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Enhancing Cache Performance Based on
Improved Average Access Time
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Abstract—A high performance computer includes a fast
processor and millions bytes of memory. During the data processing,
huge amount of information are shuffled between the memory and
processor. Because of its small size and its effectiveness speed, cache
has become a common feature of high performance computers.
Enhancing cache performance proved to be essentia in the speed up
of cache-based computers. Most enhancement approaches can be
classified as either software based or hardware controlled. The
performance of the cache is quantified in terms of hit ratio or miss
ratio. In this paper, we are optimizing the cache performance based
on enhancing the cache hit ratio. The optimum cache performance is
obtained by focusing on the cache hardware modification in the way
to make a quick rejection to the missed line's tags from the hit-or
miss comparison stage, and thus alow hit time for the wanted linein
the cache is achieved. In the proposed technique which we called
Even- Odd Tabulation (EOT), the cache lines come from the main
memory into cache are classified in two types; even line's tags and
odd lin€'s tags depending on their Least Significant Bit (LSB). This
division is exploited by EOT technique to reject the miss match line's
tags in very low time compared to the time spent by the main
comparator in the cache, giving an optimum hitting time for the
wanted cache line. The high performance of EOT technique against
the familiar mapping technique FAM is shown in the simulated
results.

Keywords—Caches, Cache performance, Hit time, Cache hit
ratio, Cache mapping, Cache memory.

Symbols
C Number of characters per aline's tag/or memory field'stag
EOT Even- Odd Tabulation
FAM  Fully Associative Mapping
DM Direct Mapping
CPU  Central Processing Unit

D Number of linesin the cache
\Y Number of setsin the cache
a Number of lines per set
LSB  Least Significant Bit

t Number of bits per tag

w Word field hits

|.INTRODUCTION

INCE the early development of computer systems, there

has been a growing need for faster and more powerful
computer systems. This motivated the researchers in the areas
of hardware and software development of computer systems.
In order to aleviate the impact of the growing gap between
CPU speed and main memory performance, today’s computer
architectures implement hierarchical memory structures[1].
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The idea behind this approach is to hide both the low main
memory bandwidth and the latency of main memory accesses
as well as to provide a large amount of real memory at an
economical price. Although, there was a speed enhancement
for both CPU and main memory, the speed gap between them
has widened.

Moving further away from the CPU, the layers of memory
successively become larger and dSlower. The memory
components which are located between the processor core and
main memory are called cache memories or caches. They are
intended to contain copies of main memory blocks to speed up
accesses to frequently needed data. The next lower level of the
memory hierarchy is the main memory which is large but
comparatively slow. The externa memory such as hard disk
drives or remote memory components in a distributed
computing environment represent the lower end of any
common hierarchical memory design[2], [ 3].

The good overall performance of a computer system cannot
be achieved without good cache performance. Based on this
change on computer architecture, techniques have been
designed to minimize instruction count to improve CPU
performance may not achieve a good performance unless take
into consideration cache performance [4].

In this paper, we explore the potential performance gains
that cache conscious design offers in understanding and
improving the performance. We develop a novel technique
which we called Even- Odd Tabulation (EOT) to enhance the
cache performance in terms of reducing the hit time. The cache
line's tags are tabulated into two groups. even line's tags and
odd line's tags. Depending on the line number that is looking
for, the cache line's tags of opposite LSB are undesired tags
and rejected a way directly before going to the complete and
long C-characters comparison. By this approach, the line's tag
of a missed match LSB does not pass to the C-character
comparison stage and there is no waste of time. Thus the
desired cache line is located quickly, leading to maximum hit
ratio.

This paper is structured as follows. In Section 1, we will
introduce some fundamental cache characteristics, including a
brief discussion of conventional elementary cache optimization
techniques. Section |1l presents our proposed technique to
improve the cache hit time. In Section IV shows the simulation
results and explains the performance of the proposed technique
against the conventional methods. Finaly, Section V
concludes the paper work.

