12](Chap. 11).

For each n ≥ 1, define an (M2/2+3M/2+N)-dimensional
continuous-time Markov process

Vn(t) =
({Q(n)

k (t)}1≤k≤N ; {Z(n)
ij (t)}1≤i≤M,0≤j≤i

)
, (5)

with Q
(n)
k (t) representing the number of infectives with re-

moval rate ββk and Z
(n)
ij (t) the number of infectives that

have i neighbors out of which j are susceptible, respec-
tively, at time t. From the definitions, it is clear that Yn =∑M

i=1

∑i
j=0 Z

(n)
ij =

∑N
k=1Q

(n)
k .

The process Vn in (5) can make two types of jumps:
(I) the process changes by
(0, · · · ,−1, · · · , 0; 0, · · · ,−1, · · · , 0) with one −1 in
the first N coordinations (say k-th) and another in the last
(M2/2 + 3M/2) coordinations (say ij-th), implying an
infective is removed.
(II) the process changes by (0, · · · , 1, · · · , 0; 0, · · · , 1, · · · , 0)
with one 1 in the first N coordinations (say k-th) and another
in the last (M2/2+3M/2) coordinations (say ij-th), implying
a susceptible becomes infected.

It is easily shown that the (I)-type jump occurs at
rate ββkZ

(n)
ij (t) while the (II)-type jump occurs at rate

(ΓΓij/i)Z
(n)
ij (t).

Hence, from the definition ([3] pp. 40) the scaled jump rate
functions for Markov process (5) are

r(0,··· ,−1,··· ,0;0,··· ,−1,··· ,0)
({qk}1≤k≤N ; {zij}1≤i≤M,0≤j≤i

)
= ββkzij (6)

with the typical locations of two −1 as specified in (I), and

r(0,··· ,1,··· ,0;0,··· ,1,··· ,0)
({qk}1≤k≤N ; {zij}1≤i≤M,0≤j≤i

)
= (ΓΓij/i)zij (7)

with the typical locations of two 1 as specified in (II), where∑N
k=1 qk =

∑M
i=1

∑i
j=1 zij holds.
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Using (6) and (7) we may define the drift function F by

F
({qk}1≤k≤N ; {zij}1≤i≤M,0≤j≤i

)
=

∑
l

lrl
({qk}1≤k≤N ; {zij}1≤i≤M,0≤j≤i

)

=
({ M∑

i=1

i∑
j=0

(ΓΓij

i
zij − ββkzij

)}
1≤k≤N

;

{(ΓΓij

i
−

N∑
k=1

ββk

)
zij

}
1≤i≤M,0≤j≤i

)
, (8)

where the summation in the first equation is over all the
possible transitions l.

Now let’s define the deterministic vector function

v(t) =
({qk(t)}1≤k≤N ; {zij(t)}1≤i≤M,0≤j≤i

)
as the solution to the integral equation

v(t) = v(0) +
∫ t

0

F (v(s))ds, (9)

where the initial value is given by v(0) =({bk}1≤k≤N ; {aij}1≤i≤M,0≤j≤i

)
.

The following lemma is concerning the almost uniform con-
vergence of the Markov process (5) defined in the beginning
of this section.
Lemma 1. Consider our SIR epidemic process spreading on
G with initial values Xn(0) = n, Yn(0) = μn and (4). We
have

lim
n→∞ sup

s≤t

∥∥∥Vn(s)
n

− v(s)
∥∥∥ = 0

almost surely, where ‖ · ‖ is l1 norm and v(t) is the unique
solution to (9).

Proof: We apply Theorem 5.2 [3] to show that the process
Vn/n converges to the deterministic function v(s).