I1.CACHE DESIGN

Typicaly, a memory hierarchy contains a rather small
number of registers on the chip which are accessible without
delay. Furthermore, a small cache, usually called level one
(L1) cache, is placed on the chip to ensure low latency and
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high bandwidth. The L1 cache is often split intateeparate
parts; one keeps data, the other instructions.|tkacy of on-
chip caches is commonly one or two cycles. The ddhes are
usually backed up by a level two (L2) cache. CutyerL2
cache memories are typically located on-chip ag;wedj., in
the case of Intel's Itanium CPU. The off-chip cexlaee much
bigger and provide data with lower bandwidth andhker
access latency [5], [6]. The cache design hasexidaffect on
the cost and performance of the computer system.vahous
designs explored in this section have different ressing
mechanisms in terms of cost and speed but havea@meion
feature that every cache is divided into d-lineshegontaining
2"-words. The address generated by the CPU is foohaso
components, a line inddxand a word offset within the line.
When such an address is generated, the cachstigtiecked
for the presence of the requested Imeif found, then the

variables that resides in two or more blocks thapro the
same cache line.

2. Fully Associative Mapping (FAM)

In contrast to the simple mapping for a direct magp
cache, an associative cache allows any of the mebiocks
to be mapped to any of the cache lines [8], [14]cIS
flexibility allows for better utilization of the che without
conflict. In this design, the line numbers of therent cache
contents are placed in an associative cache digeclithe
block is searched for in the cache directory.hef CPU finds
its match, then the data is in the cache and thegponding
block is accessed. A mismatch results in a caclss,mand a
fetch is issued to main memory. Since the blockldtde
placed in any cache line, one of the resident Hock
overwritten. The choice of replacement block mayseafuture

offset f is used to fetch the needed data. Otherwise tltache misses.

specified lineb must be fetched from the lower level of

memory. All cache approaches are based on seleghiege to
store a particular block and how to locate it fomamory
request. Hence, cache organizations are classifiedrding to
the various ways the memory blocks are assignéldet@ache
and thus such an assignment usually adhere to taugar
mapping technique [7]-[10]. In the following subBens, we
will survey a number of conventional cache desiggach
design will have a different mapping strategy thilt map the
memory blocks to the cache lines. In order to highlthe
performance of the proposed EOT technique, a casgais

Direct mapped and fully associative caches cancea gas
special cases of k-way set-associative cachassets andi-
lines per a set. Av =d, a direct mapped cache is a one-way
set-associative cache, whereas a fully associatebe isd-
way one set-associative. In a fully associativeheaand in al-
way set-associative cache, a memory block can deegdlinto
several alternative cache lines.

Computer architects have recently focused on isangahe
set associatively of on-chip caches. A k-way sebeaisitive
cache is characterized by a higher hardware cortyplebut
usually implies higher hit rates [14]- [16]. Thecdehe lines of

made with the conventional FU”y Associative Map!pin k-Way set-associative cache are grouped imeets. The

Technique (AM).

A. Aspects of Cache Architectures

Data within the cache are stored in cache linesa¢he line
holds the contents of a contiguous block of maimong. If
data requested by the processor are found in a&edad it is
called a cache hit. Otherwise, a cache miss occling
contents of the memory block containing the reqdestord
are fetched from a lower memory layer and copi¢al éncache
line. For this purpose, another data item mustcsipi be
replaced. Therefore, in order to guarantee low statency,
the question into which cache line the data shd&doaded
and how to retrieve them must be handled efficjenti the
next subsections, we will brief the well-known teijues and
introduce the privileges and drawbacks of each.

1. Direct Mapping (DM)

In respect of hardware complexity, the cheapestagmh to
implement block placement is direct mapping [113] its
function maps any block in the main memory intoyoahe
possible cache line. The cache line is marked tagaalue to
distinguish a particular block of data from theeatblocks that
can locate in that line.

Direct mapped caches are fast, simple and inexgensi
implement. Moreover, direct mapped cache has bewmng
the most popular cache architectures in the padtisrstill

contents of any memory block can be placed into caghe
line of the corresponding set. This design is a ppmmised
design that avoids the problem of conflicts anddépendency
of the cycle time on the cache size. For a givet) @Bdress,
the address is obtained as in the direct mappiolgec8 Mod

L wherelL is the number of sets. Once the required set is
determined, the desired blo&kis associatively searched for
among the members of the set. When a cache misgspcc
replacement decisions take into account only mesnbéthe
set where the miss occurred, not the whole cacbefli€t will
rarely occur since two blocks accessed at the semegefrom
the same correspondence set may reside in diffefeaks of

a set. Thus, the set associative mapping cachaiaggi®on has
most of the speed advantage of the direct mappcge and
much of the flexibility of the full associative das both at a
moderate cost.Due to its cost-performance edge, set
associative cache design has been selected by coamguter
manufactures when implementing a cache for theinmger
systems.

3. Sector Mapping Cache (SMC)

In sector mapping, the main memory and the cachdath
divided into sectors; each sector is composed miiraber of
blocks [17]. Any sector in the main memory can r&p any
sector in the cache and a tag is stored with eactorsin the
cache to identify the main memory sector addressvever, a

very common for off-chip caches. However, its mairtomplete sector is not transferred to the cachieack to the

disadvantage is the frequent occurrence of conf@anflict
occurs while executing a program task that requasegeral

main memory as one unit. Instead, individual blocks
transferred as required. On cache sector missrafeired
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block of the sector is transferred into a speddiation within
one sector.

Sector mapping might be regarded as a fully asteeia
mapping scheme with valid bits, as in some micropssor
caches. Each block in the fully associative mappadhe
corresponds to a sector, and each byte corresporadsector
block.

B.Cache Performance Model
Typical design and optimization techniques atterpt
reduce the number of instructions that are execlgiading to

2517-9942
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Ill. PROPOSEDMETHODOLOGY

In this paper, we investigate the benefits of ofiing cache
performance and focusing exclusively on enhandiegcache
hit ratio; since the cache performance can be iildsin
terms of cache hit and cache miss ratios. The caohg&ol
comparator and its technique play a crucial roleache hit
time and thus in improving the cache performance.olr
proposed EOT technique, the line's tags are assimago
groups; even line's tags and odd line's tags depgmah their
Least Significant Bit (LSB). Each line's tag is Racacters
size and each character is 4-bits. Before feedirdibe's tag

a high speed computer system. Many attempts haeh bed C-characters to the main cache comparator fooraplete

carried out to improve the cache memory performaSeehan
and Abdel-Hag modified the set associative mappirg way
to increase the set size virtually by allowing rtgaving
processes to make use of empty lines in cache and
overwrite the cache lines by each other [9]. Spjutbposed
the elbow caching to improve the skewed-associataghing,
which depends on the efficiency of data movemeirtvéen
alternate positions in the cache [18].

The performance of a cache can be quantified imgesf
the hit and miss rates, the cost of a hit, andnties penalty,
where a cache hit is a memory access that finds idathe
cache and a cache miss is one that does not.

For cache reading, the cost of a cache hit is Hyubke time
to access an entry in the cache. The miss pensltthe
additional cost of replacing a cache line with @oaitaining
the desired data. Due to the principle of localihgre are a
number of accesses to items in the block that asidgit into
cache, leading to faster overall access time. Tawibdn of the
total number of blocks that are missed in the cactteneed to
access main memory is the miss ratio. Higher hésrarovide

C-character comparison, the line's tag is passeslgh the
even-or odd comparator for filtering. By this evan-odd
comparator, all the cache's tags of opposite LSBth®
memory address’s tag that is looking for will bgeoted
directly and quickly before entering the completel éong C-
character comparison stage. Therefore, a lot o miatch
line's tags are discarded quickly before going e main
cache comparator, leading to an optimum hit time tfee
wanted cache line.