By employing (8) and the fact that the domain of interesting
satisfies

0 ≤ {qk,1}1≤k≤N , {zij,1}1≤i≤M,0≤j≤i ≤ 1 + μ

and

0 ≤ {qk,2}1≤k≤N , {zij,2}1≤i≤M,0≤j≤i ≤ 1 + μ,

we obtain ∥∥F ({qk,1}1≤k≤N , {zij,1}1≤i≤M,0≤j≤i

)
−F ({qk,2}1≤k≤N , {zij,2}1≤i≤M,0≤j≤i

)∥∥
≤ 2Γ(1 + μ)

M∑
i=1

i∑
j=0

N∑
k=1

(Γij

i
+ ββk

)
·∥∥({qk,1}1≤k≤N , {zij,1}1≤i≤M,0≤j≤i

)
−({qk,2}1≤k≤N , {zij,2}1≤i≤M,0≤j≤i

)∥∥.
Note that

({Q(n)
k (0)}1≤k≤N ; {Z(n)

ij (0)}1≤i≤M,0≤j≤i

)
=({bk}1≤k≤N ; {aij}1≤i≤M,0≤j≤i

)
= v(0), which completes

the proof by Theorem 5.2 [3].
To prove the asymptotical normality of ML estimates Γ̂

and β̂ we need another lemma on the martingale central limit
theorems, c.f. [1], [14].

Lemma 2. Consider our SIR epidemic process spreading on
G with initial values Xn(0) = n, Yn(0) = μn and (4). Define
the normed score processes W (n)

1 (s) = n−1/2∂ls(Γ, β)/∂Γ
and W

(n)
2 (s) = n−1/2∂ls(Γ, β)/∂β, evaluated at the true

parameter values (Γ0, β0). Hence,

W
(n)
1

D−→W1 and W
(n)
2

D−→W2,

as n→ ∞, where D−→ represents convergence in distribution
and W1 and W2 are Gaussian martingales. The variances of
W1 and W2, denoted by w1 and w2 respectively, are given by

w1(s) =
1
Γ0

∫ s

0

M∑
i=1

i∑
j=0

Γij

i
zij(t)dt

and

w2(s) =
1
β0

∫ s

0

N∑
k=1

βkqk(t)dt

respectively, where {qk} and {zij} constitute the solution to
the deterministic equation (9) defined above.

Proof: We will apply a martingale limit theorem (see [14]
or Theorem II.5.1 [1]) to prove the lemma.

First, we have

W
(n)
1 (s) =

1√
n

∫ s

0

1
Γ0

(
dI(t)−

∑
v∈Yn(t)

(Γ0Γv

dv

)
|Xn(t)∩Nv|dt

)

and

W
(n)
2 (s) =

1√
n

∫ s

0

1
β0

(
dR(t) − β0

∑
v∈Yn(t)

βvdt
)
,

as discussed in Section 2.
Therefore, by Lemma 1, the associated predictable variation

processes < W
(n)
1 > (s) and < W

(n)
2 > (s) satisfy

< W
(n)
1 > (s) =

1
nΓ2

0

∫ s

0

∑
v∈Yn(t)

(Γ0Γv

dv

)
|Xn(t) ∩Nv|dt

P−→ 1
Γ0

∫ s

0

M∑
i=1

i∑
j=0

Γij

i
zij(t)dt

and

< W
(n)
2 > (s) =

1
nβ2

0

∫ s

0

β0

∑
v∈Yn(t)

βvdt

P−→ 1
β0

∫ s

0

N∑
k=1

βkqk(t)dt

respectively, where P−→ represents convergence in probability.
Moreover, there will be no jumps larger than ε > 0 for n

large enough since the size of all jumps are n−1/2 for the
normed score processes. Then the martingale limit theorem in
[14] guarantees W (n)

1
D−→W1 and W (n)

2
D−→W2, as n→ ∞.

Also, since < W1 > (s) = [W1](s) =
(1/Γ0)

∫ s

0

∑M
i=1

∑i
j=0(Γij/i)zij(t)dt and W1(0) = 0,

we have w1(s) = (1/Γ0)
∫ s

0

∑M
i=1

∑i
j=0(Γij/i)zij(t)dt,

where [W1] is the optional variation process corresponding
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to W1 (see e.g. [1]). w2 can be derived similarly, which then
concludes the proof of the lemma.