It is not necessary for all the cache line’s tagstied from
the main memory to be divided equally between treneand
odd values. Thus depending on the current valuékeofine's
tags in the cache, the performance of the EOT tqukncan
be categorized in four cases:

i. Case- one: Equal hit ratio

If the current values of the line's tags in theheacome
equally between the even and odd values, thenithatio will
be the same for locating an even line's tag orliogds tag.

ii. Case- two: High hit ratio

If the current line's tags of opposite LSB to thee dhat is

a high cache performance. Designers use averageompemseeking for in the cache are coming more, theiri¢ is low

access time as a way to measure cache performinsehe
average time to access memory considering both dnts
misses and the frequency of different access waifdtts the
performance. For two memory levels, the averagesstme
(Tav) is determined in terms of cache hit and canlss ratios
and access times for cache and main memory [63. diven

by:

Tav = (Cache hit ratio) x (Hit time) + (Cache miagio) x (Miss Penalty) (1)

Since the speeds of the actual memory used will
improved independently, most effort in cache dessyapent
on fast control and decreasing the miss rates. &ectassify
misses into three categories, compulsory missepacisy
misses and conflict misses. Compulsory misses aenwata
is loaded into the cache for the first time (egpgpam startup)

and a high hit ratio is obtained. This is due te tiigh speed
rejection of the miss match- LSB line's tags bydken-or odd
comparator.

iii. Case- three: Worse hit ratio

This is the rarely case. There is no improvemerthé hit
ratio if the current values of the line's tagshie tache are all
coming in even or odd order and the cache lineighimtoking
for in even or odd order, respectively.

iv.Case- four: Uncounted hit ratio

If the current values of the line's tags come ranlgian the
Q%tche, the line hit time is unknown and dependtghemrandom
distribution of the tags values in the cache.

A.Even- Odd Tabulation Technique (EOT)
For mapping the main memory blocks into cacdhes| the
memory address word is divided into two fields; thg field

and are unavoidable. Capacity misses are when @ataof t-hits and word field of w-bits. The tag valuktiee memory

reloaded because the cache is not large enougbldoah the
data no matter how we organize the data. All othisses are
conflict misses which will occur because of a limay be
discarded and later retrieved if too many lines iteajs set in
the case of direct mapped or set-associative cathese
misses are also called collision or interferenceses.

address that is looking for needs to be compardd aili line's
tags in the cache to grasp the desired cache d¢ina fword
access. In EOT technique, before feeding the ltags to the
main cache comparator of a counted time comparison,
discriminated stage is added for even tags andtagkl This
stage is implemented by adding the even-or odd eoatpr as
shown in Fig.1.
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memory address word cache

tag field (t-bits) word field
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comparator LSB

!

line's tag  words

2% words

bypass circuit

F

main cache
comparator

|

No Yes
(Miss in cache) (Hit in cache)

Fig. 1 Even- Odd Tabulation Technique

B. Pseudo code for EQT Technique

A java code is written to implement the EOT techmigand
determine the cache line hit time at different mgmsizes.
The Pseudo code is given in Appendix (A). It ingadthe
following steps:

1. Step one

Take the tag value of the memory address of C-cltera
that is looking for and the cache line's tag ofHaracters and
feed them to the even-or odd comparator.

2. Sep two

Compare the LSBs of both; memory address's tagcacke
line's tag. If there is a mismatch between them,ctiche line's
tag is rejected directly. Otherwise, the line's fagpushed
forward to the main cache comparator.

3. Sep three

Compare the passed- line's tag with the memoryesdtr
tag at the main cache comparator for a completbaCacters
comparison.

4, Sep four

Continue on comparison process until reaching thehe
line's tag of C-matches. It is the wanted one, sk the
comparison.

IV. RESULTS AND DISCUSSIONS

The performance of the proposed technique EOT is

determined and compared with the well known teamiq
FAM. The simulation results are based on cacheirhi# and
investigated for different sizes of cache and maemory.
Fig.2 shows the cache hit time for the EOT tech@iggainst
that of FAM technique. The cache is 16k line sind ¢heir
lines are taken randomly from a main memory of 4&bThe
performance of EOT and FAM are simulated for 2@’Brtags
generated randomly from the cache. The high pedooa of
EOT technique for cache hit time is arisen strongflyis at
average improvement of 36.57% compared to FAM tegclen
Fig.3 shows the performance of EOT against thaFAM
technique, for 20 line’s tags selected randomlynfiao 32k line

cache. The cache lines are also taken randomly &amain
memory of 16M byte. The average improvement in eduih
time by EOT compared to FAM is 40.57%.

In Fig.4, the current values of the line’s tagslar@ught and
forced equally between even and odd values for ek
cache. Due to the direct and quick rejection of ia# line’s
tags by the even-or odd comparator, the EOT tedenltps
shown a high performance for cache hit time. ltgerage
improvement compared to FAM is 45.45%.

Fig. 5 shows the worst case at where the currdoesaof
the line’s tags in the cache are all forced in egeder or in
odd order and the cache line that is looking fanisven order
or in odd order respectively. In practice, it isagely case. The
even- odd comparator in EOT technique becomes utitho
avail and it caused a regression of 4.16%.

The results summarizes that a powerful performdoce
cache hit time is obtained with the proposed teplmiEOT
compared to the familiar FAM technique.
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V. CONCLUSIONS
Cache performance optimizatioyields to significant

execution speedups. While some techniques are based

optimizing compilers, others are based on hardwBtgure
computer architecture trends further motivate nedeafforts
focusing on memory hierarchy optimizations. In théper, we
presented optimum hardware cache architectureitaree the
performance of the cache based on high hit ratiecaBse
there are fewer cache lines than the main memamgkb| the
cache line’s tags can be come onto unequally tvempg of
tags; even line’s tags and odd line's tags. So piaposed
EOT approach exploited the LSB of the tag fieldhie main
memory address to distinguish between the match &angl
miss match tags in the cache. The even-or odd c@igra
compares only the LSBs of the cache line’'s tag #rel
memory field tag and rejects any miss match caicleeih very
low time. Consequently, only the matched cacheditegs are
passed to the main cache comparator for a longcanglete
C-character comparison. In this way a lot of misdah line’s
tags are grasped and rejected quickly in the eveaen
comparator and they do not need to go to the mathe

comparator. Building on that, there is no waste¢img and a
minimum time for cache line hitting is reached.

The performance of the proposed EOT technique is

simulated and compared to the well known FAM teghaj
for different cache sizes; 16k line and 32k lindeTresults
have shown that the new EOT technique has achiaveidh
performance for a line hit time in the cache coregato the
familiar FAM technique.

Appendix (A): Pseudo code for EOT technique
Find a cache-line’s tag using EOT technique;
Initialize time of one bit comparison = TjBs;
Initialize time of one hex-digit comparison = Ti8;
Initialize No. of Characters per a tag = C;
Initialize the “Bit-Counter” = zero;
Initialize the “Character-Counter” = zero;
for each line's tag on caclde
Initialize the “Comparator-Counter” = zero;
Increment “Bit-Counter”;

if line’s tag and address’s tag are matched for LSB

then
for each hex-digit on line’s tadp
Increment “Character- Counter”;
if hex-digits of both Line’s tag and
address’s tag are matchibgn
Increment  “Comparator-
Counter”;
endif;
endfor;
if Comparator- Counter equaltn
Cache line' tag is located
Time = (Bit- Counter x TB) +
(Character- Counter xTH);
Break;
endif;
endif;
endfor;
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