Now we are at the stage to prove our main result. It can be
viewed as an extension of results in [15] with uniform mixing
in a homogeneous population.

Theorem 1. The ML estimates Γ̂ and β̂ are asymptotically
Gaussian with asymptotic means Γ0 and β0 (the true pa-
rameter values) respectively. The asymptotic variance for Γ̂
is 1/nw1(s) and for β̂ is 1/nw2(s). Consistent estimators
of the standard errors of Γ̂ and the parameter ˆβ−1 = 1/β̂
(note 1/β̂βv is the average length of the infectious period
for individual v) are s.e.(Γ̂) = Γ̂/

√
I(s) and s.e.( ˆβ−1) =

ˆβ−1/
√
R(s) respectively.

Proof: Since Γ̂ is the solution to the likelihood equation
∂ls(Γ, β)/∂Γ = 0, we may multiply the likelihood equation
by Γ̂/

√
n to yield

0 =
1√
n

(
I(s) −

∫ s

0

∑
v∈Yn(t)

Γ̂Γv

dv
|Xn(t) ∩Nv|dt

)

= Γ0W
(n)
1 (s)

+
1√
n

(Γ0 − Γ̂)
∫ s

0

∑
v∈Yn(t)

Γv

dv
|Xn(t) ∩Nv|dt.

Consequently, we get

√
n(Γ̂−Γ0) =

W
(n)
1 (s)

Γ−1
0 n−1

∫ s

0

∑
v∈Yn(t)(Γv/dv)|Xn(t) ∩Nv|dt

.

By Lemma 2, W (n)
1 (s) converges to a Gaussian random

variable with mean zero and variance w1(s). According to
Lemma 1, we have

1
nΓ0

∫ s

0

∑
v∈Yn(t)

Γv

dv
|Xn(t) ∩Nv|dt P−→ w1(s).

Hence, from Slutsky’s theorem the estimate Γ̂ is asymptoti-
cally normal with prescribed mean and variance. The asymp-
totic distribution for β̂ can be proved similarly.

For the consistent standard error of Γ̂, we have

s.e.(Γ̂) =

√√√√ Γ̂
n

∫ s

0

∑
v∈Yn(t)(Γv/ndv)|Xn(t) ∩Nv|dt

=
Γ̂√
I(s)

.

To derive the consistent estimate of standard error of ˆβ−1,
we note from the likelihood function that

0 =
1√
n

(R(s)

β̂
−

∫ s

0

∑
v∈Yn(t)

βvdt
)
.

Thus we have W (n)
2 (s) = (R(s)/

√
n)

(
1/β0−1/β̂

)
. Rearrange

the formula yields

1
β0

− 1

β̂
=

√
nW

(n)
2 (s)

R(s)
.

Therefore, we obtain

s.e.( ˆβ−1) = s.e.
( 1

β̂

)
=

1
R(s)

√∫ s

0

∑
v∈Yn(t) βvdt

β̂

=
1

β̂
√
R(s)

=
ˆβ−1√
R(s)

as desired.

Remark 1. We have used the node-oriented or sender per-
spective in our model formulation in Section 1. A distinct
feature of this perspective is that an infective v makes contacts
with a given neighbor according to a Poisson process with
intensity ΓΓv/dv , splitting the (total) constant infection rate
ΓΓv of v.

A natural alternative is to use the edge-oriented or receiver
perspective. In such case, a susceptible v gets infected because
of its neighbor u ∈ Nv at the time points of a homogenous
Poisson process with rate γγu. Therefore, the infection rate of
an individual u amounts to γγudu. We note the ML estimate
γ̂ is the same as equation (2) with Γv replaced by γv and dv

replaced by 1. The asymptotical normality can be proved in
parallel.

Remark 2. In this paper we only considered inference for
fully observed epidemics. However, it is often the case, that
neither the infection nor the removal times are available and
only the number of the individuals who contracted the disease
out of the total size of the initial susceptible population is
known (c.f. [3], [4]). Hence, the problem of partial observation
is more demanding and is our future work.
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